Where Online Learning is simpler!
The C and C++ Include Header Files
/usr/include/c++/13/pstl/parallel_backend_tbb.h
$ cat -n /usr/include/c++/13/pstl/parallel_backend_tbb.h 1 // -*- C++ -*- 2 //===-- parallel_backend_tbb.h --------------------------------------------===// 3 // 4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 5 // See https://llvm.org/LICENSE.txt for license information. 6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef _PSTL_PARALLEL_BACKEND_TBB_H 11 #define _PSTL_PARALLEL_BACKEND_TBB_H 12 13 #include <algorithm> 14 #include <type_traits> 15 16 #include "parallel_backend_utils.h" 17 18 // Bring in minimal required subset of Intel TBB 19 #include <tbb/blocked_range.h> 20 #include <tbb/parallel_for.h> 21 #include <tbb/parallel_reduce.h> 22 #include <tbb/parallel_scan.h> 23 #include <tbb/parallel_invoke.h> 24 #include <tbb/task_arena.h> 25 #include <tbb/tbb_allocator.h> 26 #include <tbb/task.h> 27 28 #if TBB_INTERFACE_VERSION < 10000 29 # error Intel(R) Threading Building Blocks 2018 is required; older versions are not supported. 30 #endif 31 32 namespace __pstl 33 { 34 namespace __tbb_backend 35 { 36 37 //! Raw memory buffer with automatic freeing and no exceptions. 38 /** Some of our algorithms need to start with raw memory buffer, 39 not an initialize array, because initialization/destruction 40 would make the span be at least O(N). */ 41 // tbb::allocator can improve performance in some cases. 42 template <typename _Tp> 43 class __buffer 44 { 45 tbb::tbb_allocator<_Tp> _M_allocator; 46 _Tp* _M_ptr; 47 const std::size_t _M_buf_size; 48 __buffer(const __buffer&) = delete; 49 void 50 operator=(const __buffer&) = delete; 51 52 public: 53 //! Try to obtain buffer of given size to store objects of _Tp type 54 __buffer(std::size_t n) : _M_allocator(), _M_ptr(_M_allocator.allocate(n)), _M_buf_size(n) {} 55 //! True if buffer was successfully obtained, zero otherwise. 56 operator bool() const { return _M_ptr != NULL; } 57 //! Return pointer to buffer, or NULL if buffer could not be obtained. 58 _Tp* 59 get() const 60 { 61 return _M_ptr; 62 } 63 //! Destroy buffer 64 ~__buffer() { _M_allocator.deallocate(_M_ptr, _M_buf_size); } 65 }; 66 67 // Wrapper for tbb::task 68 inline void 69 __cancel_execution() 70 { 71 #if TBB_INTERFACE_VERSION <= 12000 72 tbb::task::self().group()->cancel_group_execution(); 73 #else 74 tbb::task::current_context()->cancel_group_execution(); 75 #endif 76 } 77 78 //------------------------------------------------------------------------ 79 // parallel_for 80 //------------------------------------------------------------------------ 81 82 template <class _Index, class _RealBody> 83 class __parallel_for_body 84 { 85 public: 86 __parallel_for_body(const _RealBody& __body) : _M_body(__body) {} 87 __parallel_for_body(const __parallel_for_body& __body) : _M_body(__body._M_body) {} 88 void 89 operator()(const tbb::blocked_range<_Index>& __range) const 90 { 91 _M_body(__range.begin(), __range.end()); 92 } 93 94 private: 95 _RealBody _M_body; 96 }; 97 98 //! Evaluation of brick f[i,j) for each subrange [i,j) of [first,last) 99 // wrapper over tbb::parallel_for 100 template <class _ExecutionPolicy, class _Index, class _Fp> 101 void 102 __parallel_for(_ExecutionPolicy&&, _Index __first, _Index __last, _Fp __f) 103 { 104 tbb::this_task_arena::isolate([=]() { 105 tbb::parallel_for(tbb::blocked_range<_Index>(__first, __last), __parallel_for_body<_Index, _Fp>(__f)); 106 }); 107 } 108 109 //! Evaluation of brick f[i,j) for each subrange [i,j) of [first,last) 110 // wrapper over tbb::parallel_reduce 111 template <class _ExecutionPolicy, class _Value, class _Index, typename _RealBody, typename _Reduction> 112 _Value 113 __parallel_reduce(_ExecutionPolicy&&, _Index __first, _Index __last, const _Value& __identity, 114 const _RealBody& __real_body, const _Reduction& __reduction) 115 { 116 return tbb::this_task_arena::isolate([__first, __last, &__identity, &__real_body, &__reduction]() -> _Value { 117 return tbb::parallel_reduce( 118 tbb::blocked_range<_Index>(__first, __last), __identity, 119 [__real_body](const tbb::blocked_range<_Index>& __r, const _Value& __value) -> _Value { 120 return __real_body(__r.begin(), __r.end(), __value); 121 }, 122 __reduction); 123 }); 124 } 125 126 //------------------------------------------------------------------------ 127 // parallel_transform_reduce 128 // 129 // Notation: 130 // r(i,j,init) returns reduction of init with reduction over [i,j) 131 // u(i) returns f(i,i+1,identity) for a hypothetical left identity element of r 132 // c(x,y) combines values x and y that were the result of r or u 133 //------------------------------------------------------------------------ 134 135 template <class _Index, class _Up, class _Tp, class _Cp, class _Rp> 136 struct __par_trans_red_body 137 { 138 alignas(_Tp) char _M_sum_storage[sizeof(_Tp)]; // Holds generalized non-commutative sum when has_sum==true 139 _Rp _M_brick_reduce; // Most likely to have non-empty layout 140 _Up _M_u; 141 _Cp _M_combine; 142 bool _M_has_sum; // Put last to minimize size of class 143 _Tp& 144 sum() 145 { 146 _PSTL_ASSERT_MSG(_M_has_sum, "sum expected"); 147 return *(_Tp*)_M_sum_storage; 148 } 149 __par_trans_red_body(_Up __u, _Tp __init, _Cp __c, _Rp __r) 150 : _M_brick_reduce(__r), _M_u(__u), _M_combine(__c), _M_has_sum(true) 151 { 152 new (_M_sum_storage) _Tp(__init); 153 } 154 155 __par_trans_red_body(__par_trans_red_body& __left, tbb::split) 156 : _M_brick_reduce(__left._M_brick_reduce), _M_u(__left._M_u), _M_combine(__left._M_combine), _M_has_sum(false) 157 { 158 } 159 160 ~__par_trans_red_body() 161 { 162 // 17.6.5.12 tells us to not worry about catching exceptions from destructors. 