
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshzle.1'

$ man zshzle.1

ZSHZLE(1) General Commands Manual ZSHZLE(1)

NAME

 zshzle - zsh command line editor

DESCRIPTION

 If the ZLE option is set (which it is by default in interactive shells)

 and the shell input is attached to the terminal, the user is able to

 edit command lines.

 There are two display modes. The first, multiline mode, is the de?

 fault. It only works if the TERM parameter is set to a valid terminal

 type that can move the cursor up. The second, single line mode, is

 used if TERM is invalid or incapable of moving the cursor up, or if the

 SINGLE_LINE_ZLE option is set. This mode is similar to ksh, and uses

 no termcap sequences. If TERM is "emacs", the ZLE option will be unset

 by default.

 The parameters BAUD, COLUMNS, and LINES are also used by the line edi?

 tor. See Parameters Used By The Shell in zshparam(1).

 The parameter zle_highlight is also used by the line editor; see Char?

 acter Highlighting below. Highlighting of special characters and the Page 1/60

 region between the cursor and the mark (as set with set-mark-command in

 Emacs mode, or by visual-mode in Vi mode) is enabled by default; con?

 sult this reference for more information. Irascible conservatives will

 wish to know that all highlighting may be disabled by the following

 setting:

 zle_highlight=(none)

 In many places, references are made to the numeric argument. This can

 by default be entered in emacs mode by holding the alt key and typing a

 number, or pressing escape before each digit, and in vi command mode by

 typing the number before entering a command. Generally the numeric ar?

 gument causes the next command entered to be repeated the specified

 number of times, unless otherwise noted below; this is implemented by

 the digit-argument widget. See also the Arguments subsection of the

 Widgets section for some other ways the numeric argument can be modi?

 fied.

KEYMAPS

 A keymap in ZLE contains a set of bindings between key sequences and

 ZLE commands. The empty key sequence cannot be bound.

 There can be any number of keymaps at any time, and each keymap has one

 or more names. If all of a keymap's names are deleted, it disappears.

 bindkey can be used to manipulate keymap names.

 Initially, there are eight keymaps:

 emacs EMACS emulation

 viins vi emulation - insert mode

 vicmd vi emulation - command mode

 viopp vi emulation - operator pending

 visual vi emulation - selection active

 isearch

 incremental search mode

 command

 read a command name

 .safe fallback keymap

 The `.safe' keymap is special. It can never be altered, and the name Page 2/60

 can never be removed. However, it can be linked to other names, which

 can be removed. In the future other special keymaps may be added;

 users should avoid using names beginning with `.' for their own

 keymaps.

 In addition to these names, either `emacs' or `viins' is also linked to

 the name `main'. If one of the VISUAL or EDITOR environment variables

 contain the string `vi' when the shell starts up then it will be `vi?

 ins', otherwise it will be `emacs'. bindkey's -e and -v options pro?

 vide a convenient way to override this default choice.

 When the editor starts up, it will select the `main' keymap. If that

 keymap doesn't exist, it will use `.safe' instead.

 In the `.safe' keymap, each single key is bound to self-insert, except

 for ^J (line feed) and ^M (return) which are bound to accept-line.

 This is deliberately not pleasant to use; if you are using it, it means

 you deleted the main keymap, and you should put it back.

 Reading Commands

 When ZLE is reading a command from the terminal, it may read a sequence

 that is bound to some command and is also a prefix of a longer bound

 string. In this case ZLE will wait a certain time to see if more char?

 acters are typed, and if not (or they don't match any longer string) it

 will execute the binding. This timeout is defined by the KEYTIMEOUT

 parameter; its default is 0.4 sec. There is no timeout if the prefix

 string is not itself bound to a command.

 The key timeout is also applied when ZLE is reading the bytes from a

 multibyte character string when it is in the appropriate mode. (This

 requires that the shell was compiled with multibyte mode enabled; typi?

 cally also the locale has characters with the UTF-8 encoding, although

 any multibyte encoding known to the operating system is supported.) If

 the second or a subsequent byte is not read within the timeout period,

 the shell acts as if ? were typed and resets the input state.

 As well as ZLE commands, key sequences can be bound to other strings,

 by using `bindkey -s'. When such a sequence is read, the replacement

 string is pushed back as input, and the command reading process starts Page 3/60

 again using these fake keystrokes. This input can itself invoke fur?

 ther replacement strings, but in order to detect loops the process will

 be stopped if there are twenty such replacements without a real command

 being read.

 A key sequence typed by the user can be turned into a command name for

 use in user-defined widgets with the read-command widget, described in

 the subsection `Miscellaneous' of the section `Standard Widgets' below.

 Local Keymaps

 While for normal editing a single keymap is used exclusively, in many

 modes a local keymap allows for some keys to be customised. For exam?

 ple, in an incremental search mode, a binding in the isearch keymap

 will override a binding in the main keymap but all keys that are not

 overridden can still be used.

 If a key sequence is defined in a local keymap, it will hide a key se?

 quence in the global keymap that is a prefix of that sequence. An exam?

 ple of this occurs with the binding of iw in viopp as this hides the

 binding of i in vicmd. However, a longer sequence in the global keymap

 that shares the same prefix can still apply so for example the binding

 of ^Xa in the global keymap will be unaffected by the binding of ^Xb in

 the local keymap.

ZLE BUILTINS

 The ZLE module contains three related builtin commands. The bindkey

 command manipulates keymaps and key bindings; the vared command invokes

 ZLE on the value of a shell parameter; and the zle command manipulates

 editing widgets and allows command line access to ZLE commands from

 within shell functions.

 bindkey [options] -l [-L] [keymap ...]

 bindkey [options] -d

 bindkey [options] -D keymap ...

 bindkey [options] -A old-keymap new-keymap

 bindkey [options] -N new-keymap [old-keymap]

 bindkey [options] -m

 bindkey [options] -r in-string ... Page 4/60

 bindkey [options] -s in-string out-string ...

 bindkey [options] in-string command ...

 bindkey [options] [in-string]

 bindkey's options can be divided into three categories: keymap

 selection for the current command, operation selection, and oth?

 ers. The keymap selection options are:

 -e Selects keymap `emacs' for any operations by the current

 command, and also links `emacs' to `main' so that it is

 selected by default the next time the editor starts.

 -v Selects keymap `viins' for any operations by the current

 command, and also links `viins' to `main' so that it is

 selected by default the next time the editor starts.

 -a Selects keymap `vicmd' for any operations by the current

 command.

 -M keymap

 The keymap specifies a keymap name that is selected for

 any operations by the current command.

 If a keymap selection is required and none of the options above

 are used, the `main' keymap is used. Some operations do not

 permit a keymap to be selected, namely:

 -l List all existing keymap names; if any arguments are

 given, list just those keymaps.

 If the -L option is also used, list in the form of bind?

 key commands to create or link the keymaps. `bindkey -lL

 main' shows which keymap is linked to `main', if any, and

 hence if the standard emacs or vi emulation is in effect.

 This option does not show the .safe keymap because it

 cannot be created in that fashion; however, neither is

 `bindkey -lL .safe' reported as an error, it simply out?

 puts nothing.

 -d Delete all existing keymaps and reset to the default

 state.

 -D keymap ... Page 5/60

 Delete the named keymaps.

 -A old-keymap new-keymap

 Make the new-keymap name an alias for old-keymap, so that

 both names refer to the same keymap. The names have

 equal standing; if either is deleted, the other remains.

 If there is already a keymap with the new-keymap name, it

 is deleted.

 -N new-keymap [old-keymap]

 Create a new keymap, named new-keymap. If a keymap al?

 ready has that name, it is deleted. If an old-keymap

 name is given, the new keymap is initialized to be a du?

 plicate of it, otherwise the new keymap will be empty.

 To use a newly created keymap, it should be linked to main.

 Hence the sequence of commands to create and use a new keymap

 `mymap' initialized from the emacs keymap (which remains un?

 changed) is:

 bindkey -N mymap emacs

 bindkey -A mymap main

 Note that while `bindkey -A newmap main' will work when newmap

 is emacs or viins, it will not work for vicmd, as switching from

 vi insert to command mode becomes impossible.

 The following operations act on the `main' keymap if no keymap

 selection option was given:

 -m Add the built-in set of meta-key bindings to the selected

 keymap. Only keys that are unbound or bound to self-in?

 sert are affected.

 -r in-string ...

 Unbind the specified in-strings in the selected keymap.

 This is exactly equivalent to binding the strings to un?

 defined-key.

 When -R is also used, interpret the in-strings as ranges.

 When -p is also used, the in-strings specify prefixes.

 Any binding that has the given in-string as a prefix, not Page 6/60

 including the binding for the in-string itself, if any,

 will be removed. For example,

 bindkey -rpM viins '^['

 will remove all bindings in the vi-insert keymap begin?

 ning with an escape character (probably cursor keys), but

 leave the binding for the escape character itself (proba?

 bly vi-cmd-mode). This is incompatible with the option

 -R.

 -s in-string out-string ...

 Bind each in-string to each out-string. When in-string

 is typed, out-string will be pushed back and treated as

 input to the line editor. When -R is also used, inter?

 pret the in-strings as ranges.

 Note that both in-string and out-string are subject to

 the same form of interpretation, as described below.

 in-string command ...

 Bind each in-string to each command. When -R is used,

 interpret the in-strings as ranges.

 [in-string]

 List key bindings. If an in-string is specified, the

 binding of that string in the selected keymap is dis?

 played. Otherwise, all key bindings in the selected

 keymap are displayed. (As a special case, if the -e or

 -v option is used alone, the keymap is not displayed -

 the implicit linking of keymaps is the only thing that

 happens.)

 When the option -p is used, the in-string must be

 present. The listing shows all bindings which have the

 given key sequence as a prefix, not including any bind?

 ings for the key sequence itself.

 When the -L option is used, the list is in the form of

 bindkey commands to create the key bindings.

