
File::HomeDir(3pm) User Contributed Perl Documentation File::HomeDir(3pm)

NAME
File::HomeDir − Find your home and other directories on any platform

SYNOPSIS
use File::HomeDir;

Modern Interface (Current User)

$home = File::HomeDir−>my_home;

$desktop = File::HomeDir−>my_desktop;

$docs = File::HomeDir−>my_documents;

$music = File::HomeDir−>my_music;

$pics = File::HomeDir−>my_pictures;

$videos = File::HomeDir−>my_videos;

$data = File::HomeDir−>my_data;

$dist = File::HomeDir−>my_dist_data('File−HomeDir');

$dist = File::HomeDir−>my_dist_config('File−HomeDir');

Modern Interface (Other Users)

$home = File::HomeDir−>users_home('foo');

$desktop = File::HomeDir−>users_desktop('foo');

$docs = File::HomeDir−>users_documents('foo');

$music = File::HomeDir−>users_music('foo');

$pics = File::HomeDir−>users_pictures('foo');

$video = File::HomeDir−>users_videos('foo');

$data = File::HomeDir−>users_data('foo');

DESCRIPTION
File::HomeDir is a module for locating the directories that are ‘‘owned’’ by a user (typically your user)

and to solve the various issues that arise trying to find them consistently across a wide variety of platforms.

The end result is a single API that can find your resources on any platform, making it relatively trivial to

create Perl software that works elegantly and correctly no matter where you run it.

Platform Neutrality

In the Unix world, many different types of data can be mixed together in your home directory (although on

some Unix platforms this is no longer the case, particularly for ‘‘desktop’’−oriented platforms).

On some non-Unix platforms, separate directories are allocated for different types of data and have been for

a long time.

When writing applications on top of File::HomeDir, you should thus always try to use the most specific

method you can. User documents should be saved in my_documents, data that supports an application

but isn’t normally editing by the user directory should go into my_data.

On platforms that do not make any distinction, all these different methods will harmlessly degrade to the

main home directory, but on platforms that care File::HomeDir will always try to Do The Right Thing(tm).

METHODS
Tw o types of methods are provided. The my_method series of methods for finding resources for the

current user, and the users_method (read as ‘‘user’s method’’) series for finding resources for arbitrary

users.

This split is necessary, as on most platforms it is much easier to find information about the current user

compared to other users, and indeed on a number you cannot find out information such as

users_desktop at all, due to security restrictions.

All methods will double check (using a −d test) that a directory actually exists before returning it, so you

may trust in the values that are returned (subject to the usual caveats of race conditions of directories being

deleted at the moment between a directory being returned and you using it).

However, because in some cases platforms may not support the concept of home directories at all, any

perl v5.26.2 2018-05-17 1

File::HomeDir(3pm) User Contributed Perl Documentation File::HomeDir(3pm)

method may return undef (both in scalar and list context) to indicate that there is no matching directory

on the system.

For example, most untrusted ’nobody’−type users do not have a home directory. So any modules that are

used in a CGI application that at some level of recursion use your code, will result in calls to File::HomeDir

returning undef, even for a basic home() call.

my_home

The my_home method takes no arguments and returns the main home/profile directory for the current user.

If the distinction is important to you, the term ‘‘current’’ refers to the real user, and not the effective user.

This is also the case for all of the other ‘‘my’’ methods.

Returns the directory path as a string, undef if the current user does not have a home directory, or dies on

error.

my_desktop

The my_desktop method takes no arguments and returns the ‘‘desktop’’ directory for the current user.

Due to the diversity and complexity of implementations required to deal with implementing the required

functionality fully and completely, the my_desktop method may or may not be implemented on each

platform.

That said, I am extremely interested in code to implement my_desktop on Unix, as long as it is capable

of dealing (as the Windows implementation does) with internationalization. It should also avoid false

positive results by making sure it only returns the appropriate directories for the appropriate platforms.

Returns the directory path as a string, undef if the current user does not have a desktop directory, or dies

on error.

my_documents

The my_documents method takes no arguments and returns the directory (for the current user) where the

user’s documents are stored.

Returns the directory path as a string, undef if the current user does not have a documents directory, or

dies on error.

my_music

The my_music method takes no arguments and returns the directory where the current user’s music is

stored.

No bias is made to any particular music type or music program, rather the concept of a directory to hold the

user’s music is made at the level of the underlying operating system or (at least) desktop environment.

Returns the directory path as a string, undef if the current user does not have a suitable directory, or dies

on error.

my_pictures

The my_pictures method takes no arguments and returns the directory where the current user’s pictures

are stored.

No bias is made to any particular picture type or picture program, rather the concept of a directory to hold

the user’s pictures is made at the level of the underlying operating system or (at least) desktop environment.

Returns the directory path as a string, undef if the current user does not have a suitable directory, or dies

on error.

my_videos

The my_videos method takes no arguments and returns the directory where the current user’s videos are

stored.

No bias is made to any particular video type or video program, rather the concept of a directory to hold the

user’s videos is made at the level of the underlying operating system or (at least) desktop environment.

Returns the directory path as a string, undef if the current user does not have a suitable directory, or dies

perl v5.26.2 2018-05-17 2

File::HomeDir(3pm) User Contributed Perl Documentation File::HomeDir(3pm)

on error.

my_data

The my_data method takes no arguments and returns the directory where local applications should store

their internal data for the current user.

Generally an application would create a subdirectory such as .foo, beneath this directory, and store its

data there. By creating your directory this way, you get an accurate result on the maximum number of

platforms. But see the documentation about my_dist_config() or my_dist_data() below.

For example, on Unix you get ˜/.foo and on Win32 you get ˜/Local Settings/Application

Data/.foo

Returns the directory path as a string, undef if the current user does not have a data directory, or dies on

error.

my_dist_config

File::HomeDir−>my_dist_config($dist [, \%params]);

For example...

