
Eval::TypeTiny(3pm) User Contributed Perl Documentation Eval::TypeTiny(3pm)

NAME

Eval::TypeTiny − utility to evaluate a string of Perl code in a clean environment

STATUS

This module is covered by the Type-Tiny stability policy.

DESCRIPTION

This module is used by Type::Tiny to compile coderefs from strings of Perl code, and hashrefs of variables

to close over.

Functions

This module exports one function, which works much like the similarly named function from

Eval::Closure:

eval_closure(source => $source, environment => \%env, %opt)

Constants

The following constants may be exported, but are not by default.

HAS_LEXICAL_SUBS

Boolean indicating whether Eval::TypeTiny has support for lexical subs. (This feature requires Perl

5.18.)

ALIAS_IMPLEMENTATION

Returns a string indicating what implementation of alias => 1 is being used. Eval::TypeTiny will

automatically choose the best implementation. This constant can be matched against the

IMPLEMENTAION_* constants.

IMPLEMENTATION_NATIVE

If ALIAS_IMPLEMENTATION eq IMPLEMENTATION_NATIVE then Eval::TypeTiny is currently

using Perl 5.22’s native alias feature. This requires Perl 5.22.

IMPLEMENTATION_DEVEL_LEXALIAS

If ALIAS_IMPLEMENTATION eq IMPLEMENTATION_DEVEL_LEXALIAS then Eval::TypeTiny

is currently using Devel::LexAlias to provide aliases.

IMPLEMENTATION_PADWALKER

If ALIAS_IMPLEMENTATION eq IMPLEMENTATION_PADWALKER then Eval::TypeTiny is

currently using PadWalker to provide aliases.

IMPLEMENTATION_TIE

If ALIAS_IMPLEMENTATION eq IMPLEMENTATION_TIE then Eval::TypeTiny is using the

fallback implementation of aliases using tie. This is the slowest implementation, and may cause

problems in certain edge cases, like trying to alias already-tied variables, but it’s the only way to

implement alias => 1 without a recent version of Perl or one of the two optional modules

mentioned above.

EVALUATION ENVIRONMENT

The evaluation is performed in the presence of strict, but the absence of warnings. (This is different to

Eval::Closure which enables warnings for compiled closures.)

The feature pragma is not active in the evaluation environment, so the following will not work:

use feature qw(say);

use Eval::TypeTiny qw(eval_closure);

my $say_all = eval_closure(

source => 'sub { say for @_ }',

);

$say_all−>("Hello", "World");

The feature pragma does not ‘‘carry over’’ into the stringy eval. It is of course possible to import pragmas

into the evaluated string as part of the string itself:

perl v5.30.0 2019-12-28 1

Eval::TypeTiny(3pm) User Contributed Perl Documentation Eval::TypeTiny(3pm)

use Eval::TypeTiny qw(eval_closure);

my $say_all = eval_closure(

source => 'sub { use feature qw(say); say for @_ }',

);

$say_all−>("Hello", "World");

BUGS

Please report any bugs to <http://rt.cpan.org/Dist/Display.html?Queue=Type−Tiny>.

SEE ALSO

Eval::Closure, Error::TypeTiny::Compilation.

AUTHOR

Toby Inkster <tobyink@cpan.org>.

COPYRIGHT AND LICENCE

This software is copyright (c) 2013−2014, 2017−2019 by Toby Inkster.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

programming language system itself.

DISCLAIMER OF WARRANTIES

THIS PACKAGE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

perl v5.30.0 2019-12-28 2