 When the -R option is used as noted above, a valid range con? Page 7/60

 sists of two characters, with an optional `-' between them. All

 characters between the two specified, inclusive, are bound as

 specified.

 For either in-string or out-string, the following escape se?

 quences are recognised:

 \a bell character

 \b backspace

 \e, \E escape

 \f form feed

 \n linefeed (newline)

 \r carriage return

 \t horizontal tab

 \v vertical tab

 \NNN character code in octal

 \xNN character code in hexadecimal

 \uNNNN unicode character code in hexadecimal

 \UNNNNNNNN

 unicode character code in hexadecimal

 \M[-]X character with meta bit set

 \C[-]X control character

 ^X control character

 In all other cases, `\' escapes the following character. Delete

 is written as `^?'. Note that `\M^?' and `^\M?' are not the

 same, and that (unlike emacs), the bindings `\M-X' and `\eX' are

 entirely distinct, although they are initialized to the same

 bindings by `bindkey -m'.

 vared [-Aacghe] [-p prompt] [-r rprompt]

 [-M main-keymap] [-m vicmd-keymap]

 [-i init-widget] [-f finish-widget]

 [-t tty] name

 The value of the parameter name is loaded into the edit buffer,

 and the line editor is invoked. When the editor exits, name is

 set to the string value returned by the editor. When the -c Page 8/60

 flag is given, the parameter is created if it doesn't already

 exist. The -a flag may be given with -c to create an array pa?

 rameter, or the -A flag to create an associative array. If the

 type of an existing parameter does not match the type to be cre?

 ated, the parameter is unset and recreated. The -g flag may be

 given to suppress warnings from the WARN_CREATE_GLOBAL and

 WARN_NESTED_VAR options.

 If an array or array slice is being edited, separator characters

 as defined in $IFS will be shown quoted with a backslash, as

 will backslashes themselves. Conversely, when the edited text

 is split into an array, a backslash quotes an immediately fol?

 lowing separator character or backslash; no other special han?

 dling of backslashes, or any handling of quotes, is performed.

 Individual elements of existing array or associative array pa?

 rameters may be edited by using subscript syntax on name. New

 elements are created automatically, even without -c.

 If the -p flag is given, the following string will be taken as

 the prompt to display at the left. If the -r flag is given, the

 following string gives the prompt to display at the right. If

 the -h flag is specified, the history can be accessed from ZLE.

 If the -e flag is given, typing ^D (Control-D) on an empty line

 causes vared to exit immediately with a non-zero return value.

 The -M option gives a keymap to link to the main keymap during

 editing, and the -m option gives a keymap to link to the vicmd

 keymap during editing. For vi-style editing, this allows a pair

 of keymaps to override viins and vicmd. For emacs-style edit?

 ing, only -M is normally needed but the -m option may still be

 used. On exit, the previous keymaps will be restored.

 Vared calls the usual `zle-line-init' and `zle-line-finish'

 hooks before and after it takes control. Using the -i and -f op?

 tions, it is possible to replace these with other custom wid?

 gets.

 If `-t tty' is given, tty is the name of a terminal device to be Page 9/60

 used instead of the default /dev/tty. If tty does not refer to

 a terminal an error is reported.

 zle

 zle -l [-L | -a] [string ...]

 zle -D widget ...

 zle -A old-widget new-widget

 zle -N widget [function]

 zle -f flag [flag...]

 zle -C widget completion-widget function

 zle -R [-c] [display-string] [string ...]

 zle -M string

 zle -U string

 zle -K keymap

 zle -F [-L | -w] [fd [handler]]

 zle -I

 zle -T [tc function | -r tc | -L]

 zle widget [-n num] [-Nw] [-K keymap] args ...

 The zle builtin performs a number of different actions concern?

 ing ZLE.

 With no options and no arguments, only the return status will be

 set. It is zero if ZLE is currently active and widgets could be

 invoked using this builtin command and non-zero otherwise. Note

 that even if non-zero status is returned, zle may still be ac?

 tive as part of the completion system; this does not allow di?

 rect calls to ZLE widgets.

 Otherwise, which operation it performs depends on its options:

 -l [-L | -a] [string]

 List all existing user-defined widgets. If the -L option

 is used, list in the form of zle commands to create the

 widgets.

 When combined with the -a option, all widget names are

 listed, including the builtin ones. In this case the -L

 option is ignored. Page 10/60

 If at least one string is given, and -a is present or -L

 is not used, nothing will be printed. The return status

 will be zero if all strings are names of existing widgets

 and non-zero if at least one string is not a name of a

 defined widget. If -a is also present, all widget names

 are used for the comparison including builtin widgets,

 else only user-defined widgets are used.

 If at least one string is present and the -L option is

 used, user-defined widgets matching any string are listed

 in the form of zle commands to create the widgets.

 -D widget ...

 Delete the named widgets.

 -A old-widget new-widget

 Make the new-widget name an alias for old-widget, so that

 both names refer to the same widget. The names have

 equal standing; if either is deleted, the other remains.

 If there is already a widget with the new-widget name, it

 is deleted.

 -N widget [function]

 Create a user-defined widget. If there is already a wid?

 get with the specified name, it is overwritten. When the

 new widget is invoked from within the editor, the speci?

 fied shell function is called. If no function name is

 specified, it defaults to the same name as the widget.

 For further information, see the section `Widgets' below.

 -f flag [flag...]

 Set various flags on the running widget. Possible values

 for flag are:

 yank for indicating that the widget has yanked text into

 the buffer. If the widget is wrapping an existing inter?

 nal widget, no further action is necessary, but if it has

 inserted the text manually, then it should also take care

 to set YANK_START and YANK_END correctly. yankbefore Page 11/60

 does the same but is used when the yanked text appears

 after the cursor.

 kill for indicating that text has been killed into the

 cutbuffer. When repeatedly invoking a kill widget, text

 is appended to the cutbuffer instead of replacing it, but

 when wrapping such widgets, it is necessary to call `zle

 -f kill' to retain this effect.

 vichange for indicating that the widget represents a vi

 change that can be repeated as a whole with `vi-re?

 peat-change'. The flag should be set early in the func?

 tion before inspecting the value of NUMERIC or invoking

 other widgets. This has no effect for a widget invoked

 from insert mode. If insert mode is active when the wid?

 get finishes, the change extends until next returning to

 command mode.

 -C widget completion-widget function

 Create a user-defined completion widget named widget. The

 completion widget will behave like the built-in comple?

 tion-widget whose name is given as completion-widget. To

 generate the completions, the shell function function

 will be called. For further information, see zshcomp?

 wid(1).

 -R [-c] [display-string] [string ...]

 Redisplay the command line; this is to be called from

 within a user-defined widget to allow changes to become

 visible. If a display-string is given and not empty,

 this is shown in the status line (immediately below the

 line being edited).

 If the optional strings are given they are listed below

 the prompt in the same way as completion lists are

 printed. If no strings are given but the -c option is

 used such a list is cleared.

 Note that this option is only useful for widgets that do Page 12/60

 not exit immediately after using it because the strings

 displayed will be erased immediately after return from

 the widget.

 This command can safely be called outside user defined

 widgets; if zle is active, the display will be refreshed,

 while if zle is not active, the command has no effect.

 In this case there will usually be no other arguments.

 The status is zero if zle was active, else one.

 -M string

 As with the -R option, the string will be displayed below

 the command line; unlike the -R option, the string will

 not be put into the status line but will instead be

 printed normally below the prompt. This means that the

 string will still be displayed after the widget returns

 (until it is overwritten by subsequent commands).

 -U string

 This pushes the characters in the string onto the input

 stack of ZLE. After the widget currently executed fin?

 ishes ZLE will behave as if the characters in the string

 were typed by the user.

 As ZLE uses a stack, if this option is used repeatedly

 the last string pushed onto the stack will be processed

 first. However, the characters in each string will be

 processed in the order in which they appear in the

 string.

 -K keymap

 Selects the keymap named keymap. An error message will

 be displayed if there is no such keymap.

 This keymap selection affects the interpretation of fol?

 lowing keystrokes within this invocation of ZLE. Any

 following invocation (e.g., the next command line) will

 start as usual with the `main' keymap selected.

 -F [-L | -w] [fd [handler]] Page 13/60

 Only available if your system supports one of the `poll'

 or `select' system calls; most modern systems do.

 Installs handler (the name of a shell function) to handle

 input from file descriptor fd. Installing a handler for

 an fd which is already handled causes the existing han?

 dler to be replaced. Any number of handlers for any num?

 ber of readable file descriptors may be installed. Note

 that zle makes no attempt to check whether this fd is ac?

 tually readable when installing the handler. The user

 must make their own arrangements for handling the file

 descriptor when zle is not active.

 When zle is attempting to read data, it will examine both

 the terminal and the list of handled fd's. If data be?

 comes available on a handled fd, zle calls handler with

 the fd which is ready for reading as the first argument.

 Under normal circumstances this is the only argument, but

 if an error was detected, a second argument provides de?

 tails: `hup' for a disconnect, `nval' for a closed or

 otherwise invalid descriptor, or `err' for any other con?

 dition. Systems that support only the `select' system

 call always use `err'.

 If the option -w is also given, the handler is instead a

 line editor widget, typically a shell function made into

 a widget using `zle -N'. In that case handler can use

 all the facilities of zle to update the current editing

 line. Note, however, that as handling fd takes place at

 a low level changes to the display will not automatically

 appear; the widget should call `zle -R' to force redis?

 play. As of this writing, widget handlers only support a

 single argument and thus are never passed a string for

 error state, so widgets must be prepared to test the de?

 scriptor themselves.

 If either type of handler produces output to the termi? Page 14/60

 nal, it should call `zle -I' before doing so (see below).

 Handlers should not attempt to read from the terminal.

 If no handler is given, but an fd is present, any handler

 for that fd is removed. If there is none, an error mes?

 sage is printed and status 1 is returned.

 If no arguments are given, or the -L option is supplied,

 a list of handlers is printed in a form which can be

 stored for later execution.