163 if (_M_has_sum) 164 sum().~_Tp(); 165 } 166 167 void 168 join(__par_trans_red_body& __rhs) 169 { 170 sum() = _M_combine(sum(), __rhs.sum()); 171 } 172 173 void 174 operator()(const tbb::blocked_range<_Index>& __range) 175 { 176 _Index __i = __range.begin(); 177 _Index __j = __range.end(); 178 if (!_M_has_sum) 179 { 180 _PSTL_ASSERT_MSG(__range.size() > 1, "there should be at least 2 elements"); 181 new (&_M_sum_storage) 182 _Tp(_M_combine(_M_u(__i), _M_u(__i + 1))); // The condition i+1 < j is provided by the grain size of 3 183 _M_has_sum = true; 184 std::advance(__i, 2); 185 if (__i == __j) 186 return; 187 } 188 sum() = _M_brick_reduce(__i, __j, sum()); 189 } 190 }; 191 192 template <class _ExecutionPolicy, class _Index, class _Up, class _Tp, class _Cp, class _Rp> 193 _Tp 194 __parallel_transform_reduce(_ExecutionPolicy&&, _Index __first, _Index __last, _Up __u, _Tp __init, _Cp __combine, 195 _Rp __brick_reduce) 196 { 197 __tbb_backend::__par_trans_red_body<_Index, _Up, _Tp, _Cp, _Rp> __body(__u, __init, __combine, __brick_reduce); 198 // The grain size of 3 is used in order to provide mininum 2 elements for each body 199 tbb::this_task_arena::isolate( 200 [__first, __last, &__body]() { tbb::parallel_reduce(tbb::blocked_range<_Index>(__first, __last, 3), __body); }); 201 return __body.sum(); 202 } 203 204 //------------------------------------------------------------------------ 205 // parallel_scan 206 //------------------------------------------------------------------------ 207 208 template <class _Index, class _Up, class _Tp, class _Cp, class _Rp, class _Sp> 209 class __trans_scan_body 210 { 211 alignas(_Tp) char _M_sum_storage[sizeof(_Tp)]; // Holds generalized non-commutative sum when has_sum==true 212 _Rp _M_brick_reduce; // Most likely to have non-empty layout 213 _Up _M_u; 214 _Cp _M_combine; 215 _Sp _M_scan; 216 bool _M_has_sum; // Put last to minimize size of class 217 public: 218 __trans_scan_body(_Up __u, _Tp __init, _Cp __combine, _Rp __reduce, _Sp __scan) 219 : _M_brick_reduce(__reduce), _M_u(__u), _M_combine(__combine), _M_scan(__scan), _M_has_sum(true) 220 { 221 new (_M_sum_storage) _Tp(__init); 222 } 223 224 __trans_scan_body(__trans_scan_body& __b, tbb::split) 225 : _M_brick_reduce(__b._M_brick_reduce), _M_u(__b._M_u), _M_combine(__b._M_combine), _M_scan(__b._M_scan), 226 _M_has_sum(false) 227 { 228 } 229 230 ~__trans_scan_body() 231 { 232 // 17.6.5.12 tells us to not worry about catching exceptions from destructors. 233 if (_M_has_sum) 234 sum().~_Tp(); 235 } 236 237 _Tp& 238 sum() const 239 { 240 _PSTL_ASSERT_MSG(_M_has_sum, "sum expected"); 241 return *const_cast<_Tp*>(reinterpret_cast<_Tp const*>(_M_sum_storage)); 242 } 243 244 void 245 operator()(const tbb::blocked_range<_Index>& __range, tbb::pre_scan_tag) 246 { 247 _Index __i = __range.begin(); 248 _Index __j = __range.end(); 249 if (!_M_has_sum) 250 { 251 new (&_M_sum_storage) _Tp(_M_u(__i)); 252 _M_has_sum = true; 253 ++__i; 254 if (__i == __j) 255 return; 256 } 257 sum() = _M_brick_reduce(__i, __j, sum()); 258 } 259 260 void 261 operator()(const tbb::blocked_range<_Index>& __range, tbb::final_scan_tag) 262 { 263 sum() = _M_scan(__range.begin(), __range.end(), sum()); 264 } 265 266 void 267 reverse_join(__trans_scan_body& __a) 268 { 269 if (_M_has_sum) 270 { 271 sum() = _M_combine(__a.sum(), sum()); 272 } 273 else 274 { 275 new (&_M_sum_storage) _Tp(__a.sum()); 276 _M_has_sum = true; 277 } 278 } 279 280 void 281 assign(__trans_scan_body& __b) 282 { 283 sum() = __b.sum(); 284 } 285 }; 286 287 template <typename _Index> 288 _Index 289 __split(_Index __m) 290 { 291 _Index __k = 1; 292 while (2 * __k < __m) 293 __k *= 2; 294 return __k; 295 } 296 297 //------------------------------------------------------------------------ 298 // __parallel_strict_scan 299 //------------------------------------------------------------------------ 300 301 template <typename _Index, typename _Tp, typename _Rp, typename _Cp> 302 void 303 __upsweep(_Index __i, _Index __m, _Index __tilesize, _Tp* __r, _Index __lastsize, _Rp __reduce, _Cp __combine) 304 { 305 if (__m == 1) 306 __r[0] = __reduce(__i * __tilesize, __lastsize); 307 else 308 { 309 _Index __k = __split(__m); 310 tbb::parallel_invoke( 311 [=] { __tbb_backend::__upsweep(__i, __k, __tilesize, __r, __tilesize, __reduce, __combine); }, 312 [=] { 313 __tbb_backend::__upsweep(__i + __k, __m - __k, __tilesize, __r + __k, __lastsize, __reduce, __combine); 314 }); 315 if (__m == 2 * __k) 316 __r[__m - 1] = __combine(__r[__k - 1], __r[__m - 1]); 317 } 318 } 319 320 template <typename _Index, typename _Tp, typename _Cp, typename _Sp> 321 void 322 __downsweep(_Index __i, _Index __m, _Index __tilesize, _Tp* __r, _Index __lastsize, _Tp __initial, _Cp __combine, 323 _Sp __scan) 324 { 325 if (__m == 1) 326 __scan(__i * __tilesize, __lastsize, __initial); 327 else 328 { 329 const _Index __k = __split(__m); 330 tbb::parallel_invoke( 331 [=] { __tbb_backend::__downsweep(__i, __k, __tilesize, __r, __tilesize, __initial, __combine, __scan); }, 332 // Assumes that __combine never throws. 