
Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

NAME

Algorithm::Diff − Compute ‘intelligent’ differences between two files / lists

SYNOPSIS

require Algorithm::Diff;

This example produces traditional 'diff' output:

my $diff = Algorithm::Diff−>new(\@seq1, \@seq2);

$diff−>Base(1); # Return line numbers, not indices
while($diff−>Next()) {

next if $diff−>Same();
my $sep = '';
if(! $diff−>Items(2)) {

printf "%d,%dd%d\n",
$diff−>Get(qw(Min1 Max1 Max2));

} elsif(! $diff−>Items(1)) {
printf "%da%d,%d\n",

$diff−>Get(qw(Max1 Min2 Max2));
} else {

$sep = "−−−\n";
printf "%d,%dc%d,%d\n",

$diff−>Get(qw(Min1 Max1 Min2 Max2));
}
print "< $_" for $diff−>Items(1);
print $sep;
print "> $_" for $diff−>Items(2);

}

Alternate interfaces:

use Algorithm::Diff qw(
LCS LCS_length LCSidx
diff sdiff compact_diff
traverse_sequences traverse_balanced);

@lcs = LCS(\@seq1, \@seq2);
$lcsref = LCS(\@seq1, \@seq2);
$count = LCS_length(\@seq1, \@seq2);

($seq1idxref, $seq2idxref) = LCSidx(\@seq1, \@seq2);

Complicated interfaces:

@diffs = diff(\@seq1, \@seq2);

@sdiffs = sdiff(\@seq1, \@seq2);

@cdiffs = compact_diff(\@seq1, \@seq2);

traverse_sequences(
\@seq1,

perl v5.26.2 2018-08-25 1

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

\@seq2,
{ MATCH => \&callback1,

DISCARD_A => \&callback2,
DISCARD_B => \&callback3,

},
\&key_generator,
@extra_args,

);

traverse_balanced(
\@seq1,
\@seq2,
{ MATCH => \&callback1,

DISCARD_A => \&callback2,
DISCARD_B => \&callback3,
CHANGE => \&callback4,

},
\&key_generator,
@extra_args,

);

INTRODUCTION

(by Mark-Jason Dominus)

I once read an article written by the authors of diff; they said that they worked very hard on the algorithm

until they found the right one.

I think what they ended up using (and I hope someone will correct me, because I am not very confident

about this) was the ‘longest common subsequence’ method. In the LCS problem, you have two sequences

of items:

a b c d f g h j q z

a b c d e f g i j k r x y z

and you want to find the longest sequence of items that is present in both original sequences in the same

order. That is, you want to find a new sequence S which can be obtained from the first sequence by deleting

some items, and from the second sequence by deleting other items. You also want S to be as long as

possible. In this case S is

a b c d f g j z

From there it’s only a small step to get diff-like output:

e h i k q r x y
+ − + + − + + +

This module solves the LCS problem. It also includes a canned function to generate diff−like output.

It might seem from the example above that the LCS of two sequences is always pretty obvious, but that’s

not always the case, especially when the two sequences have many repeated elements. For example,

consider

a x b y c z p d q
a b c a x b y c z

A naive approach might start by matching up the a and b that appear at the beginning of each sequence,

like this:

a x b y c z p d q
a b c a b y c z

This finds the common subsequence a b c z. But actually, the LCS is a x b y c z:

perl v5.26.2 2018-08-25 2

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

a x b y c z p d q
a b c a x b y c z

or

a x b y c z p d q
a b c a x b y c z

USAGE

(See also the README file and several example scripts include with this module.)

This module now provides an object-oriented interface that uses less memory and is easier to use than most

of the previous procedural interfaces. It also still provides several exportable functions. We’ll deal with

these in ascending order of difficulty: LCS, LCS_length, LCSidx, OO interface, prepare, diff,

sdiff, traverse_sequences, and traverse_balanced.

LCS
Given references to two lists of items, LCS returns an array containing their longest common subsequence.

In scalar context, it returns a reference to such a list.