 An fd (but not a handler) may optionally be given with

 the -L option; in this case, the function will list the

 handler if any, else silently return status 1.

 Note that this feature should be used with care. Activ?

 ity on one of the fd's which is not properly handled can

 cause the terminal to become unusable. Removing an fd

 handler from within a signal trap may cause unpredictable

 behavior.

 Here is a simple example of using this feature. A con?

 nection to a remote TCP port is created using the ztcp

 command; see the description of the zsh/net/tcp module in

 zshmodules(1). Then a handler is installed which simply

 prints out any data which arrives on this connection.

 Note that `select' will indicate that the file descriptor

 needs handling if the remote side has closed the connec?

 tion; we handle that by testing for a failed read.

 if ztcp pwspc 2811; then

 tcpfd=$REPLY

 handler() {

 zle -I

 local line

 if ! read -r line <&$1; then

 # select marks this fd if we reach EOF,

 # so handle this specially.

 print "[Read on fd $1 failed, removing.]" >&2 Page 15/60

 zle -F $1

 return 1

 fi

 print -r - $line

 }

 zle -F $tcpfd handler

 fi

 -I Unusually, this option is most useful outside ordinary

 widget functions, though it may be used within if normal

 output to the terminal is required. It invalidates the

 current zle display in preparation for output; typically

 this will be from a trap function. It has no effect if

 zle is not active. When a trap exits, the shell checks

 to see if the display needs restoring, hence the follow?

 ing will print output in such a way as not to disturb the

 line being edited:

 TRAPUSR1() {

 # Invalidate zle display

 [[-o zle]] && zle -I

 # Show output

 print Hello

 }

 In general, the trap function may need to test whether

 zle is active before using this method (as shown in the

 example), since the zsh/zle module may not even be

 loaded; if it is not, the command can be skipped.

 It is possible to call `zle -I' several times before con?

 trol is returned to the editor; the display will only be

 invalidated the first time to minimise disruption.

 Note that there are normally better ways of manipulating

 the display from within zle widgets; see, for example,

 `zle -R' above.

 The returned status is zero if zle was invalidated, even Page 16/60

 though this may have been by a previous call to `zle -I'

 or by a system notification. To test if a zle widget may

 be called at this point, execute zle with no arguments

 and examine the return status.

 -T This is used to add, list or remove internal transforma?

 tions on the processing performed by the line editor. It

 is typically used only for debugging or testing and is

 therefore of little interest to the general user.

 `zle -T transformation func' specifies that the given

 transformation (see below) is effected by shell function

 func.

 `zle -Tr transformation' removes the given transformation

 if it was present (it is not an error if none was).

 `zle -TL' can be used to list all transformations cur?

 rently in operation.

 Currently the only transformation is tc. This is used

 instead of outputting termcap codes to the terminal.

 When the transformation is in operation the shell func?

 tion is passed the termcap code that would be output as

 its first argument; if the operation required a numeric

 argument, that is passed as a second argument. The func?

 tion should set the shell variable REPLY to the trans?

 formed termcap code. Typically this is used to produce

 some simply formatted version of the code and optional

 argument for debugging or testing. Note that this trans?

 formation is not applied to other non-printing characters

 such as carriage returns and newlines.

 widget [-n num] [-Nw] [-K keymap] args ...

 Invoke the specified widget. This can only be done when

 ZLE is active; normally this will be within a user-de?

 fined widget.

 With the options -n and -N, the current numeric argument

 will be saved and then restored after the call to widget; Page 17/60

 `-n num' sets the numeric argument temporarily to num,

 while `-N' sets it to the default, i.e. as if there were

 none.

 With the option -K, keymap will be used as the current

 keymap during the execution of the widget. The previous

 keymap will be restored when the widget exits.

 Normally, calling a widget in this way does not set the

 special parameter WIDGET and related parameters, so that

 the environment appears as if the top-level widget called

 by the user were still active. With the option -w, WID?

 GET and related parameters are set to reflect the widget

 being executed by the zle call.

 Any further arguments will be passed to the widget; note

 that as standard argument handling is performed, any gen?

 eral argument list should be preceded by --. If it is a

 shell function, these are passed down as positional pa?

 rameters; for builtin widgets it is up to the widget in

 question what it does with them. Currently arguments are

 only handled by the incremental-search commands, the his?

 tory-search-forward and -backward and the corresponding

 functions prefixed by vi-, and by universal-argument. No

 error is flagged if the command does not use the argu?

 ments, or only uses some of them.

 The return status reflects the success or failure of the

 operation carried out by the widget, or if it is a

 user-defined widget the return status of the shell func?

 tion.

 A non-zero return status causes the shell to beep when

 the widget exits, unless the BEEP options was unset or

 the widget was called via the zle command. Thus if a

 user defined widget requires an immediate beep, it should

 call the beep widget directly.

WIDGETS Page 18/60

 All actions in the editor are performed by `widgets'. A widget's job

 is simply to perform some small action. The ZLE commands that key se?

 quences in keymaps are bound to are in fact widgets. Widgets can be

 user-defined or built in.

 The standard widgets built into ZLE are listed in Standard Widgets be?

 low. Other built-in widgets can be defined by other modules (see zsh?

 modules(1)). Each built-in widget has two names: its normal canonical

 name, and the same name preceded by a `.'. The `.' name is special: it

 can't be rebound to a different widget. This makes the widget avail?

 able even when its usual name has been redefined.

 User-defined widgets are defined using `zle -N', and implemented as

 shell functions. When the widget is executed, the corresponding shell

 function is executed, and can perform editing (or other) actions. It

 is recommended that user-defined widgets should not have names starting

 with `.'.

USER-DEFINED WIDGETS

 User-defined widgets, being implemented as shell functions, can execute

 any normal shell command. They can also run other widgets (whether

 built-in or user-defined) using the zle builtin command. The standard

 input of the function is redirected from /dev/null to prevent external

 commands from unintentionally blocking ZLE by reading from the termi?

 nal, but read -k or read -q can be used to read characters. Finally,

 they can examine and edit the ZLE buffer being edited by reading and

 setting the special parameters described below.

 These special parameters are always available in widget functions, but

 are not in any way special outside ZLE. If they have some normal value

 outside ZLE, that value is temporarily inaccessible, but will return

 when the widget function exits. These special parameters in fact have

 local scope, like parameters created in a function using local.

 Inside completion widgets and traps called while ZLE is active, these

 parameters are available read-only.

 Note that the parameters appear as local to any ZLE widget in which

 they appear. Hence if it is desired to override them this needs to be Page 19/60

 done within a nested function:

 widget-function() {

 # $WIDGET here refers to the special variable

 # that is local inside widget-function

 () {

 # This anonymous nested function allows WIDGET

 # to be used as a local variable. The -h

 # removes the special status of the variable.

 local -h WIDGET

 }

 }

 BUFFER (scalar)

 The entire contents of the edit buffer. If it is written to,

 the cursor remains at the same offset, unless that would put it

 outside the buffer.

 BUFFERLINES (integer)

 The number of screen lines needed for the edit buffer currently

 displayed on screen (i.e. without any changes to the preceding

 parameters done after the last redisplay); read-only.

 CONTEXT (scalar)

 The context in which zle was called to read a line; read-only.

 One of the values:

 start The start of a command line (at prompt PS1).

 cont A continuation to a command line (at prompt PS2).

 select In a select loop (at prompt PS3).

 vared Editing a variable in vared.

 CURSOR (integer)

 The offset of the cursor, within the edit buffer. This is in

 the range 0 to $#BUFFER, and is by definition equal to

 $#LBUFFER. Attempts to move the cursor outside the buffer will

 result in the cursor being moved to the appropriate end of the

 buffer.

 CUTBUFFER (scalar) Page 20/60

 The last item cut using one of the `kill-' commands; the string

 which the next yank would insert in the line. Later entries in

 the kill ring are in the array killring. Note that the command

 `zle copy-region-as-kill string' can be used to set the text of

 the cut buffer from a shell function and cycle the kill ring in

 the same way as interactively killing text.

 HISTNO (integer)

 The current history number. Setting this has the same effect as

 moving up or down in the history to the corresponding history

 line. An attempt to set it is ignored if the line is not stored

 in the history. Note this is not the same as the parameter

 HISTCMD, which always gives the number of the history line being

 added to the main shell's history. HISTNO refers to the line

 being retrieved within zle.

 ISEARCHMATCH_ACTIVE (integer)

 ISEARCHMATCH_START (integer)

 ISEARCHMATCH_END (integer)

 ISEARCHMATCH_ACTIVE indicates whether a part of the BUFFER is

 currently matched by an incremental search pattern. ISEARCH?

 MATCH_START and ISEARCHMATCH_END give the location of the

 matched part and are in the same units as CURSOR. They are only

 valid for reading when ISEARCHMATCH_ACTIVE is non-zero.

 All parameters are read-only.

 KEYMAP (scalar)

 The name of the currently selected keymap; read-only.

 KEYS (scalar)

 The keys typed to invoke this widget, as a literal string;

 read-only.

 KEYS_QUEUED_COUNT (integer)

 The number of bytes pushed back to the input queue and therefore

 available for reading immediately before any I/O is done;

 read-only. See also PENDING; the two values are distinct.

 killring (array) Page 21/60

 The array of previously killed items, with the most recently

 killed first. This gives the items that would be retrieved by a

 yank-pop in the same order. Note, however, that the most re?

 cently killed item is in $CUTBUFFER; $killring shows the array

 of previous entries.

 The default size for the kill ring is eight, however the length

 may be changed by normal array operations. Any empty string in

 the kill ring is ignored by the yank-pop command, hence the size

 of the array effectively sets the maximum length of the kill

 ring, while the number of non-zero strings gives the current

 length, both as seen by the user at the command line.

 LASTABORTEDSEARCH (scalar)

 The last search string used by an interactive search that was

 aborted by the user (status 3 returned by the search widget).

 LASTSEARCH (scalar)

 The last search string used by an interactive search; read-only.