File::HomeDir−>my_dist_config('File−HomeDir');

File::HomeDir−>my_dist_config('File−HomeDir', { create => 1 });

The my_dist_config method takes a distribution name as argument and returns an application-specific

directory where they should store their internal configuration.

The base directory will be either my_config if the platform supports it, or my_documents otherwise.

The subdirectory itself will be BASE/Perl/Dist−Name. If the base directory is the user’s home

directory, my_dist_config will be in ˜/.perl/Dist−Name (and thus be hidden on all Unixes).

The optional last argument is a hash reference to tweak the method behaviour. The following hash keys are

recognized:

• create

Passing a true value to this key will force the creation of the directory if it doesn’t exist (remember that

File::HomeDir’s policy is to return undef if the directory doesn’t exist).

Defaults to false, meaning no automatic creation of directory.

my_dist_data

File::HomeDir−>my_dist_data($dist [, \%params]);

For example...

File::HomeDir−>my_dist_data('File−HomeDir');

File::HomeDir−>my_dist_data('File−HomeDir', { create => 1 });

The my_dist_data method takes a distribution name as argument and returns an application-specific

directory where they should store their internal data.

This directory will be of course a subdirectory of my_data. Platforms supporting data-specific directories

will use DATA_DIR/perl/dist/Dist−Name following the common ‘‘DAT A/vendor/application’’

pattern. If the my_data directory is the user’s home directory, my_dist_data will be in

˜/.perl/dist/Dist−Name (and thus be hidden on all Unixes).

The optional last argument is a hash reference to tweak the method behaviour. The following hash keys are

recognized:

• create

Passing a true value to this key will force the creation of the directory if it doesn’t exist (remember that

File::HomeDir’s policy is to return undef if the directory doesn’t exist).

perl v5.26.2 2018-05-17 3

File::HomeDir(3pm) User Contributed Perl Documentation File::HomeDir(3pm)

Defaults to false, meaning no automatic creation of directory.

users_home

$home = File::HomeDir−>users_home('foo');

The users_home method takes a single parameter and is used to locate the parent home/profile directory

for an identified user on the system.

While most of the time this identifier would be some form of user name, it is permitted to vary per-platform

to support user ids or UUIDs as applicable for that platform.

Returns the directory path as a string, undef if that user does not have a home directory, or dies on error.

users_documents

$docs = File::HomeDir−>users_documents('foo');

Returns the directory path as a string, undef if that user does not have a documents directory, or dies on

error.

users_data

$data = File::HomeDir−>users_data('foo');

Returns the directory path as a string, undef if that user does not have a data directory, or dies on error.

users_desktop

$docs = File::HomeDir−>users_desktop('foo');

Returns the directory path as a string, undef if that user does not have a desktop directory, or dies on error.

users_music

$docs = File::HomeDir−>users_music('foo');

Returns the directory path as a string, undef if that user does not have a music directory, or dies on error.

users_pictures

$docs = File::HomeDir−>users_pictures('foo');

Returns the directory path as a string, undef if that user does not have a pictures directory, or dies on error.

users_videos

$docs = File::HomeDir−>users_videos('foo');

Returns the directory path as a string, undef if that user does not have a videos directory, or dies on error.

FUNCTIONS
home

use File::HomeDir;

$home = home();

$home = home('foo');

$home = File::HomeDir::home();

$home = File::HomeDir::home('foo');

The home function is exported by default and is provided for compatibility with legacy applications. In

new applications, you should use the newer method-based interface above.

Returns the directory path to a named user’s home/profile directory.

If provided no parameter, returns the directory path to the current user’s home/profile directory.

TO DO
• Add more granularity to Unix, and add support to VMS and other esoteric platforms, so we can

consider going core.

• Add consistent support for users_* methods

SUPPORT
This module is stored in an Open Repository at the following address.

<http://svn.ali.as/cpan/trunk/File−HomeDir>

perl v5.26.2 2018-05-17 4

File::HomeDir(3pm) User Contributed Perl Documentation File::HomeDir(3pm)

Write access to the repository is made available automatically to any published CPAN author, and to most

other volunteers on request.

If you are able to submit your bug report in the form of new (failing) unit tests, or can apply your fix

directly instead of submitting a patch, you are strongly encouraged to do so as the author currently

maintains over 100 modules and it can take some time to deal with non-Critical bug reports or patches.

This will guarantee that your issue will be addressed in the next release of the module.

If you cannot provide a direct test or fix, or don’t hav e time to do so, then regular bug reports are still

accepted and appreciated via the CPAN bug tracker.

<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=File−HomeDir>

For other issues, for commercial enhancement or support, or to have your write access enabled for the

repository, contact the author at the email address above.

ACKNOWLEDGEMENTS
The biggest acknowledgement goes to Chris Nandor, who wielded his legendary Mac-fu and turned my

initial fairly ordinary Darwin implementation into something that actually worked properly everywhere,

and then donated a Mac OS X license to allow it to be maintained properly.

AUTHORS
Adam Kennedy <adamk@cpan.org>

Sean M. Burke <sburke@cpan.org>

Chris Nandor <cnandor@cpan.org>

Stephen Steneker <stennie@cpan.org>

SEE ALSO
File::ShareDir, File::HomeDir::Win32 (legacy)

COPYRIGHT
Copyright 2005 − 2012 Adam Kennedy.

Some parts copyright 2000 Sean M. Burke.

Some parts copyright 2006 Chris Nandor.

Some parts copyright 2006 Stephen Steneker.

Some parts copyright 2009−2011 Jérôme Quelin.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

The full text of the license can be found in the LICENSE file included with this module.

perl v5.26.2 2018-05-17 5