@lcs = LCS(\@seq1, \@seq2);
$lcsref = LCS(\@seq1, \@seq2);

LCS may be passed an optional third parameter; this is a CODE reference to a key generation function. See

‘‘KEY GENERATION FUNCTIONS’’.

@lcs = LCS(\@seq1, \@seq2, \&keyGen, @args);
$lcsref = LCS(\@seq1, \@seq2, \&keyGen, @args);

Additional parameters, if any, will be passed to the key generation routine.

LCS_length
This is just like LCS except it only returns the length of the longest common subsequence. This provides a

performance gain of about 9% compared to LCS.

LCSidx
Like LCS except it returns references to two arrays. The first array contains the indices into @seq1 where

the LCS items are located. The second array contains the indices into @seq2 where the LCS items are

located.

Therefore, the following three lists will contain the same values:

my($idx1, $idx2) = LCSidx(\@seq1, \@seq2);
my @list1 = @seq1[@$idx1];
my @list2 = @seq2[@$idx2];
my @list3 = LCS(\@seq1, \@seq2);

new
$diff = Algorithm::Diffs−>new(\@seq1, \@seq2);
$diff = Algorithm::Diffs−>new(\@seq1, \@seq2, \%opts);

new computes the smallest set of additions and deletions necessary to turn the first sequence into the

second and compactly records them in the object.

You use the object to iterate over hunks, where each hunk represents a contiguous section of items which

should be added, deleted, replaced, or left unchanged.

The following summary of all of the methods looks a lot like Perl code but some of the symbols have

different meanings:

[] Encloses optional arguments
: Is followed by the default value for an optional argument
| Separates alternate return results

Method summary:

perl v5.26.2 2018-08-25 3

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

$obj = Algorithm::Diff−>new(\@seq1, \@seq2, [\%opts]);
$pos = $obj−>Next([$count : 1]);
$revPos = $obj−>Prev([$count : 1]);
$obj = $obj−>Reset([$pos : 0]);
$copy = $obj−>Copy([$pos, [$newBase]]);
$oldBase = $obj−>Base([$newBase]);

Note that all of the following methods die if used on an object that is ‘‘reset’’ (not currently pointing at

any hunk).

$bits = $obj−>Diff();
@items|$cnt = $obj−>Same();
@items|$cnt = $obj−>Items($seqNum);
@idxs |$cnt = $obj−>Range($seqNum, [$base]);
$minIdx = $obj−>Min($seqNum, [$base]);
$maxIdx = $obj−>Max($seqNum, [$base]);
@values = $obj−>Get(@names);

Passing in undef for an optional argument is always treated the same as if no argument were passed in.

Next
$pos = $diff−>Next(); # Move forward 1 hunk
$pos = $diff−>Next(2); # Move forward 2 hunks
$pos = $diff−>Next(−5); # Move backward 5 hunks

Next moves the object to point at the next hunk. The object starts out ‘‘reset’’, which means it isn’t

pointing at any hunk. If the object is reset, then Next() moves to the first hunk.

Next returns a true value iff the move didn’t go past the last hunk. So Next(0) will return true iff

the object is not reset.

Actually, Next returns the object’s new position, which is a number between 1 and the number of

hunks (inclusive), or returns a false value.

Prev
Prev($N) is almost identical to Next(−$N); it moves to the $Nth previous hunk. On a ’reset’

object, Prev() [and Next(−1)] move to the last hunk.

The position returned by Prev is relative to the end of the hunks; −1 for the last hunk, −2 for the

second-to-last, etc.

Reset
$diff−>Reset(); # Reset the object's position
$diff−>Reset($pos); # Move to the specified hunk
$diff−>Reset(1); # Move to the first hunk
$diff−>Reset(−1); # Move to the last hunk

Reset returns the object, so, for example, you could use $diff−>Reset()−>Next(−1) to get

the number of hunks.

Copy
$copy = $diff−>Copy($newPos, $newBase);

Copy returns a copy of the object. The copy and the original object share most of their data, so

making copies takes very little memory. The copy maintains its own position (separate from the

original), which is the main purpose of copies. It also maintains its own base.