 This is set even if the search failed (status 0, 1 or 2 returned

 by the search widget), but not if it was aborted by the user.

 LASTWIDGET (scalar)

 The name of the last widget that was executed; read-only.

 LBUFFER (scalar)

 The part of the buffer that lies to the left of the cursor posi?

 tion. If it is assigned to, only that part of the buffer is re?

 placed, and the cursor remains between the new $LBUFFER and the

 old $RBUFFER.

 MARK (integer)

 Like CURSOR, but for the mark. With vi-mode operators that wait

 for a movement command to select a region of text, setting MARK

 allows the selection to extend in both directions from the ini?

 tial cursor position.

 NUMERIC (integer)

 The numeric argument. If no numeric argument was given, this pa?

 rameter is unset. When this is set inside a widget function, Page 22/60

 builtin widgets called with the zle builtin command will use the

 value assigned. If it is unset inside a widget function, builtin

 widgets called behave as if no numeric argument was given.

 PENDING (integer)

 The number of bytes pending for input, i.e. the number of bytes

 which have already been typed and can immediately be read. On

 systems where the shell is not able to get this information,

 this parameter will always have a value of zero. Read-only.

 See also KEYS_QUEUED_COUNT; the two values are distinct.

 PREBUFFER (scalar)

 In a multi-line input at the secondary prompt, this read-only

 parameter contains the contents of the lines before the one the

 cursor is currently in.

 PREDISPLAY (scalar)

 Text to be displayed before the start of the editable text buf?

 fer. This does not have to be a complete line; to display a

 complete line, a newline must be appended explicitly. The text

 is reset on each new invocation (but not recursive invocation)

 of zle.

 POSTDISPLAY (scalar)

 Text to be displayed after the end of the editable text buffer.

 This does not have to be a complete line; to display a complete

 line, a newline must be prepended explicitly. The text is reset

 on each new invocation (but not recursive invocation) of zle.

 RBUFFER (scalar)

 The part of the buffer that lies to the right of the cursor po?

 sition. If it is assigned to, only that part of the buffer is

 replaced, and the cursor remains between the old $LBUFFER and

 the new $RBUFFER.

 REGION_ACTIVE (integer)

 Indicates if the region is currently active. It can be assigned

 0 or 1 to deactivate and activate the region respectively. A

 value of 2 activates the region in line-wise mode with the high? Page 23/60

 lighted text extending for whole lines only; see Character High?

 lighting below.

 region_highlight (array)

 Each element of this array may be set to a string that describes

 highlighting for an arbitrary region of the command line that

 will take effect the next time the command line is redisplayed.

 Highlighting of the non-editable parts of the command line in

 PREDISPLAY and POSTDISPLAY are possible, but note that the P

 flag is needed for character indexing to include PREDISPLAY.

 Each string consists of the following parts:

 ? Optionally, a `P' to signify that the start and end off?

 set that follow include any string set by the PREDISPLAY

 special parameter; this is needed if the predisplay

 string itself is to be highlighted. Whitespace may fol?

 low the `P'.

 ? A start offset in the same units as CURSOR, terminated by

 whitespace.

 ? An end offset in the same units as CURSOR, terminated by

 whitespace.

 ? A highlight specification in the same format as used for

 contexts in the parameter zle_highlight, see the section

 `Character Highlighting' below; for example, standout or

 fg=red,bold

 For example,

 region_highlight=("P0 20 bold")

 specifies that the first twenty characters of the text including

 any predisplay string should be highlighted in bold.

 Note that the effect of region_highlight is not saved and disap?

 pears as soon as the line is accepted.

 The final highlighting on the command line depends on both re?

 gion_highlight and zle_highlight; see the section CHARACTER

 HIGHLIGHTING below for details.

 registers (associative array) Page 24/60

 The contents of each of the vi register buffers. These are typi?

 cally set using vi-set-buffer followed by a delete, change or

 yank command.

 SUFFIX_ACTIVE (integer)

 SUFFIX_START (integer)

 SUFFIX_END (integer)

 SUFFIX_ACTIVE indicates whether an auto-removable completion

 suffix is currently active. SUFFIX_START and SUFFIX_END give the

 location of the suffix and are in the same units as CURSOR. They

 are only valid for reading when SUFFIX_ACTIVE is non-zero.

 All parameters are read-only.

 UNDO_CHANGE_NO (integer)

 A number representing the state of the undo history. The only

 use of this is passing as an argument to the undo widget in or?

 der to undo back to the recorded point. Read-only.

 UNDO_LIMIT_NO (integer)

 A number corresponding to an existing change in the undo his?

 tory; compare UNDO_CHANGE_NO. If this is set to a value greater

 than zero, the undo command will not allow the line to be undone

 beyond the given change number. It is still possible to use

 `zle undo change' in a widget to undo beyond that point; in that

 case, it will not be possible to undo at all until UNDO_LIMIT_NO

 is reduced. Set to 0 to disable the limit.

 A typical use of this variable in a widget function is as fol?

 lows (note the additional function scope is required):

 () {

 local UNDO_LIMIT_NO=$UNDO_CHANGE_NO

 # Perform some form of recursive edit.

 }

 WIDGET (scalar)

 The name of the widget currently being executed; read-only.

 WIDGETFUNC (scalar)

 The name of the shell function that implements a widget defined Page 25/60

 with either zle -N or zle -C. In the former case, this is the

 second argument to the zle -N command that defined the widget,

 or the first argument if there was no second argument. In the

 latter case this is the third argument to the zle -C command

 that defined the widget. Read-only.

 WIDGETSTYLE (scalar)

 Describes the implementation behind the completion widget cur?

 rently being executed; the second argument that followed zle -C

 when the widget was defined. This is the name of a builtin com?

 pletion widget. For widgets defined with zle -N this is set to

 the empty string. Read-only.

 YANK_ACTIVE (integer)

 YANK_START (integer)

 YANK_END (integer)

 YANK_ACTIVE indicates whether text has just been yanked (pasted)

 into the buffer. YANK_START and YANK_END give the location of

 the pasted text and are in the same units as CURSOR. They are

 only valid for reading when YANK_ACTIVE is non-zero. They can

 also be assigned by widgets that insert text in a yank-like

 fashion, for example wrappers of bracketed-paste. See also zle

 -f.

 YANK_ACTIVE is read-only.

 ZLE_RECURSIVE (integer)

 Usually zero, but incremented inside any instance of recur?

 sive-edit. Hence indicates the current recursion level.

 ZLE_RECURSIVE is read-only.

 ZLE_STATE (scalar)

 Contains a set of space-separated words that describe the cur?

 rent zle state.

 Currently, the states shown are the insert mode as set by the

 overwrite-mode or vi-replace widgets and whether history com?

 mands will visit imported entries as controlled by the set-lo?

 cal-history widget. The string contains `insert' if characters Page 26/60

 to be inserted on the command line move existing characters to

 the right or `overwrite' if characters to be inserted overwrite

 existing characters. It contains `localhistory' if only local

 history commands will be visited or `globalhistory' if imported

 history commands will also be visited.

 The substrings are sorted in alphabetical order so that if you

 want to test for two specific substrings in a future-proof way,

 you can do match by doing:

 if [[$ZLE_STATE == *globalhistory*insert*]]; then ...; fi

 Special Widgets

 There are a few user-defined widgets which are special to the shell.

 If they do not exist, no special action is taken. The environment pro?

 vided is identical to that for any other editing widget.

 zle-isearch-exit

 Executed at the end of incremental search at the point where the

 isearch prompt is removed from the display. See zle-isearch-up?

 date for an example.

 zle-isearch-update

 Executed within incremental search when the display is about to

 be redrawn. Additional output below the incremental search

 prompt can be generated by using `zle -M' within the widget.

 For example,

 zle-isearch-update() { zle -M "Line $HISTNO"; }

 zle -N zle-isearch-update

 Note the line output by `zle -M' is not deleted on exit from in?

 cremental search. This can be done from a zle-isearch-exit wid?

 get:

 zle-isearch-exit() { zle -M ""; }

 zle -N zle-isearch-exit

 zle-line-pre-redraw

 Executed whenever the input line is about to be redrawn, provid?

 ing an opportunity to update the region_highlight array.

 zle-line-init Page 27/60

 Executed every time the line editor is started to read a new

 line of input. The following example puts the line editor into

 vi command mode when it starts up.

 zle-line-init() { zle -K vicmd; }

 zle -N zle-line-init

 (The command inside the function sets the keymap directly; it is

 equivalent to zle vi-cmd-mode.)

 zle-line-finish

 This is similar to zle-line-init but is executed every time the

 line editor has finished reading a line of input.

 zle-history-line-set

 Executed when the history line changes.

 zle-keymap-select

 Executed every time the keymap changes, i.e. the special parame?

 ter KEYMAP is set to a different value, while the line editor is

 active. Initialising the keymap when the line editor starts

 does not cause the widget to be called.

 The value $KEYMAP within the function reflects the new keymap.

 The old keymap is passed as the sole argument.

 This can be used for detecting switches between the vi command

 (vicmd) and insert (usually main) keymaps.

STANDARD WIDGETS

 The following is a list of all the standard widgets, and their default

 bindings in emacs mode, vi command mode and vi insert mode (the

 `emacs', `vicmd' and `viins' keymaps, respectively).