333 //TODO: Consider adding a requirement for user functors to be constant. 334 [=, &__combine] { 335 __tbb_backend::__downsweep(__i + __k, __m - __k, __tilesize, __r + __k, __lastsize, 336 __combine(__initial, __r[__k - 1]), __combine, __scan); 337 }); 338 } 339 } 340 341 // Adapted from Intel(R) Cilk(TM) version from cilkpub. 342 // Let i:len denote a counted interval of length n starting at i. s denotes a generalized-sum value. 343 // Expected actions of the functors are: 344 // reduce(i,len) -> s -- return reduction value of i:len. 345 // combine(s1,s2) -> s -- return merged sum 346 // apex(s) -- do any processing necessary between reduce and scan. 347 // scan(i,len,initial) -- perform scan over i:len starting with initial. 348 // The initial range 0:n is partitioned into consecutive subranges. 349 // reduce and scan are each called exactly once per subrange. 350 // Thus callers can rely upon side effects in reduce. 351 // combine must not throw an exception. 352 // apex is called exactly once, after all calls to reduce and before all calls to scan. 353 // For example, it's useful for allocating a __buffer used by scan but whose size is the sum of all reduction values. 354 // T must have a trivial constructor and destructor. 355 template <class _ExecutionPolicy, typename _Index, typename _Tp, typename _Rp, typename _Cp, typename _Sp, typename _Ap> 356 void 357 __parallel_strict_scan(_ExecutionPolicy&&, _Index __n, _Tp __initial, _Rp __reduce, _Cp __combine, _Sp __scan, 358 _Ap __apex) 359 { 360 tbb::this_task_arena::isolate([=, &__combine]() { 361 if (__n > 1) 362 { 363 _Index __p = tbb::this_task_arena::max_concurrency(); 364 const _Index __slack = 4; 365 _Index __tilesize = (__n - 1) / (__slack * __p) + 1; 366 _Index __m = (__n - 1) / __tilesize; 367 __buffer<_Tp> __buf(__m + 1); 368 _Tp* __r = __buf.get(); 369 __tbb_backend::__upsweep(_Index(0), _Index(__m + 1), __tilesize, __r, __n - __m * __tilesize, __reduce, 370 __combine); 371 372 // When __apex is a no-op and __combine has no side effects, a good optimizer 373 // should be able to eliminate all code between here and __apex. 374 // Alternatively, provide a default value for __apex that can be 375 // recognized by metaprogramming that conditionlly executes the following. 376 size_t __k = __m + 1; 377 _Tp __t = __r[__k - 1]; 378 while ((__k &= __k - 1)) 379 __t = __combine(__r[__k - 1], __t); 380 __apex(__combine(__initial, __t)); 381 __tbb_backend::__downsweep(_Index(0), _Index(__m + 1), __tilesize, __r, __n - __m * __tilesize, __initial, 382 __combine, __scan); 383 return; 384 } 385 // Fewer than 2 elements in sequence, or out of memory. Handle has single block. 386 _Tp __sum = __initial; 387 if (__n) 388 __sum = __combine(__sum, __reduce(_Index(0), __n)); 389 __apex(__sum); 390 if (__n) 391 __scan(_Index(0), __n, __initial); 392 }); 393 } 394 395 template <class _ExecutionPolicy, class _Index, class _Up, class _Tp, class _Cp, class _Rp, class _Sp> 396 _Tp 397 __parallel_transform_scan(_ExecutionPolicy&&, _Index __n, _Up __u, _Tp __init, _Cp __combine, _Rp __brick_reduce, 398 _Sp __scan) 399 { 400 __trans_scan_body<_Index, _Up, _Tp, _Cp, _Rp, _Sp> __body(__u, __init, __combine, __brick_reduce, __scan); 401 auto __range = tbb::blocked_range<_Index>(0, __n); 402 tbb::this_task_arena::isolate([__range, &__body]() { tbb::parallel_scan(__range, __body); }); 403 return __body.sum(); 404 } 405 406 //------------------------------------------------------------------------ 407 // parallel_stable_sort 408 //------------------------------------------------------------------------ 409 410 //------------------------------------------------------------------------ 411 // stable_sort utilities 412 // 413 // These are used by parallel implementations but do not depend on them. 414 //------------------------------------------------------------------------ 415 #define _PSTL_MERGE_CUT_OFF 2000 416 417 template <typename _Func> 418 class __func_task; 419 template <typename _Func> 420 class __root_task; 421 422 #if TBB_INTERFACE_VERSION <= 12000 423 class __task : public tbb::task 424 { 425 public: 426 template <typename _Fn> 427 __task* 428 make_continuation(_Fn&& __f) 429 { 430 return new (allocate_continuation()) __func_task<typename std::decay<_Fn>::type>(std::forward<_Fn>(__f)); 431 } 432 433 template <typename _Fn> 434 __task* 435 make_child_of(__task* parent, _Fn&& __f) 436 { 437 return new (parent->allocate_child()) __func_task<typename std::decay<_Fn>::type>(std::forward<_Fn>(__f)); 438 } 439 440 template <typename _Fn> 441 __task* 442 make_additional_child_of(tbb::task* parent, _Fn&& __f) 443 { 