By default, the copy’s position starts out the same as the original object’s position. But Copy takes an

optional first argument to set the new position, so the following three snippets are equivalent:

$copy = $diff−>Copy($pos);

$copy = $diff−>Copy();

perl v5.26.2 2018-08-25 4

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

$copy−>Reset($pos);

$copy = $diff−>Copy()−>Reset($pos);

Copy takes an optional second argument to set the base for the copy. If you wish to change the base

of the copy but leave the position the same as in the original, here are two equivalent ways:

$copy = $diff−>Copy();
$copy−>Base(0);

$copy = $diff−>Copy(undef,0);

Here are two equivalent way to get a ‘‘reset’’ copy:

$copy = $diff−>Copy(0);

$copy = $diff−>Copy()−>Reset();

Diff
$bits = $obj−>Diff();

Diff returns a true value iff the current hunk contains items that are different between the two

sequences. It actually returns one of the follow 4 values:

3 3==(1|2). This hunk contains items from @seq1 and the items from @seq2 that should

replace them. Both sequence 1 and 2 contain changed items so both the 1 and 2 bits are set.

2 This hunk only contains items from @seq2 that should be inserted (not items from @seq1).

Only sequence 2 contains changed items so only the 2 bit is set.

1 This hunk only contains items from @seq1 that should be deleted (not items from @seq2).

Only sequence 1 contains changed items so only the 1 bit is set.

0 This means that the items in this hunk are the same in both sequences. Neither sequence 1 nor 2

contain changed items so neither the 1 nor the 2 bits are set.

Same
Same returns a true value iff the current hunk contains items that are the same in both sequences. It

actually returns the list of items if they are the same or an empty list if they aren’t. In a scalar context,

it returns the size of the list.

Items
$count = $diff−>Items(2);
@items = $diff−>Items($seqNum);

Items returns the (number of) items from the specified sequence that are part of the current hunk.

If the current hunk contains only insertions, then $diff−>Items(1) will return an empty list (0 in

a scalar context). If the current hunk contains only deletions, then $diff−>Items(2) will return

an empty list (0 in a scalar context).

If the hunk contains replacements, then both $diff−>Items(1) and $diff−>Items(2) will

return different, non-empty lists.

Otherwise, the hunk contains identical items and all of the following will return the same lists:

@items = $diff−>Items(1);
@items = $diff−>Items(2);
@items = $diff−>Same();

Range

perl v5.26.2 2018-08-25 5

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

$count = $diff−>Range($seqNum);
@indices = $diff−>Range($seqNum);
@indices = $diff−>Range($seqNum, $base);

Range is like Items except that it returns a list of indices to the items rather than the items

themselves. By default, the index of the first item (in each sequence) is 0 but this can be changed by

calling the Base method. So, by default, the following two snippets return the same lists:

@list = $diff−>Items(2);
@list = @seq2[$diff−>Range(2)];

You can also specify the base to use as the second argument. So the following two snippets always

return the same lists:

@list = $diff−>Items(1);
@list = @seq1[$diff−>Range(1,0)];

Base
$curBase = $diff−>Base();
$oldBase = $diff−>Base($newBase);

Base sets and/or returns the current base (usually 0 or 1) that is used when you request range

information. The base defaults to 0 so that range information is returned as array indices. You can set

the base to 1 if you want to report traditional line numbers instead.

Min
$min1 = $diff−>Min(1);
$min = $diff−>Min($seqNum, $base);

Min returns the first value that Range would return (given the same arguments) or returns undef if

Range would return an empty list.

Max
Max returns the last value that Range would return or undef.