 Note that cursor keys are bound to movement keys in all three keymaps;

 the shell assumes that the cursor keys send the key sequences reported

 by the terminal-handling library (termcap or terminfo). The key se?

 quences shown in the list are those based on the VT100, common on many

 modern terminals, but in fact these are not necessarily bound. In the

 case of the viins keymap, the initial escape character of the sequences

 serves also to return to the vicmd keymap: whether this happens is de?

 termined by the KEYTIMEOUT parameter, see zshparam(1). Page 28/60

 Movement

 vi-backward-blank-word (unbound) (B) (unbound)

 Move backward one word, where a word is defined as a series of

 non-blank characters.

 vi-backward-blank-word-end (unbound) (gE) (unbound)

 Move to the end of the previous word, where a word is defined as

 a series of non-blank characters.

 backward-char (^B ESC-[D) (unbound) (unbound)

 Move backward one character.

 vi-backward-char (unbound) (^H h ^?) (ESC-[D)

 Move backward one character, without changing lines.

 backward-word (ESC-B ESC-b) (unbound) (unbound)

 Move to the beginning of the previous word.

 emacs-backward-word

 Move to the beginning of the previous word.

 vi-backward-word (unbound) (b) (unbound)

 Move to the beginning of the previous word, vi-style.

 vi-backward-word-end (unbound) (ge) (unbound)

 Move to the end of the previous word, vi-style.

 beginning-of-line (^A) (unbound) (unbound)

 Move to the beginning of the line. If already at the beginning

 of the line, move to the beginning of the previous line, if any.

 vi-beginning-of-line

 Move to the beginning of the line, without changing lines.

 down-line (unbound) (unbound) (unbound)

 Move down a line in the buffer.

 end-of-line (^E) (unbound) (unbound)

 Move to the end of the line. If already at the end of the line,

 move to the end of the next line, if any.

 vi-end-of-line (unbound) ($) (unbound)

 Move to the end of the line. If an argument is given to this

 command, the cursor will be moved to the end of the line (argu?

 ment - 1) lines down. Page 29/60

 vi-forward-blank-word (unbound) (W) (unbound)

 Move forward one word, where a word is defined as a series of

 non-blank characters.

 vi-forward-blank-word-end (unbound) (E) (unbound)

 Move to the end of the current word, or, if at the end of the

 current word, to the end of the next word, where a word is de?

 fined as a series of non-blank characters.

 forward-char (^F ESC-[C) (unbound) (unbound)

 Move forward one character.

 vi-forward-char (unbound) (space l) (ESC-[C)

 Move forward one character.

 vi-find-next-char (^X^F) (f) (unbound)

 Read a character from the keyboard, and move to the next occur?

 rence of it in the line.

 vi-find-next-char-skip (unbound) (t) (unbound)

 Read a character from the keyboard, and move to the position

 just before the next occurrence of it in the line.

 vi-find-prev-char (unbound) (F) (unbound)

 Read a character from the keyboard, and move to the previous oc?

 currence of it in the line.

 vi-find-prev-char-skip (unbound) (T) (unbound)

 Read a character from the keyboard, and move to the position

 just after the previous occurrence of it in the line.

 vi-first-non-blank (unbound) (^) (unbound)

 Move to the first non-blank character in the line.

 vi-forward-word (unbound) (w) (unbound)

 Move forward one word, vi-style.

 forward-word (ESC-F ESC-f) (unbound) (unbound)

 Move to the beginning of the next word. The editor's idea of a

 word is specified with the WORDCHARS parameter.

 emacs-forward-word

 Move to the end of the next word.

 vi-forward-word-end (unbound) (e) (unbound) Page 30/60

 Move to the end of the next word.

 vi-goto-column (ESC-|) (|) (unbound)

 Move to the column specified by the numeric argument.

 vi-goto-mark (unbound) (`) (unbound)

 Move to the specified mark.

 vi-goto-mark-line (unbound) (') (unbound)

 Move to beginning of the line containing the specified mark.

 vi-repeat-find (unbound) (;) (unbound)

 Repeat the last vi-find command.

 vi-rev-repeat-find (unbound) (,) (unbound)

 Repeat the last vi-find command in the opposite direction.

 up-line (unbound) (unbound) (unbound)

 Move up a line in the buffer.

 History Control

 beginning-of-buffer-or-history (ESC-<) (gg) (unbound)

 Move to the beginning of the buffer, or if already there, move

 to the first event in the history list.

 beginning-of-line-hist

 Move to the beginning of the line. If already at the beginning

 of the buffer, move to the previous history line.

 beginning-of-history

 Move to the first event in the history list.

 down-line-or-history (^N ESC-[B) (j) (ESC-[B)

 Move down a line in the buffer, or if already at the bottom

 line, move to the next event in the history list.

 vi-down-line-or-history (unbound) (+) (unbound)

 Move down a line in the buffer, or if already at the bottom

 line, move to the next event in the history list. Then move to

 the first non-blank character on the line.

 down-line-or-search

 Move down a line in the buffer, or if already at the bottom

 line, search forward in the history for a line beginning with

 the first word in the buffer. Page 31/60

 If called from a function by the zle command with arguments, the

 first argument is taken as the string for which to search,

 rather than the first word in the buffer.

 down-history (unbound) (^N) (unbound)

 Move to the next event in the history list.

 history-beginning-search-backward

 Search backward in the history for a line beginning with the

 current line up to the cursor. This leaves the cursor in its

 original position.

 end-of-buffer-or-history (ESC->) (unbound) (unbound)

 Move to the end of the buffer, or if already there, move to the

 last event in the history list.

 end-of-line-hist

 Move to the end of the line. If already at the end of the buf?

 fer, move to the next history line.

 end-of-history

 Move to the last event in the history list.

 vi-fetch-history (unbound) (G) (unbound)

 Fetch the history line specified by the numeric argument. This

 defaults to the current history line (i.e. the one that isn't

 history yet).

 history-incremental-search-backward (^R ^Xr) (unbound) (unbound)

 Search backward incrementally for a specified string. The

 search is case-insensitive if the search string does not have

 uppercase letters and no numeric argument was given. The string

 may begin with `^' to anchor the search to the beginning of the

 line. When called from a user-defined function returns the fol?

 lowing statuses: 0, if the search succeeded; 1, if the search

 failed; 2, if the search term was a bad pattern; 3, if the

 search was aborted by the send-break command.

 A restricted set of editing functions is available in the

 mini-buffer. Keys are looked up in the special isearch keymap,

 and if not found there in the main keymap (note that by default Page 32/60

 the isearch keymap is empty). An interrupt signal, as defined

 by the stty setting, will stop the search and go back to the

 original line. An undefined key will have the same effect.

 Note that the following always perform the same task within in?

 cremental searches and cannot be replaced by user defined wid?

 gets, nor can the set of functions be extended. The supported

 functions are:

 accept-and-hold

 accept-and-infer-next-history

 accept-line

 accept-line-and-down-history

 Perform the usual function after exiting incremental

 search. The command line displayed is executed.

 backward-delete-char

 vi-backward-delete-char

 Back up one place in the search history. If the search

 has been repeated this does not immediately erase a char?

 acter in the minibuffer.

 accept-search

 Exit incremental search, retaining the command line but

 performing no further action. Note that this function is

 not bound by default and has no effect outside incremen?

 tal search.

 backward-delete-word

 backward-kill-word

 vi-backward-kill-word

 Back up one character in the minibuffer; if multiple

 searches have been performed since the character was in?

 serted the search history is rewound to the point just

 before the character was entered. Hence this has the ef?

 fect of repeating backward-delete-char.

 clear-screen

 Clear the screen, remaining in incremental search mode. Page 33/60

 history-incremental-search-backward

 Find the next occurrence of the contents of the mini-buf?

 fer. If the mini-buffer is empty, the most recent previ?

 ously used search string is reinstated.

 history-incremental-search-forward

 Invert the sense of the search.

 magic-space

 Inserts a non-magical space.

 quoted-insert

 vi-quoted-insert

 Quote the character to insert into the minibuffer.

 redisplay

 Redisplay the command line, remaining in incremental

 search mode.

 vi-cmd-mode

 Select the `vicmd' keymap; the `main' keymap (insert

 mode) will be selected initially.

 In addition, the modifications that were made while in vi

 insert mode are merged to form a single undo event.

 vi-repeat-search

 vi-rev-repeat-search

 Repeat the search. The direction of the search is indi?

 cated in the mini-buffer.

 Any character that is not bound to one of the above functions,

 or self-insert or self-insert-unmeta, will cause the mode to be

 exited. The character is then looked up and executed in the

 keymap in effect at that point.

 When called from a widget function by the zle command, the in?

 cremental search commands can take a string argument. This will

 be treated as a string of keys, as for arguments to the bindkey

 command, and used as initial input for the command. Any charac?

 ters in the string which are unused by the incremental search

 will be silently ignored. For example, Page 34/60

 zle history-incremental-search-backward forceps

 will search backwards for forceps, leaving the minibuffer con?

 taining the string `forceps'.

 history-incremental-search-forward (^S ^Xs) (unbound) (unbound)

 Search forward incrementally for a specified string. The search

 is case-insensitive if the search string does not have uppercase

 letters and no numeric argument was given. The string may begin

 with `^' to anchor the search to the beginning of the line. The

 functions available in the mini-buffer are the same as for his?

 tory-incremental-search-backward.

 history-incremental-pattern-search-backward

 history-incremental-pattern-search-forward

 These widgets behave similarly to the corresponding widgets with

 no -pattern, but the search string typed by the user is treated

 as a pattern, respecting the current settings of the various op?

 tions affecting pattern matching. See FILENAME GENERATION in

 zshexpn(1) for a description of patterns. If no numeric argu?

 ment was given lowercase letters in the search string may match

 uppercase letters in the history. The string may begin with `^'

 to anchor the search to the beginning of the line.

 The prompt changes to indicate an invalid pattern; this may sim?

 ply indicate the pattern is not yet complete.

 Note that only non-overlapping matches are reported, so an ex?

 pression with wildcards may return fewer matches on a line than

 are visible by inspection.

 history-search-backward (ESC-P ESC-p) (unbound) (unbound)

 Search backward in the history for a line beginning with the

 first word in the buffer.

 If called from a function by the zle command with arguments, the

 first argument is taken as the string for which to search,

 rather than the first word in the buffer.

 vi-history-search-backward (unbound) (/) (unbound)

 Search backward in the history for a specified string. The Page 35/60

 string may begin with `^' to anchor the search to the beginning

 of the line.