444 return new (tbb::task::allocate_additional_child_of(*parent)) 445 __func_task<typename std::decay<_Fn>::type>(std::forward<_Fn>(__f)); 446 } 447 448 inline void 449 recycle_as_continuation() 450 { 451 tbb::task::recycle_as_continuation(); 452 } 453 454 inline void 455 recycle_as_child_of(__task* parent) 456 { 457 tbb::task::recycle_as_child_of(*parent); 458 } 459 460 inline void 461 spawn(__task* __t) 462 { 463 tbb::task::spawn(*__t); 464 } 465 466 template <typename _Fn> 467 static inline void 468 spawn_root_and_wait(__root_task<_Fn>& __root) 469 { 470 tbb::task::spawn_root_and_wait(*__root._M_task); 471 } 472 }; 473 474 template <typename _Func> 475 class __func_task : public __task 476 { 477 _Func _M_func; 478 479 tbb::task* 480 execute() 481 { 482 return _M_func(this); 483 }; 484 485 public: 486 template <typename _Fn> 487 __func_task(_Fn&& __f) : _M_func{std::forward<_Fn>(__f)} 488 { 489 } 490 491 _Func& 492 body() 493 { 494 return _M_func; 495 } 496 }; 497 498 template <typename _Func> 499 class __root_task 500 { 501 tbb::task* _M_task; 502 503 public: 504 template <typename... Args> 505 __root_task(Args&&... args) 506 : _M_task{new (tbb::task::allocate_root()) __func_task<_Func>{_Func(std::forward<Args>(args)...)}} 507 { 508 } 509 510 friend class __task; 511 friend class __func_task<_Func>; 512 }; 513 514 #else // TBB_INTERFACE_VERSION <= 12000 515 class __task : public tbb::detail::d1::task 516 { 517 protected: 518 tbb::detail::d1::small_object_allocator _M_allocator{}; 519 tbb::detail::d1::execution_data* _M_execute_data{}; 520 __task* _M_parent{}; 521 std::atomic<int> _M_refcount{}; 522 bool _M_recycle{}; 523 524 template <typename _Fn> 525 __task* 526 allocate_func_task(_Fn&& __f) 527 { 528 _PSTL_ASSERT(_M_execute_data != nullptr); 529 tbb::detail::d1::small_object_allocator __alloc{}; 530 auto __t = 531 __alloc.new_object<__func_task<typename std::decay<_Fn>::type>>(*_M_execute_data, std::forward<_Fn>(__f)); 532 __t->_M_allocator = __alloc; 533 return __t; 534 } 535 536 public: 537 __task* 538 parent() 539 { 540 return _M_parent; 541 } 542 543 void 544 set_ref_count(int __n) 545 { 546 _M_refcount.store(__n, std::memory_order_release); 547 } 548 549 template <typename _Fn> 550 __task* 551 make_continuation(_Fn&& __f) 552 { 553 auto __t = allocate_func_task(std::forward<_Fn&&>(__f)); 554 __t->_M_parent = _M_parent; 555 _M_parent = nullptr; 556 return __t; 557 } 558 559 template <typename _Fn> 560 __task* 561 make_child_of(__task* __parent, _Fn&& __f) 562 { 563 auto __t = allocate_func_task(std::forward<_Fn&&>(__f)); 564 __t->_M_parent = __parent; 565 return __t; 566 } 567 568 template <typename _Fn> 569 __task* 570 make_additional_child_of(__task* __parent, _Fn&& __f) 571 { 572 auto __t = make_child_of(__parent, std::forward<_Fn>(__f)); 573 _PSTL_ASSERT(__parent->_M_refcount.load(std::memory_order_relaxed) > 0); 574 ++__parent->_M_refcount; 575 return __t; 576 } 577 578 inline void 579 recycle_as_continuation() 580 { 581 _M_recycle = true; 582 } 583 584 inline void 585 recycle_as_child_of(__task* parent) 586 { 587 _M_recycle = true; 588 _M_parent = parent; 589 } 590 591 inline void 592 spawn(__task* __t) 593 { 594 _PSTL_ASSERT(_M_execute_data != nullptr); 595 tbb::detail::d1::spawn(*__t, *_M_execute_data->context); 596 } 597 598 template <typename _Fn> 599 static inline void 600 spawn_root_and_wait(__root_task<_Fn>& __root) 601 { 602 tbb::detail::d1::execute_and_wait(*__root._M_func_task, __root._M_context, __root._M_wait_object, 603 __root._M_context); 604 } 605 606 template <typename _Func> 607 friend class __func_task; 608 }; 609 610 template <typename _Func> 611 class __func_task : public __task 612 { 613 _Func _M_func; 614 615 __task* 616 execute(tbb::detail::d1::execution_data& __ed) override 617 { 618 _M_execute_data = &__ed; 619 _M_recycle = false; 620 __task* __next = _M_func(this); 621 return finalize(__next); 622 }; 623 624 __task* 625 cancel(tbb::detail::d1::execution_data& __ed) override 626 { 627 return finalize(nullptr); 628 } 629 630 __task* 631 finalize(__task* __next) 632 { 633 bool __recycle = _M_recycle; 634 _M_recycle = false; 635 636 if (__recycle) 637 { 638 return __next; 639 } 640 641 auto __parent = _M_parent; 642 auto __alloc = _M_allocator; 643 auto __ed = _M_execute_data; 644 645 this->~__func_task(); 646 647 _PSTL_ASSERT(__parent != nullptr); 648 _PSTL_ASSERT(__parent->_M_refcount.load(std::memory_order_relaxed) > 0); 649 if (--__parent->_M_refcount == 0) 650 { 651 _PSTL_ASSERT(__next == nullptr); 652 __alloc.deallocate(this, *__ed); 653 return __parent; 654 } 655 656 return __next; 657 } 658 659 friend class __root_task<_Func>; 660 661 public: 662 template <typename _Fn> 663 __func_task(_Fn&& __f) : _M_func(std::forward<_Fn>(__f)) 664 { 665 } 666 667 _Func& 668 body() 669 { 670 return _M_func; 671 } 672 }; 673 674 template <typename _Func> 675 class __root_task : public __task 676 { 677 __task* 678 execute(tbb::detail::d1::execution_data& __ed) override 679 { 680 _M_wait_object.release(); 681 return nullptr; 682 }; 683 684 __task* 685 cancel(tbb::detail::d1::execution_data& __ed) override 686 { 687 _M_wait_object.release(); 688 return nullptr; 689 } 690 691 __func_task<_Func>* _M_func_task{}; 692 tbb::detail::d1::wait_context _M_wait_object{0}; 693 tbb::task_group_context _M_context{}; 694 695 public: 696 template <typename... Args> 697 __root_task(Args&&... args) : _M_wait_object{1} 698 { 699 tbb::detail::d1::small_object_allocator __alloc{}; 700 _M_func_task = __alloc.new_object<__func_task<_Func>>(_Func(std::forward<Args>(args)...)); 701 _M_func_task->_M_allocator = __alloc; 702 _M_func_task->_M_parent = this; 703 _M_refcount.store(1, std::memory_order_relaxed); 704 } 705 706 friend class __task; 707 }; 708 #endif // TBB_INTERFACE_VERSION <= 12000 709 710 template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _Cleanup, 711 typename _LeafMerge> 712 class __merge_func 713 { 714 typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; 715 typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; 716 typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; 717 typedef typename std::iterator_traits<_RandomAccessIterator1>::value_type _ValueType; 718 719 _RandomAccessIterator1 _M_x_beg; 720 _RandomAccessIterator2 _M_z_beg; 721 722 _SizeType _M_xs, _M_xe; 723 _SizeType _M_ys, _M_ye; 724 _SizeType _M_zs; 725 _Compare _M_comp; 726 _LeafMerge _M_leaf_merge; 727 _SizeType _M_nsort; //number of elements to be sorted for partial_sort alforithm 728 729 static const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF; 730 731 bool _root; //means a task is merging root task 732 bool _x_orig; //"true" means X(or left ) subrange is in the original container; false - in the buffer 733 bool _y_orig; //"true" means Y(or right) subrange is in the original container; false - in the buffer 734 bool _split; //"true" means a merge task is a split task for parallel merging, the execution logic differs 735 736 bool 737 is_partial() const 738 { 739 return _M_nsort > 0; 740 } 741 742 struct __move_value 743 { 744 template <typename Iterator1, typename Iterator2> 745 void 746 operator()(Iterator1 __x, Iterator2 __z) 747 { 748 *__z = std::move(*__x); 749 } 750 }; 751 752 struct __move_value_construct 753 { 754 template <typename Iterator1, typename Iterator2> 755 void 756 operator()(Iterator1 __x, Iterator2 __z) 757 { 758 ::new (std::addressof(*__z)) _ValueType(std::move(*__x)); 759 } 760 }; 761 762 struct __move_range 763 { 764 template <typename Iterator1, typename Iterator2> 765 Iterator2 766 operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2) 767 { 768 if (__last1 - __first1 < __merge_cut_off) 769 return std::move(__first1, __last1, __first2); 770 771 auto __n = __last1 - __first1; 772 tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off), 773 [__first1, __first2](const tbb::blocked_range<_SizeType>& __range) { 774 std::move(__first1 + __range.begin(), __first1 + __range.end(), 775 __first2 + __range.begin()); 776 }); 777 return __first2 + __n; 778 } 779 }; 780 781 struct __move_range_construct 782 { 783 template <typename Iterator1, typename Iterator2> 784 Iterator2 785 operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2) 786 { 787 if (__last1 - __first1 < __merge_cut_off) 788 { 789 for (; __first1 != __last1; ++__first1, ++__first2) 790 __move_value_construct()(__first1, __first2); 791 return __first2; 792 } 793 794 auto __n = __last1 - __first1; 795 tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off), 796 [__first1, __first2](const tbb::blocked_range<_SizeType>& __range) { 797 for (auto i = __range.begin(); i != __range.end(); ++i) 798 __move_value_construct()(__first1 + i, __first2 + i); 799 }); 800 return __first2 + __n; 801 } 802 }; 803 804 struct __cleanup_range 805 { 806 template <typename _Iterator> 807 void 808 operator()(_Iterator __first, _Iterator __last) 809 { 810 if (__last - __first < __merge_cut_off) 811 _Cleanup()(__first, __last); 812 else 813 { 814 auto __n = __last - __first; 815 tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off), 816 [__first](const tbb::blocked_range<_SizeType>& __range) { 817 _Cleanup()(__first + __range.begin(), __first + __range.end()); 818 }); 819 } 820 } 821 }; 822 823 public: 824 __merge_func(_SizeType __xs, _SizeType __xe, _SizeType __ys, _SizeType __ye, _SizeType __zs, _Compare __comp, 825 _Cleanup, _LeafMerge __leaf_merge, _SizeType __nsort, _RandomAccessIterator1 __x_beg, 826 _RandomAccessIterator2 __z_beg, bool __x_orig, bool __y_orig, bool __root) 827 : _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_x_beg(__x_beg), _M_z_beg(__z_beg), 828 _M_comp(__comp), _M_leaf_merge(__leaf_merge), _M_nsort(__nsort), _root(__root), 829 _x_orig(__x_orig), _y_orig(__y_orig), _split(false) 830 { 831 } 832 833 bool 834 is_left(_SizeType __idx) const 835 { 836 return _M_xs == __idx; 837 } 838 839 template <typename IndexType> 840 void 841 set_odd(IndexType __idx, bool __on_off) 842 { 843 if (is_left(__idx)) 844 _x_orig = __on_off; 845 else 846 _y_orig = __on_off; 847 } 848 849 __task* 850 operator()(__task* __self); 851 852 private: 853 __merge_func* 854 parent_merge(__task* __self) const 855 { 856 return _root ? nullptr : &static_cast<__func_task<__merge_func>*>(__self->parent())->body(); 857 } 858 bool 859 x_less_y() 860 { 861 const auto __nx = (_M_xe - _M_xs); 862 const auto __ny = (_M_ye - _M_ys); 863 _PSTL_ASSERT(__nx > 0 && __ny > 0); 864 865 _PSTL_ASSERT(_x_orig == _y_orig); 866 _PSTL_ASSERT(!is_partial()); 867 868 if (_x_orig) 869 { 870 _PSTL_ASSERT(std::is_sorted(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_comp)); 871 _PSTL_ASSERT(std::is_sorted(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_comp)); 872 return !