Get
($n, $x, $r) = $diff−>Get(qw(min1 max1 range1));
@values = $diff−>Get(qw(0min2 1max2 range2 same base));

Get returns one or more scalar values. You pass in a list of the names of the values you want

returned. Each name must match one of the following regexes:

/ˆ(−?\d+)?(min|max)[12]$/i
/ˆ(range[12]|same|diff|base)$/i

The 1 or 2 after a name says which sequence you want the information for (and where allowed, it is

required). The optional number before ‘‘min’’ or ‘‘max’’ is the base to use. So the following

equalities hold:

$diff−>Get('min1') == $diff−>Min(1)
$diff−>Get('0min2') == $diff−>Min(2,0)

Using Get in a scalar context when you’ve passed in more than one name is a fatal error (die is

called).

prepare
Given a reference to a list of items, prepare returns a reference to a hash which can be used when

comparing this sequence to other sequences with LCS or LCS_length.

perl v5.26.2 2018-08-25 6

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

$prep = prepare(\@seq1);
for $i (0 .. 10_000)
{

@lcs = LCS($prep, $seq[$i]);
do something useful with @lcs

}

prepare may be passed an optional third parameter; this is a CODE reference to a key generation

function. See ‘‘KEY GENERATION FUNCTIONS’’.

$prep = prepare(\@seq1, \&keyGen);
for $i (0 .. 10_000)
{

@lcs = LCS($seq[$i], $prep, \&keyGen);
do something useful with @lcs

}

Using prepare provides a performance gain of about 50% when calling LCS many times compared with

not preparing.

diff
@diffs = diff(\@seq1, \@seq2);
$diffs_ref = diff(\@seq1, \@seq2);

diff computes the smallest set of additions and deletions necessary to turn the first sequence into the

second, and returns a description of these changes. The description is a list of hunks; each hunk represents

a contiguous section of items which should be added, deleted, or replaced. (Hunks containing unchanged

items are not included.)

The return value of diff is a list of hunks, or, in scalar context, a reference to such a list. If there are no

differences, the list will be empty.

Here is an example. Calling diff for the following two sequences:

a b c e h j l m n p
b c d e f j k l m r s t

would produce the following list:

(
[['−', 0, 'a']],

[['+', 2, 'd']],

[['−', 4, 'h'],
['+', 4, 'f']],

[['+', 6, 'k']],

[['−', 8, 'n'],
['−', 9, 'p'],
['+', 9, 'r'],
['+', 10, 's'],
['+', 11, 't']],

)

There are five hunks here. The first hunk says that the a at position 0 of the first sequence should be

deleted (−). The second hunk says that the d at position 2 of the second sequence should be inserted (+).

The third hunk says that the h at position 4 of the first sequence should be removed and replaced with the f
from position 4 of the second sequence. And so on.

diff may be passed an optional third parameter; this is a CODE reference to a key generation function.

perl v5.26.2 2018-08-25 7

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

See ‘‘KEY GENERATION FUNCTIONS’’.

Additional parameters, if any, will be passed to the key generation routine.

sdiff
@sdiffs = sdiff(\@seq1, \@seq2);
$sdiffs_ref = sdiff(\@seq1, \@seq2);

sdiff computes all necessary components to show two sequences and their minimized differences side by

side, just like the Unix-utility sdiff does:

same same
before | after
old < −
− > new

It returns a list of array refs, each pointing to an array of display instructions. In scalar context it returns a

reference to such a list. If there are no differences, the list will have one entry per item, each indicating that

the item was unchanged.

Display instructions consist of three elements: A modifier indicator (+: Element added, −: Element

removed, u: Element unmodified, c: Element changed) and the value of the old and new elements, to be

displayed side-by-side.

An sdiff of the following two sequences:

a b c e h j l m n p
b c d e f j k l m r s t

results in

(['−', 'a', ''],
['u', 'b', 'b'],
['u', 'c', 'c'],
['+', '', 'd'],
['u', 'e', 'e'],
['c', 'h', 'f'],
['u', 'j', 'j'],
['+', '', 'k'],
['u', 'l', 'l'],
['u', 'm', 'm'],
['c', 'n', 'r'],
['c', 'p', 's'],
['+', '', 't'],

)

sdiff may be passed an optional third parameter; this is a CODE reference to a key generation function.

See ‘‘KEY GENERATION FUNCTIONS’’.