 A restricted set of editing functions is available in the

 mini-buffer. An interrupt signal, as defined by the stty set?

 ting, will stop the search. The functions available in the

 mini-buffer are: accept-line, backward-delete-char, vi-back?

 ward-delete-char, backward-kill-word, vi-backward-kill-word,

 clear-screen, redisplay, quoted-insert and vi-quoted-insert.

 vi-cmd-mode is treated the same as accept-line, and magic-space

 is treated as a space. Any other character that is not bound to

 self-insert or self-insert-unmeta will beep and be ignored. If

 the function is called from vi command mode, the bindings of the

 current insert mode will be used.

 If called from a function by the zle command with arguments, the

 first argument is taken as the string for which to search,

 rather than the first word in the buffer.

 history-search-forward (ESC-N ESC-n) (unbound) (unbound)

 Search forward in the history for a line beginning with the

 first word in the buffer.

 If called from a function by the zle command with arguments, the

 first argument is taken as the string for which to search,

 rather than the first word in the buffer.

 vi-history-search-forward (unbound) (?) (unbound)

 Search forward in the history for a specified string. The

 string may begin with `^' to anchor the search to the beginning

 of the line. The functions available in the mini-buffer are the

 same as for vi-history-search-backward. Argument handling is

 also the same as for that command.

 infer-next-history (^X^N) (unbound) (unbound)

 Search in the history list for a line matching the current one

 and fetch the event following it.

 insert-last-word (ESC-_ ESC-.) (unbound) (unbound)

 Insert the last word from the previous history event at the cur? Page 36/60

 sor position. If a positive numeric argument is given, insert

 that word from the end of the previous history event. If the

 argument is zero or negative insert that word from the left

 (zero inserts the previous command word). Repeating this com?

 mand replaces the word just inserted with the last word from the

 history event prior to the one just used; numeric arguments can

 be used in the same way to pick a word from that event.

 When called from a shell function invoked from a user-defined

 widget, the command can take one to three arguments. The first

 argument specifies a history offset which applies to successive

 calls to this widget: if it is -1, the default behaviour is

 used, while if it is 1, successive calls will move forwards

 through the history. The value 0 can be used to indicate that

 the history line examined by the previous execution of the com?

 mand will be reexamined. Note that negative numbers should be

 preceded by a `--' argument to avoid confusing them with op?

 tions.

 If two arguments are given, the second specifies the word on the

 command line in normal array index notation (as a more natural

 alternative to the numeric argument). Hence 1 is the first

 word, and -1 (the default) is the last word.

 If a third argument is given, its value is ignored, but it is

 used to signify that the history offset is relative to the cur?

 rent history line, rather than the one remembered after the pre?

 vious invocations of insert-last-word.

 For example, the default behaviour of the command corresponds to

 zle insert-last-word -- -1 -1

 while the command

 zle insert-last-word -- -1 1 -

 always copies the first word of the line in the history immedi?

 ately before the line being edited. This has the side effect

 that later invocations of the widget will be relative to that

 line. Page 37/60

 vi-repeat-search (unbound) (n) (unbound)

 Repeat the last vi history search.

 vi-rev-repeat-search (unbound) (N) (unbound)

 Repeat the last vi history search, but in reverse.

 up-line-or-history (^P ESC-[A) (k) (ESC-[A)

 Move up a line in the buffer, or if already at the top line,

 move to the previous event in the history list.

 vi-up-line-or-history (unbound) (-) (unbound)

 Move up a line in the buffer, or if already at the top line,

 move to the previous event in the history list. Then move to

 the first non-blank character on the line.

 up-line-or-search

 Move up a line in the buffer, or if already at the top line,

 search backward in the history for a line beginning with the

 first word in the buffer.

 If called from a function by the zle command with arguments, the

 first argument is taken as the string for which to search,

 rather than the first word in the buffer.

 up-history (unbound) (^P) (unbound)

 Move to the previous event in the history list.

 history-beginning-search-forward

 Search forward in the history for a line beginning with the cur?

 rent line up to the cursor. This leaves the cursor in its orig?

 inal position.

 set-local-history

 By default, history movement commands visit the imported lines

 as well as the local lines. This widget lets you toggle this on

 and off, or set it with the numeric argument. Zero for both lo?

 cal and imported lines and nonzero for only local lines.

 Modifying Text

 vi-add-eol (unbound) (A) (unbound)

 Move to the end of the line and enter insert mode.

 vi-add-next (unbound) (a) (unbound) Page 38/60

 Enter insert mode after the current cursor position, without

 changing lines.

 backward-delete-char (^H ^?) (unbound) (unbound)

 Delete the character behind the cursor.

 vi-backward-delete-char (unbound) (X) (^H)

 Delete the character behind the cursor, without changing lines.

 If in insert mode, this won't delete past the point where insert

 mode was last entered.

 backward-delete-word

 Delete the word behind the cursor.

 backward-kill-line

 Kill from the beginning of the line to the cursor position.

 backward-kill-word (^W ESC-^H ESC-^?) (unbound) (unbound)

 Kill the word behind the cursor.

 vi-backward-kill-word (unbound) (unbound) (^W)

 Kill the word behind the cursor, without going past the point

 where insert mode was last entered.

 capitalize-word (ESC-C ESC-c) (unbound) (unbound)

 Capitalize the current word and move past it.

 vi-change (unbound) (c) (unbound)

 Read a movement command from the keyboard, and kill from the

 cursor position to the endpoint of the movement. Then enter in?

 sert mode. If the command is vi-change, change the current

 line.

 For compatibility with vi, if the command is vi-forward-word or

 vi-forward-blank-word, the whitespace after the word is not in?

 cluded. If you prefer the more consistent behaviour with the

 whitespace included use the following key binding:

 bindkey -a -s cw dwi

 vi-change-eol (unbound) (C) (unbound)

 Kill to the end of the line and enter insert mode.

 vi-change-whole-line (unbound) (S) (unbound)

 Kill the current line and enter insert mode. Page 39/60

 copy-region-as-kill (ESC-W ESC-w) (unbound) (unbound)

 Copy the area from the cursor to the mark to the kill buffer.

 If called from a ZLE widget function in the form `zle copy-re?

 gion-as-kill string' then string will be taken as the text to

 copy to the kill buffer. The cursor, the mark and the text on

 the command line are not used in this case.

 copy-prev-word (ESC-^_) (unbound) (unbound)

 Duplicate the word to the left of the cursor.

 copy-prev-shell-word

 Like copy-prev-word, but the word is found by using shell pars?

 ing, whereas copy-prev-word looks for blanks. This makes a dif?

 ference when the word is quoted and contains spaces.

 vi-delete (unbound) (d) (unbound)

 Read a movement command from the keyboard, and kill from the

 cursor position to the endpoint of the movement. If the command

 is vi-delete, kill the current line.

 delete-char

 Delete the character under the cursor.

 vi-delete-char (unbound) (x) (unbound)

 Delete the character under the cursor, without going past the

 end of the line.

 delete-word

 Delete the current word.

 down-case-word (ESC-L ESC-l) (unbound) (unbound)

 Convert the current word to all lowercase and move past it.

 vi-down-case (unbound) (gu) (unbound)

 Read a movement command from the keyboard, and convert all char?

 acters from the cursor position to the endpoint of the movement

 to lowercase. If the movement command is vi-down-case, swap the

 case of all characters on the current line.

 kill-word (ESC-D ESC-d) (unbound) (unbound)

 Kill the current word.

 gosmacs-transpose-chars Page 40/60

 Exchange the two characters behind the cursor.

 vi-indent (unbound) (>) (unbound)

 Indent a number of lines.

 vi-insert (unbound) (i) (unbound)

 Enter insert mode.

 vi-insert-bol (unbound) (I) (unbound)

 Move to the first non-blank character on the line and enter in?

 sert mode.

 vi-join (^X^J) (J) (unbound)

 Join the current line with the next one.

 kill-line (^K) (unbound) (unbound)

 Kill from the cursor to the end of the line. If already on the

 end of the line, kill the newline character.

 vi-kill-line (unbound) (unbound) (^U)

 Kill from the cursor back to wherever insert mode was last en?

 tered.

 vi-kill-eol (unbound) (D) (unbound)

 Kill from the cursor to the end of the line.

 kill-region

 Kill from the cursor to the mark.

 kill-buffer (^X^K) (unbound) (unbound)

 Kill the entire buffer.

 kill-whole-line (^U) (unbound) (unbound)

 Kill the current line.

 vi-match-bracket (^X^B) (%) (unbound)

 Move to the bracket character (one of {}, () or []) that matches

 the one under the cursor. If the cursor is not on a bracket

 character, move forward without going past the end of the line

 to find one, and then go to the matching bracket.

 vi-open-line-above (unbound) (O) (unbound)

 Open a line above the cursor and enter insert mode.

 vi-open-line-below (unbound) (o) (unbound)

 Open a line below the cursor and enter insert mode. Page 41/60

 vi-oper-swap-case (unbound) (g~) (unbound)

 Read a movement command from the keyboard, and swap the case of

 all characters from the cursor position to the endpoint of the

 movement. If the movement command is vi-oper-swap-case, swap

 the case of all characters on the current line.

 overwrite-mode (^X^O) (unbound) (unbound)

 Toggle between overwrite mode and insert mode.

 vi-put-before (unbound) (P) (unbound)

 Insert the contents of the kill buffer before the cursor. If

 the kill buffer contains a sequence of lines (as opposed to

 characters), paste it above the current line.

 vi-put-after (unbound) (p) (unbound)

 Insert the contents of the kill buffer after the cursor. If the

 kill buffer contains a sequence of lines (as opposed to charac?

 ters), paste it below the current line.

 put-replace-selection (unbound) (unbound) (unbound)

 Replace the contents of the current region or selection with the

 contents of the kill buffer. If the kill buffer contains a se?

 quence of lines (as opposed to characters), the current line

 will be split by the pasted lines.

 quoted-insert (^V) (unbound) (unbound)

 Insert the next character typed into the buffer literally. An

 interrupt character will not be inserted.