_M_comp(*(_M_x_beg + _M_ys), *(_M_x_beg + _M_xe - 1)); 873 } 874 875 _PSTL_ASSERT(std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp)); 876 _PSTL_ASSERT(std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp)); 877 return !_M_comp(*(_M_z_beg + _M_zs + __nx), *(_M_z_beg + _M_zs + __nx - 1)); 878 } 879 void 880 move_x_range() 881 { 882 const auto __nx = (_M_xe - _M_xs); 883 const auto __ny = (_M_ye - _M_ys); 884 _PSTL_ASSERT(__nx > 0 && __ny > 0); 885 886 if (_x_orig) 887 __move_range_construct()(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_z_beg + _M_zs); 888 else 889 { 890 __move_range()(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx, _M_x_beg + _M_xs); 891 __cleanup_range()(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx); 892 } 893 894 _x_orig = !_x_orig; 895 } 896 void 897 move_y_range() 898 { 899 const auto __nx = (_M_xe - _M_xs); 900 const auto __ny = (_M_ye - _M_ys); 901 902 if (_y_orig) 903 __move_range_construct()(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs + __nx); 904 else 905 { 906 __move_range()(_M_z_beg + _M_zs + __nx, _M_z_beg + _M_zs + __nx + __ny, _M_x_beg + _M_ys); 907 __cleanup_range()(_M_z_beg + _M_zs + __nx, _M_z_beg + _M_zs + __nx + __ny); 908 } 909 910 _y_orig = !_y_orig; 911 } 912 __task* 913 merge_ranges(__task* __self) 914 { 915 _PSTL_ASSERT(_x_orig == _y_orig); //two merged subrange must be lie into the same buffer 916 917 const auto __nx = (_M_xe - _M_xs); 918 const auto __ny = (_M_ye - _M_ys); 919 const auto __n = __nx + __ny; 920 921 // need to merge {x} and {y} 922 if (__n > __merge_cut_off) 923 return split_merging(__self); 924 925 //merge to buffer 926 if (_x_orig) 927 { 928 _M_leaf_merge(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs, 929 _M_comp, __move_value_construct(), __move_value_construct(), __move_range_construct(), 930 __move_range_construct()); 931 _PSTL_ASSERT(parent_merge(__self)); //not root merging task 932 } 933 //merge to "origin" 934 else 935 { 936 _PSTL_ASSERT(_x_orig == _y_orig); 937 938 _PSTL_ASSERT(is_partial() || std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp)); 939 _PSTL_ASSERT(is_partial() || std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp)); 940 941 const auto __nx = (_M_xe - _M_xs); 942 const auto __ny = (_M_ye - _M_ys); 943 944 _M_leaf_merge(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_x_beg + _M_zs, 945 _M_comp, __move_value(), __move_value(), __move_range(), __move_range()); 946 947 __cleanup_range()(_M_z_beg + _M_xs, _M_z_beg + _M_xe); 948 __cleanup_range()(_M_z_beg + _M_ys, _M_z_beg + _M_ye); 949 } 950 return nullptr; 951 } 952 953 __task* 954 process_ranges(__task* __self) 955 { 956 _PSTL_ASSERT(_x_orig == _y_orig); 957 _PSTL_ASSERT(!_split); 958 959 auto p = parent_merge(__self); 960 961 if (!p) 962 { //root merging task 963 964 //optimization, just for sort algorithm, //{x} <= {y} 965 if (!is_partial() && x_less_y()) //we have a solution 966 { 967 if (!_x_orig) 968 { //we have to move the solution to the origin 969 move_x_range(); //parallel moving 970 move_y_range(); //parallel moving 971 } 972 return nullptr; 973 } 974 //else: if we have data in the origin, 975 //we have to move data to the buffer for final merging into the origin. 976 if (_x_orig) 977 { 978 move_x_range(); //parallel moving 979 move_y_range(); //parallel moving 980 } 981 // need to merge {x} and {y}. 982 return merge_ranges(__self); 983 } 984 //else: not root merging task (parent_merge() == NULL) 985 //optimization, just for sort algorithm, //{x} <= {y} 986 if (!is_partial() && x_less_y()) 987 { 988 const auto id_range = _M_zs; 989 p->set_odd(id_range, _x_orig); 990 return nullptr; 991 } 992 //else: we have to revert "_x(y)_orig" flag of the parent merging task 993 const auto id_range = _M_zs; 994 p->set_odd(id_range, !_x_orig); 995 996 return merge_ranges(__self); 997 } 998 999 //splitting as merge task into 2 of the same level 1000 __task* 1001 split_merging(__task* __self) 1002 { 1003 _PSTL_ASSERT(_x_orig == _y_orig); 1004 const auto __nx = (_M_xe - _M_xs); 1005 const auto __ny = (_M_ye - _M_ys); 1006 1007 _SizeType __xm{}; 1008 _SizeType __ym{}; 1009 if (__nx < __ny) 1010 { 1011 __ym = _M_ys + __ny / 2; 1012 1013 if (_x_orig) 1014 __xm = std::upper_bound(_M_x_beg + _M_xs, _M_x_beg + _M_xe, *(_M_x_beg + __ym), _M_comp) - _M_x_beg; 1015 else 1016 __xm = std::upper_bound(_M_z_beg + _M_xs, _M_z_beg + _M_xe, *(_M_z_beg + __ym), _M_comp) - _M_z_beg; 1017 } 1018 else 1019 { 1020 __xm = _M_xs + __nx / 2; 1021 1022 if (_y_orig) 1023 __ym = std::lower_bound(_M_x_beg + _M_ys, _M_x_beg + _M_ye, *(_M_x_beg + __xm), _M_comp) - _M_x_beg; 1024 else 1025 __ym = std::lower_bound(_M_z_beg + _M_ys, _M_z_beg + _M_ye, *(_M_z_beg + __xm), _M_comp) - _M_z_beg; 1026 } 1027 1028 auto __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys)); 1029 __merge_func __right_func(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _Cleanup(), _M_leaf_merge, _M_nsort, 1030 _M_x_beg, _M_z_beg, _x_orig, _y_orig, _root); 1031 __right_func._split = true; 1032 auto __merge_task = __self->make_additional_child_of(__self->parent(), std::move(__right_func)); 1033 __self->spawn(__merge_task); 1034 __self->recycle_as_continuation(); 1035 1036 _M_xe = __xm; 1037 _M_ye = __ym; 1038 _split = true; 1039 1040 return __self; 1041 } 1042 }; 1043 1044 template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename __M_Compare, typename _Cleanup, 1045 typename _LeafMerge> 1046 __task* 1047 __merge_func<_RandomAccessIterator1, _RandomAccessIterator2, __M_Compare, _Cleanup, _LeafMerge>:: 1048 operator()(__task* __self) 1049 { 1050 //a. split merge task into 2 of the same level; the special logic, 1051 //without processing(process_ranges) adjacent sub-ranges x and y 1052 if (_split) 1053 return merge_ranges(__self); 1054 1055 //b. General merging of adjacent sub-ranges x and y (with optimization in case of {x} <= {y} ) 1056 1057 //1. x and y are in the even buffer 1058 //2. x and y are in the odd buffer 1059 if (_x_orig == _y_orig) 1060 return process_ranges(__self); 1061 1062 //3. x is in even buffer, y is in the odd buffer 1063 //4. x is in odd buffer, y is in the even buffer 1064 if (!parent_merge(__self)) 1065 { //root merge task 1066 if (_x_orig) 1067 move_x_range(); 1068 else 1069 move_y_range(); 1070 } 1071 else 1072 { 1073 const _SizeType __nx = (_M_xe - _M_xs); 1074 const _SizeType __ny = (_M_ye - _M_ys); 1075 _PSTL_ASSERT(__nx > 0); 1076 _PSTL_ASSERT(__nx > 0); 1077 1078 if (__nx < __ny) 1079 move_x_range(); 1080 else 1081 move_y_range(); 1082 } 1083 1084 return process_ranges(__self); 1085 } 1086 1087 template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _LeafSort> 1088 class __stable_sort_func 1089 { 1090 public: 1091 typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; 1092 typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; 1093 typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; 1094 1095 private: 1096 _RandomAccessIterator1 _M_xs, _M_xe, _M_x_beg; 1097 _RandomAccessIterator2 _M_zs, _M_z_beg; 1098 _Compare _M_comp; 1099 _LeafSort _M_leaf_sort; 1100 bool _M_root; 1101 _SizeType _M_nsort; //zero or number of elements to be sorted for partial_sort alforithm 1102 1103 public: 1104 __stable_sort_func(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __zs, 1105 bool __root, _Compare __comp, _LeafSort __leaf_sort, _SizeType __nsort, 1106 _RandomAccessIterator1 __x_beg, _RandomAccessIterator2 __z_beg) 1107 : _M_xs(__xs), _M_xe(__xe), _M_x_beg(__x_beg), _M_zs(__zs), _M_z_beg(__z_beg), _M_comp(__comp), 1108 _M_leaf_sort(__leaf_sort), _M_root(__root), _M_nsort(__nsort) 1109 { 1110 } 1111 1112 __task* 1113 operator()(__task* __self); 1114 }; 1115 1116 #define _PSTL_STABLE_SORT_CUT_OFF 500 1117 1118 template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _LeafSort> 1119 __task* 1120 __stable_sort_func<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, _LeafSort>::operator()(__task* __self) 1121 { 1122 typedef __merge_func<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, __utils::__serial_destroy, 1123 __utils::__serial_move_merge> 1124 _MergeTaskType; 1125 1126 const _SizeType __n = _M_xe - _M_xs; 1127 const _SizeType __nmerge = _M_nsort > 0 ? _M_nsort : __n; 1128 const _SizeType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF; 1129 if (__n <= __sort_cut_off) 1130 { 1131 _M_leaf_sort(_M_xs, _M_xe, _M_comp); 1132 _PSTL_ASSERT(!_M_root); 1133 return nullptr; 1134 } 1135 1136 const _RandomAccessIterator1 __xm = _M_xs + __n / 2; 1137 const _RandomAccessIterator2 __zm = _M_zs + (__xm - _M_xs); 1138 const _RandomAccessIterator2 __ze = _M_zs + __n; 1139 _MergeTaskType __m(_MergeTaskType(_M_xs - _M_x_beg, __xm - _M_x_beg, __xm - _M_x_beg, _M_xe - _M_x_beg, 1140 _M_zs - _M_z_beg, _M_comp, __utils::__serial_destroy(), 1141 __utils::__serial_move_merge(__nmerge), _M_nsort, _M_x_beg, _M_z_beg, 1142 /*x_orig*/ true, /*y_orig*/ true, /*root*/ _M_root)); 1143 auto __parent = __self->make_continuation(std::move(__m)); 1144 __parent->set_ref_count(2); 1145 auto __right = __self->make_child_of( 1146 __parent, __stable_sort_func(__xm, _M_xe, __zm, false, _M_comp, _M_leaf_sort, _M_nsort, _M_x_beg, _M_z_beg)); 1147 __self->spawn(__right); 1148 __self->recycle_as_child_of(__parent); 1149 _M_root = false; 1150 _M_xe = __xm; 1151 1152 return __self; 1153 } 1154 1155 template <class _ExecutionPolicy, typename _RandomAccessIterator, typename _Compare, typename _LeafSort> 1156 void 1157 __parallel_stable_sort(_ExecutionPolicy&&, _RandomAccessIterator __xs, _RandomAccessIterator __xe, _Compare __comp, 1158 _LeafSort __leaf_sort, std::size_t __nsort = 0) 1159 { 1160 tbb::this_task_arena::isolate([=, &__nsort]() { 1161 //sorting based on task tree and parallel merge 1162 typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _ValueType; 1163 typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _DifferenceType; 1164 const _DifferenceType __n = __xe - __xs; 1165 if (__nsort == __n) 1166 __nsort = 0; // 'partial_sort' becames 'sort' 1167 1168 const _DifferenceType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF; 1169 if (__n > __sort_cut_off) 1170 { 1171 __buffer<_ValueType> __buf(__n); 1172 __root_task<__stable_sort_func<_RandomAccessIterator, _ValueType*, _Compare, _LeafSort>> __root{ 1173 __xs, __xe, __buf.get(), true, __comp, __leaf_sort, __nsort, __xs, __buf.get()}; 1174 __task::spawn_root_and_wait(__root); 1175 return; 1176 } 1177 //serial sort 1178 __leaf_sort(__xs, __xe, __comp); 1179 }); 1180 } 1181 1182 //------------------------------------------------------------------------ 1183 // parallel_merge 1184 //------------------------------------------------------------------------ 1185 template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3, 1186 typename _Compare, typename _LeafMerge> 1187 class __merge_func_static 1188 { 1189 _RandomAccessIterator1 _M_xs, _M_xe; 1190 _RandomAccessIterator2 _M_ys, _M_ye; 1191 _RandomAccessIterator3 _M_zs; 1192 _Compare _M_comp; 1193 _LeafMerge _M_leaf_merge; 1194 1195 public: 1196 __merge_func_static(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __ys, 1197 _RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp, 1198 _LeafMerge __leaf_merge) 1199 : _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_comp(__comp), _M_leaf_merge(__leaf_merge) 1200 { 1201 } 1202 1203 __task* 1204 operator()(__task* __self); 1205 }; 1206 1207 //TODO: consider usage of parallel_for with a custom blocked_range 1208 template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3, 1209 typename __M_Compare, typename _LeafMerge> 1210 __task* 1211 __merge_func_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, __M_Compare, _LeafMerge>:: 1212 operator()(__task* __self) 1213 { 1214 typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; 1215 typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; 1216 typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; 1217 const _SizeType __n = (_M_xe - _M_xs) + (_M_ye - _M_ys); 1218 const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF; 1219 if (__n <= __merge_cut_off) 1220 { 1221 _M_leaf_merge(_M_xs, _M_xe, _M_ys, _M_ye, _M_zs, _M_comp); 1222 return nullptr; 1223 } 1224 1225 _RandomAccessIterator1 __xm; 1226 _RandomAccessIterator2 __ym; 1227 if (_M_xe - _M_xs < _M_ye - _M_ys) 1228 { 1229 __ym = _M_ys + (_M_ye - _M_ys) / 2; 1230 __xm = std::upper_bound(_M_xs, _M_xe, *__ym, _M_comp); 1231 } 1232 else 1233 { 1234 __xm = _M_xs + (_M_xe - _M_xs) / 2; 1235 __ym = std::lower_bound(_M_ys, _M_ye, *__xm, _M_comp); 1236 } 1237 const _RandomAccessIterator3 __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys)); 1238 auto __right = __self->make_additional_child_of( 1239 __self->parent(), __merge_func_static(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _M_leaf_merge)); 1240 __self->spawn(__right); 1241 __self->recycle_as_continuation(); 1242 _M_xe = __xm; 1243 _M_ye = __ym; 1244 1245 return __self; 1246 } 1247 1248 template <class _ExecutionPolicy, typename _RandomAccessIterator1, typename _RandomAccessIterator2, 1249 typename _RandomAccessIterator3, typename _Compare, typename _LeafMerge> 1250 void 1251 __parallel_merge(_ExecutionPolicy&&, _RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, 1252 _RandomAccessIterator2 __ys, _RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp, 1253 _LeafMerge __leaf_merge) 1254 { 1255 typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1; 1256 typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2; 1257 typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType; 1258 const _SizeType __n = (__xe - __xs) + (__ye - __ys); 1259 const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF; 1260 if (__n <= __merge_cut_off) 1261 { 1262 // Fall back on serial merge 1263 __leaf_merge(__xs, __xe, __ys, __ye, __zs, __comp); 1264 } 1265 else 1266 { 1267 tbb::this_task_arena::isolate([=]() { 1268 typedef __merge_func_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, 1269 _Compare, _LeafMerge> 1270 _TaskType; 1271 __root_task<_TaskType> __root{__xs, __xe, __ys, __ye, __zs, __comp, __leaf_merge}; 1272 __task::spawn_root_and_wait(__root); 1273 }); 1274 } 1275 } 1276 1277 //------------------------------------------------------------------------ 1278 // parallel_invoke 1279 //------------------------------------------------------------------------ 1280 template <class _ExecutionPolicy, typename _F1, typename _F2> 1281 void 1282 __parallel_invoke(_ExecutionPolicy&&, _F1&& __f1, _F2&& __f2) 1283 { 1284 //TODO: a version of tbb::this_task_arena::isolate with variadic arguments pack should be added in the future 1285 tbb::this_task_arena::isolate([&]() { tbb::parallel_invoke(std::forward<_F1>(__f1), std::forward<_F2>(__f2)); }); 1286 } 1287 1288 } // namespace __tbb_backend 1289 } // namespace __pstl 1290 1291 #endif /* _PSTL_PARALLEL_BACKEND_TBB_H */
Welcome to MyWebUniversity on April 15, 2025.
Contact us
|
About us
|
Term of use
|
Copyright © 2000-2025 MyWebUniversity.com ™