Additional parameters, if any, will be passed to the key generation routine.

compact_diff
compact_diff is much like sdiff except it returns a much more compact description consisting of just

one flat list of indices. An example helps explain the format:

perl v5.26.2 2018-08-25 8

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

my @a = qw(a b c e h j l m n p);
my @b = qw(b c d e f j k l m r s t);
@cdiff = compact_diff(\@a, \@b);
Returns:
@a @b @a @b
start start values values
(0, 0, # =

0, 0, # a !
1, 0, # b c = b c
3, 2, # ! d
3, 3, # e = e
4, 4, # f ! h
5, 5, # j = j
6, 6, # ! k
6, 7, # l m = l m
8, 9, # n p ! r s t
10, 12, #

);

The 0th, 2nd, 4th, etc. entries are all indices into @seq1 (@a in the above example) indicating where a

hunk begins. The 1st, 3rd, 5th, etc. entries are all indices into @seq2 (@b in the above example)

indicating where the same hunk begins.

So each pair of indices (except the last pair) describes where a hunk begins (in each sequence). Since each

hunk must end at the item just before the item that starts the next hunk, the next pair of indices can be used

to determine where the hunk ends.

So, the first 4 entries (0..3) describe the first hunk. Entries 0 and 1 describe where the first hunk begins

(and so are always both 0). Entries 2 and 3 describe where the next hunk begins, so subtracting 1 from each

tells us where the first hunk ends. That is, the first hunk contains items $diff[0] through $diff[2] −
1 of the first sequence and contains items $diff[1] through $diff[3] − 1 of the second sequence.

In other words, the first hunk consists of the following two lists of items:

1st pair 2nd pair
of indices of indices

@list1 = @a[$cdiff[0] .. $cdiff[2]−1];
@list2 = @b[$cdiff[1] .. $cdiff[3]−1];

Hunk start Hunk end

Note that the hunks will always alternate between those that are part of the LCS (those that contain

unchanged items) and those that contain changes. This means that all we need to be told is whether the first

hunk is a ’same’ or ’diff’ hunk and we can determine which of the other hunks contain ’same’ items or

’diff’ items.

By convention, we always make the first hunk contain unchanged items. So the 1st, 3rd, 5th, etc. hunks (all

odd-numbered hunks if you start counting from 1) all contain unchanged items. And the 2nd, 4th, 6th, etc.

hunks (all even-numbered hunks if you start counting from 1) all contain changed items.

Since @a and @b don’t begin with the same value, the first hunk in our example is empty (otherwise we’d

violate the above convention). Note that the first 4 index values in our example are all zero. Plug these

values into our previous code block and we get:

@hunk1a = @a[0 .. 0−1];
@hunk1b = @b[0 .. 0−1];

And 0..−1 returns the empty list.

Move down one pair of indices (2..5) and we get the offset ranges for the second hunk, which contains

changed items.

Since @diff[2..5] contains (0,0,1,0) in our example, the second hunk consists of these two lists of

perl v5.26.2 2018-08-25 9

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

items:

@hunk2a = @a[$cdiff[2] .. $cdiff[4]−1];
@hunk2b = @b[$cdiff[3] .. $cdiff[5]−1];

or
@hunk2a = @a[0 .. 1−1];
@hunk2b = @b[0 .. 0−1];

or
@hunk2a = @a[0 .. 0];
@hunk2b = @b[0 .. −1];

or
@hunk2a = ('a');
@hunk2b = ();

That is, we would delete item 0 (’a’) from @a.

Since @diff[4..7] contains (1,0,3,2) in our example, the third hunk consists of these two lists of items:

@hunk3a = @a[$cdiff[4] .. $cdiff[6]−1];
@hunk3a = @b[$cdiff[5] .. $cdiff[7]−1];

or
@hunk3a = @a[1 .. 3−1];
@hunk3a = @b[0 .. 2−1];

or
@hunk3a = @a[1 .. 2];
@hunk3a = @b[0 .. 1];

or
@hunk3a = qw(b c);
@hunk3a = qw(b c);

Note that this third hunk contains unchanged items as our convention demands.