 vi-quoted-insert (unbound) (unbound) (^Q ^V)

 Display a `^' at the cursor position, and insert the next char?

 acter typed into the buffer literally. An interrupt character

 will not be inserted.

 quote-line (ESC-') (unbound) (unbound)

 Quote the current line; that is, put a `'' character at the be?

 ginning and the end, and convert all `'' characters to `'\'''.

 quote-region (ESC-") (unbound) (unbound)

 Quote the region from the cursor to the mark.

 vi-replace (unbound) (R) (unbound) Page 42/60

 Enter overwrite mode.

 vi-repeat-change (unbound) (.) (unbound)

 Repeat the last vi mode text modification. If a count was used

 with the modification, it is remembered. If a count is given to

 this command, it overrides the remembered count, and is remem?

 bered for future uses of this command. The cut buffer specifi?

 cation is similarly remembered.

 vi-replace-chars (unbound) (r) (unbound)

 Replace the character under the cursor with a character read

 from the keyboard.

 self-insert (printable characters) (unbound) (printable characters and

 some control characters)

 Insert a character into the buffer at the cursor position.

 self-insert-unmeta (ESC-^I ESC-^J ESC-^M) (unbound) (unbound)

 Insert a character into the buffer after stripping the meta bit

 and converting ^M to ^J.

 vi-substitute (unbound) (s) (unbound)

 Substitute the next character(s).

 vi-swap-case (unbound) (~) (unbound)

 Swap the case of the character under the cursor and move past

 it.

 transpose-chars (^T) (unbound) (unbound)

 Exchange the two characters to the left of the cursor if at end

 of line, else exchange the character under the cursor with the

 character to the left.

 transpose-words (ESC-T ESC-t) (unbound) (unbound)

 Exchange the current word with the one before it.

 With a positive numeric argument N, the word around the cursor,

 or following it if the cursor is between words, is transposed

 with the preceding N words. The cursor is put at the end of the

 resulting group of words.

 With a negative numeric argument -N, the effect is the same as

 using a positive argument N except that the original cursor po? Page 43/60

 sition is retained, regardless of how the words are rearranged.

 vi-unindent (unbound) (<) (unbound)

 Unindent a number of lines.

 vi-up-case (unbound) (gU) (unbound)

 Read a movement command from the keyboard, and convert all char?

 acters from the cursor position to the endpoint of the movement

 to lowercase. If the movement command is vi-up-case, swap the

 case of all characters on the current line.

 up-case-word (ESC-U ESC-u) (unbound) (unbound)

 Convert the current word to all caps and move past it.

 yank (^Y) (unbound) (unbound)

 Insert the contents of the kill buffer at the cursor position.

 yank-pop (ESC-y) (unbound) (unbound)

 Remove the text just yanked, rotate the kill-ring (the history

 of previously killed text) and yank the new top. Only works

 following yank, vi-put-before, vi-put-after or yank-pop.

 vi-yank (unbound) (y) (unbound)

 Read a movement command from the keyboard, and copy the region

 from the cursor position to the endpoint of the movement into

 the kill buffer. If the command is vi-yank, copy the current

 line.

 vi-yank-whole-line (unbound) (Y) (unbound)

 Copy the current line into the kill buffer.

 vi-yank-eol

 Copy the region from the cursor position to the end of the line

 into the kill buffer. Arguably, this is what Y should do in vi,

 but it isn't what it actually does.

 Arguments

 digit-argument (ESC-0..ESC-9) (1-9) (unbound)

 Start a new numeric argument, or add to the current one. See

 also vi-digit-or-beginning-of-line. This only works if bound to

 a key sequence ending in a decimal digit.

 Inside a widget function, a call to this function treats the Page 44/60

 last key of the key sequence which called the widget as the

 digit.

 neg-argument (ESC--) (unbound) (unbound)

 Changes the sign of the following argument.

 universal-argument

 Multiply the argument of the next command by 4. Alternatively,

 if this command is followed by an integer (positive or nega?

 tive), use that as the argument for the next command. Thus dig?

 its cannot be repeated using this command. For example, if this

 command occurs twice, followed immediately by forward-char, move

 forward sixteen spaces; if instead it is followed by -2, then

 forward-char, move backward two spaces.

 Inside a widget function, if passed an argument, i.e. `zle uni?

 versal-argument num', the numeric argument will be set to num;

 this is equivalent to `NUMERIC=num'.

 argument-base

 Use the existing numeric argument as a numeric base, which must

 be in the range 2 to 36 inclusive. Subsequent use of digit-ar?

 gument and universal-argument will input a new numeric argument

 in the given base. The usual hexadecimal convention is used:

 the letter a or A corresponds to 10, and so on. Arguments in

 bases requiring digits from 10 upwards are more conveniently in?

 put with universal-argument, since ESC-a etc. are not usually

 bound to digit-argument.

 The function can be used with a command argument inside a

 user-defined widget. The following code sets the base to 16 and

 lets the user input a hexadecimal argument until a key out of

 the digit range is typed:

 zle argument-base 16

 zle universal-argument

 Completion

 accept-and-menu-complete

 In a menu completion, insert the current completion into the Page 45/60

 buffer, and advance to the next possible completion.

 complete-word

 Attempt completion on the current word.

 delete-char-or-list (^D) (unbound) (unbound)

 Delete the character under the cursor. If the cursor is at the

 end of the line, list possible completions for the current word.

 expand-cmd-path

 Expand the current command to its full pathname.

 expand-or-complete (TAB) (unbound) (TAB)

 Attempt shell expansion on the current word. If that fails, at?

 tempt completion.

 expand-or-complete-prefix

 Attempt shell expansion on the current word up to cursor.

 expand-history (ESC-space ESC-!) (unbound) (unbound)

 Perform history expansion on the edit buffer.

 expand-word (^X*) (unbound) (unbound)

 Attempt shell expansion on the current word.

 list-choices (ESC-^D) (^D =) (^D)

 List possible completions for the current word.

 list-expand (^Xg ^XG) (^G) (^G)

 List the expansion of the current word.

 magic-space

 Perform history expansion and insert a space into the buffer.

 This is intended to be bound to space.

 menu-complete

 Like complete-word, except that menu completion is used. See

 the MENU_COMPLETE option.

 menu-expand-or-complete

 Like expand-or-complete, except that menu completion is used.

 reverse-menu-complete

 Perform menu completion, like menu-complete, except that if a

 menu completion is already in progress, move to the previous

 completion rather than the next. Page 46/60

 end-of-list

 When a previous completion displayed a list below the prompt,

 this widget can be used to move the prompt below the list.

 Miscellaneous

 accept-and-hold (ESC-A ESC-a) (unbound) (unbound)

 Push the contents of the buffer on the buffer stack and execute

 it.

 accept-and-infer-next-history

 Execute the contents of the buffer. Then search the history

 list for a line matching the current one and push the event fol?

 lowing onto the buffer stack.

 accept-line (^J ^M) (^J ^M) (^J ^M)

 Finish editing the buffer. Normally this causes the buffer to

 be executed as a shell command.

 accept-line-and-down-history (^O) (unbound) (unbound)

 Execute the current line, and push the next history event on the

 buffer stack.

 auto-suffix-remove

 If the previous action added a suffix (space, slash, etc.) to

 the word on the command line, remove it. Otherwise do nothing.

 Removing the suffix ends any active menu completion or menu se?

 lection.

 This widget is intended to be called from user-defined widgets

 to enforce a desired suffix-removal behavior.

 auto-suffix-retain

 If the previous action added a suffix (space, slash, etc.) to

 the word on the command line, force it to be preserved. Other?

 wise do nothing. Retaining the suffix ends any active menu com?

 pletion or menu selection.

 This widget is intended to be called from user-defined widgets

 to enforce a desired suffix-preservation behavior.

 beep Beep, unless the BEEP option is unset.

 bracketed-paste Page 47/60

 This widget is invoked when text is pasted to the terminal emu?

 lator. It is not intended to be bound to actual keys but instead

 to the special sequence generated by the terminal emulator when

 text is pasted.

 When invoked interactively, the pasted text is inserted to the

 buffer and placed in the cutbuffer. If a numeric argument is

 given, shell quoting will be applied to the pasted text before

 it is inserted.

 When a named buffer is specified with vi-set-buffer ("x), the

 pasted text is stored in that named buffer but not inserted.

 When called from a widget function as `bracketed-paste name`,

 the pasted text is assigned to the variable name and no other

 processing is done.

 See also the zle_bracketed_paste parameter.

 vi-cmd-mode (^X^V) (unbound) (^[)

 Enter command mode; that is, select the `vicmd' keymap. Yes,

 this is bound by default in emacs mode.

 vi-caps-lock-panic

 Hang until any lowercase key is pressed. This is for vi users

 without the mental capacity to keep track of their caps lock key

 (like the author).

 clear-screen (^L ESC-^L) (^L) (^L)

 Clear the screen and redraw the prompt.

 deactivate-region

 Make the current region inactive. This disables vim-style visual

 selection mode if it is active.

 describe-key-briefly

 Reads a key sequence, then prints the function bound to that se?

 quence.

 exchange-point-and-mark (^X^X) (unbound) (unbound)

 Exchange the cursor position (point) with the position of the

 mark. Unless a negative numeric argument is given, the region

 between point and mark is activated so that it can be high? Page 48/60

 lighted. If a zero numeric argument is given, the region is ac?

 tivated but point and mark are not swapped.

 execute-named-cmd (ESC-x) (:) (unbound)

 Read the name of an editor command and execute it. Aliasing

 this widget with `zle -A' or replacing it with `zle -N' has no

 effect when interpreting key bindings, but `zle exe?

 cute-named-cmd' will invoke such an alias or replacement.