You can continue this process until you reach the last two indices, which will always be the number of

items in each sequence. This is required so that subtracting one from each will give you the indices to the

last items in each sequence.

traverse_sequences
traverse_sequences used to be the most general facility provided by this module (the new OO

interface is more powerful and much easier to use).

Imagine that there are two arrows. Arrow A points to an element of sequence A, and arrow B points to an

element of the sequence B. Initially, the arrows point to the first elements of the respective sequences.

traverse_sequences will advance the arrows through the sequences one element at a time, calling an

appropriate user-specified callback function before each advance. It will advance the arrows in such a way

that if there are equal elements $A[$i] and $B[$j] which are equal and which are part of the LCS, there

will be some moment during the execution of traverse_sequences when arrow A is pointing to

$A[$i] and arrow B is pointing to $B[$j]. When this happens, traverse_sequences will call the

MATCH callback function and then it will advance both arrows.

Otherwise, one of the arrows is pointing to an element of its sequence that is not part of the LCS.

traverse_sequences will advance that arrow and will call the DISCARD_A or the DISCARD_B
callback, depending on which arrow it advanced. If both arrows point to elements that are not part of the

LCS, then traverse_sequences will advance one of them and call the appropriate callback, but it is

not specified which it will call.

The arguments to traverse_sequences are the two sequences to traverse, and a hash which specifies

the callback functions, like this:

perl v5.26.2 2018-08-25 10

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

traverse_sequences(
\@seq1, \@seq2,
{ MATCH => $callback_1,

DISCARD_A => $callback_2,
DISCARD_B => $callback_3,

}
);

Callbacks for MATCH, DISCARD_A, and DISCARD_B are invoked with at least the indices of the two arrows

as their arguments. They are not expected to return any values. If a callback is omitted from the table, it is

not called.

Callbacks for A_FINISHED and B_FINISHED are invoked with at least the corresponding index in A or B.

If arrow A reaches the end of its sequence, before arrow B does, traverse_sequences will call the

A_FINISHED callback when it advances arrow B, if there is such a function; if not it will call

DISCARD_B instead. Similarly if arrow B finishes first. traverse_sequences returns when both

arrows are at the ends of their respective sequences. It returns true on success and false on failure. At

present there is no way to fail.

traverse_sequences may be passed an optional fourth parameter; this is a CODE reference to a key

generation function. See ‘‘KEY GENERATION FUNCTIONS’’.

Additional parameters, if any, will be passed to the key generation function.

If you want to pass additional parameters to your callbacks, but don’t need a custom key generation

function, you can get the default by passing undef:

traverse_sequences(
\@seq1, \@seq2,
{ MATCH => $callback_1,

DISCARD_A => $callback_2,
DISCARD_B => $callback_3,

},
undef, # default key−gen
$myArgument1,
$myArgument2,
$myArgument3,

);

traverse_sequences does not have a useful return value; you are expected to plug in the appropriate

behavior with the callback functions.

traverse_balanced
traverse_balanced is an alternative to traverse_sequences. It uses a different algorithm to

iterate through the entries in the computed LCS. Instead of sticking to one side and showing element

changes as insertions and deletions only, it will jump back and forth between the two sequences and report

changes occurring as deletions on one side followed immediately by an insertion on the other side.

In addition to the DISCARD_A, DISCARD_B, and MATCH callbacks supported by

traverse_sequences, traverse_balanced supports a CHANGE callback indicating that one

element got replaced by another:

perl v5.26.2 2018-08-25 11

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

traverse_balanced(
\@seq1, \@seq2,
{ MATCH => $callback_1,

DISCARD_A => $callback_2,
DISCARD_B => $callback_3,
CHANGE => $callback_4,

}
);

If no CHANGE callback is specified, traverse_balanced will map CHANGE ev ents to DISCARD_A
and DISCARD_B actions, therefore resulting in a similar behaviour as traverse_sequences with

different order of events.

traverse_balanced might be a bit slower than traverse_sequences, noticeable only while

processing huge amounts of data.

The sdiff function of this module is implemented as call to traverse_balanced.

traverse_balanced does not have a useful return value; you are expected to plug in the appropriate

behavior with the callback functions.

KEY GENERATION FUNCTIONS

Most of the functions accept an optional extra parameter. This is a CODE reference to a key generating

(hashing) function that should return a string that uniquely identifies a given element. It should be the case

that if two elements are to be considered equal, their keys should be the same (and the other way around).

If no key generation function is provided, the key will be the element as a string.

By default, comparisons will use ‘‘eq’’ and elements will be turned into keys using the default stringizing

operator ’""’.

Where this is important is when you’re comparing something other than strings. If it is the case that you

have multiple different objects that should be considered to be equal, you should supply a key generation

function. Otherwise, you have to make sure that your arrays contain unique references.

For instance, consider this example:

package Person;

sub new
{

my $package = shift;
return bless { name => '', ssn => '', @_ }, $package;

}

sub clone
{

my $old = shift;
my $new = bless { %$old }, ref($old);

}

sub hash
{

return shift()−>{'ssn'};
}

my $person1 = Person−>new(name => 'Joe', ssn => '123−45−6789');
my $person2 = Person−>new(name => 'Mary', ssn => '123−47−0000');
my $person3 = Person−>new(name => 'Pete', ssn => '999−45−2222');
my $person4 = Person−>new(name => 'Peggy', ssn => '123−45−9999');
my $person5 = Person−>new(name => 'Frank', ssn => '000−45−9999');

perl v5.26.2 2018-08-25 12

Algorithm::Diff(3pm) User Contributed Perl Documentation Algorithm::Diff(3pm)

If you did this:

my $array1 = [$person1, $person2, $person4];
my $array2 = [$person1, $person3, $person4, $person5];
Algorithm::Diff::diff($array1, $array2);

ev erything would work out OK (each of the objects would be converted into a string like

‘‘Person=HASH(0x82425b0)’’ for comparison).

But if you did this:

my $array1 = [$person1, $person2, $person4];
my $array2 = [$person1, $person3, $person4−>clone(), $person5];
Algorithm::Diff::diff($array1, $array2);

$person4 and $person4−>clone() (which have the same name and SSN) would be seen as different

objects. If you wanted them to be considered equivalent, you would have to pass in a key generation

function:

my $array1 = [$person1, $person2, $person4];
my $array2 = [$person1, $person3, $person4−>clone(), $person5];
Algorithm::Diff::diff($array1, $array2, \&Person::hash);

This would use the ’ssn’ field in each Person as a comparison key, and so would consider $person4 and

$person4−>clone() as equal.

You may also pass additional parameters to the key generation function if you wish.

ERROR CHECKING

If you pass these routines a non-reference and they expect a reference, they will die with a message.

AUTHOR

This version released by Tye McQueen (http://perlmonks.org/?node=tye).

LICENSE

Parts Copyright (c) 2000−2004 Ned Konz. All rights reserved. Parts by Tye McQueen.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl.

MAILING LIST

Mark-Jason still maintains a mailing list. To join a low-volume mailing list for announcements related to

diff and Algorithm::Diff, send an empty mail message to mjd−perl−diff−request@plover.com.

CREDITS

Versions through 0.59 (and much of this documentation) were written by:

Mark-Jason Dominus, mjd−perl−diff@plover.com

This version borrows some documentation and routine names from Mark-Jason’s, but Diff.pm’s code was

completely replaced.

This code was adapted from the Smalltalk code of Mario Wolczko <mario@wolczko.com>, which is

available at ftp://st.cs.uiuc.edu/pub/Smalltalk/MANCHESTER/manchester/4.0/diff.st

sdiff and traverse_balanced were written by Mike Schilli <m@perlmeister.com>.

The algorithm is that described in A Fast Algorithm for Computing Longest Common Subsequences, CACM,

vol.20, no.5, pp.350−353, May 1977, with a few minor improvements to improve the speed.

Much work was done by Ned Konz (perl@bike−nomad.com).

The OO interface and some other changes are by Tye McQueen.

perl v5.26.2 2018-08-25 13