 A restricted set of editing functions is available in the

 mini-buffer. Keys are looked up in the special command keymap,

 and if not found there in the main keymap. An interrupt signal,

 as defined by the stty setting, will abort the function. Note

 that the following always perform the same task within the exe?

 cuted-named-cmd environment and cannot be replaced by user de?

 fined widgets, nor can the set of functions be extended. The

 allowed functions are: backward-delete-char, vi-back?

 ward-delete-char, clear-screen, redisplay, quoted-insert,

 vi-quoted-insert, backward-kill-word, vi-backward-kill-word,

 kill-whole-line, vi-kill-line, backward-kill-line, list-choices,

 delete-char-or-list, complete-word, accept-line, expand-or-com?

 plete and expand-or-complete-prefix.

 kill-region kills the last word, and vi-cmd-mode is treated the

 same as accept-line. The space and tab characters, if not bound

 to one of these functions, will complete the name and then list

 the possibilities if the AUTO_LIST option is set. Any other

 character that is not bound to self-insert or self-insert-unmeta

 will beep and be ignored. The bindings of the current insert

 mode will be used.

 Currently this command may not be redefined or called by name.

 execute-last-named-cmd (ESC-z) (unbound) (unbound)

 Redo the last function executed with execute-named-cmd.

 Like execute-named-cmd, this command may not be redefined, but

 it may be called by name.

 get-line (ESC-G ESC-g) (unbound) (unbound) Page 49/60

 Pop the top line off the buffer stack and insert it at the cur?

 sor position.

 pound-insert (unbound) (#) (unbound)

 If there is no # character at the beginning of the buffer, add

 one to the beginning of each line. If there is one, remove a #

 from each line that has one. In either case, accept the current

 line. The INTERACTIVE_COMMENTS option must be set for this to

 have any usefulness.

 vi-pound-insert

 If there is no # character at the beginning of the current line,

 add one. If there is one, remove it. The INTERACTIVE_COMMENTS

 option must be set for this to have any usefulness.

 push-input

 Push the entire current multiline construct onto the buffer

 stack and return to the top-level (PS1) prompt. If the current

 parser construct is only a single line, this is exactly like

 push-line. Next time the editor starts up or is popped with

 get-line, the construct will be popped off the top of the buffer

 stack and loaded into the editing buffer.

 push-line (^Q ESC-Q ESC-q) (unbound) (unbound)

 Push the current buffer onto the buffer stack and clear the buf?

 fer. Next time the editor starts up, the buffer will be popped

 off the top of the buffer stack and loaded into the editing buf?

 fer.

 push-line-or-edit

 At the top-level (PS1) prompt, equivalent to push-line. At a

 secondary (PS2) prompt, move the entire current multiline con?

 struct into the editor buffer. The latter is equivalent to

 push-input followed by get-line.

 read-command

 Only useful from a user-defined widget. A keystroke is read

 just as in normal operation, but instead of the command being

 executed the name of the command that would be executed is Page 50/60

 stored in the shell parameter REPLY. This can be used as the

 argument of a future zle command. If the key sequence is not

 bound, status 1 is returned; typically, however, REPLY is set to

 undefined-key to indicate a useless key sequence.

 recursive-edit

 Only useful from a user-defined widget. At this point in the

 function, the editor regains control until one of the standard

 widgets which would normally cause zle to exit (typically an ac?

 cept-line caused by hitting the return key) is executed. In?

 stead, control returns to the user-defined widget. The status

 returned is non-zero if the return was caused by an error, but

 the function still continues executing and hence may tidy up.

 This makes it safe for the user-defined widget to alter the com?

 mand line or key bindings temporarily.

 The following widget, caps-lock, serves as an example.

 self-insert-ucase() {

 LBUFFER+=${(U)KEYS[-1]}

 }

 integer stat

 zle -N self-insert self-insert-ucase

 zle -A caps-lock save-caps-lock

 zle -A accept-line caps-lock

 zle recursive-edit

 stat=$?

 zle -A .self-insert self-insert

 zle -A save-caps-lock caps-lock

 zle -D save-caps-lock

 ((stat)) && zle send-break

 return $stat

 This causes typed letters to be inserted capitalised until ei?

 ther accept-line (i.e. typically the return key) is typed or the

 caps-lock widget is invoked again; the later is handled by sav?

 ing the old definition of caps-lock as save-caps-lock and then Page 51/60

 rebinding it to invoke accept-line. Note that an error from the

 recursive edit is detected as a non-zero return status and prop?

 agated by using the send-break widget.

 redisplay (unbound) (^R) (^R)

 Redisplays the edit buffer.

 reset-prompt (unbound) (unbound) (unbound)

 Force the prompts on both the left and right of the screen to be

 re-expanded, then redisplay the edit buffer. This reflects

 changes both to the prompt variables themselves and changes in

 the expansion of the values (for example, changes in time or di?

 rectory, or changes to the value of variables referred to by the

 prompt).

 Otherwise, the prompt is only expanded each time zle starts, and

 when the display has been interrupted by output from another

 part of the shell (such as a job notification) which causes the

 command line to be reprinted.

 reset-prompt doesn't alter the special parameter LASTWIDGET.

 send-break (^G ESC-^G) (unbound) (unbound)

 Abort the current editor function, e.g. execute-named-command,

 or the editor itself, e.g. if you are in vared. Otherwise abort

 the parsing of the current line; in this case the aborted line

 is available in the shell variable ZLE_LINE_ABORTED. If the ed?

 itor is aborted from within vared, the variable

 ZLE_VARED_ABORTED is set.

 run-help (ESC-H ESC-h) (unbound) (unbound)

 Push the buffer onto the buffer stack, and execute the command

 `run-help cmd', where cmd is the current command. run-help is

 normally aliased to man.

 vi-set-buffer (unbound) (") (unbound)

 Specify a buffer to be used in the following command. There are

 37 buffers that can be specified: the 26 `named' buffers "a to

 "z, the `yank' buffer "0, the nine `queued' buffers "1 to "9 and

 the `black hole' buffer "_. The named buffers can also be spec? Page 52/60

 ified as "A to "Z.

 When a buffer is specified for a cut, change or yank command,

 the text concerned replaces the previous contents of the speci?

 fied buffer. If a named buffer is specified using a capital, the

 newly cut text is appended to the buffer instead of overwriting

 it. When using the "_ buffer, nothing happens. This can be use?

 ful for deleting text without affecting any buffers.

 If no buffer is specified for a cut or change command, "1 is

 used, and the contents of "1 to "8 are each shifted along one

 buffer; the contents of "9 is lost. If no buffer is specified

 for a yank command, "0 is used. Finally, a paste command without

 a specified buffer will paste the text from the most recent com?

 mand regardless of any buffer that might have been used with

 that command.

 When called from a widget function by the zle command, the buf?

 fer can optionally be specified with an argument. For example,

 zle vi-set-buffer A

 vi-set-mark (unbound) (m) (unbound)

 Set the specified mark at the cursor position.

 set-mark-command (^@) (unbound) (unbound)

 Set the mark at the cursor position. If called with a negative

 numeric argument, do not set the mark but deactivate the region

 so that it is no longer highlighted (it is still usable for

 other purposes). Otherwise the region is marked as active.

 spell-word (ESC-$ ESC-S ESC-s) (unbound) (unbound)

 Attempt spelling correction on the current word.

 split-undo

 Breaks the undo sequence at the current change. This is useful

 in vi mode as changes made in insert mode are coalesced on en?

 tering command mode. Similarly, undo will normally revert as

 one all the changes made by a user-defined widget.

 undefined-key

 This command is executed when a key sequence that is not bound Page 53/60

 to any command is typed. By default it beeps.

 undo (^_ ^Xu ^X^U) (u) (unbound)

 Incrementally undo the last text modification. When called from

 a user-defined widget, takes an optional argument indicating a

 previous state of the undo history as returned by the

 UNDO_CHANGE_NO variable; modifications are undone until that

 state is reached, subject to any limit imposed by the

 UNDO_LIMIT_NO variable.

 Note that when invoked from vi command mode, the full prior

 change made in insert mode is reverted, the changes having been

 merged when command mode was selected.

 redo (unbound) (^R) (unbound)

 Incrementally redo undone text modifications.

 vi-undo-change (unbound) (unbound) (unbound)

 Undo the last text modification. If repeated, redo the modifi?

 cation.

 visual-mode (unbound) (v) (unbound)

 Toggle vim-style visual selection mode. If line-wise visual mode

 is currently enabled then it is changed to being character-wise.

 If used following an operator, it forces the subsequent movement

 command to be treated as a character-wise movement.

 visual-line-mode (unbound) (V) (unbound)

 Toggle vim-style line-wise visual selection mode. If charac?

 ter-wise visual mode is currently enabled then it is changed to

 being line-wise. If used following an operator, it forces the

 subsequent movement command to be treated as a line-wise move?

 ment.

 what-cursor-position (^X=) (ga) (unbound)

 Print the character under the cursor, its code as an octal, dec?

 imal and hexadecimal number, the current cursor position within

 the buffer and the column of the cursor in the current line.

 where-is

 Read the name of an editor command and print the listing of key Page 54/60

 sequences that invoke the specified command. A restricted set

 of editing functions is available in the mini-buffer. Keys are

 looked up in the special command keymap, and if not found there

 in the main keymap.

 which-command (ESC-?) (unbound) (unbound)

 Push the buffer onto the buffer stack, and execute the command

 `which-command cmd'. where cmd is the current command.

 which-command is normally aliased to whence.

 vi-digit-or-beginning-of-line (unbound) (0) (unbound)

 If the last command executed was a digit as part of an argument,

 continue the argument. Otherwise, execute vi-beginning-of-line.

 Text Objects

 Text objects are commands that can be used to select a block of text

 according to some criteria. They are a feature of the vim text editor

 and so are primarily intended for use with vi operators or from visual

 selection mode. However, they can also be used from vi-insert or emacs

 mode. Key bindings listed below apply to the viopp and visual keymaps.

 select-a-blank-word (aW)

 Select a word including adjacent blanks, where a word is defined

 as a series of non-blank characters. With a numeric argument,

 multiple words will be selected.

 select-a-shell-word (aa)

 Select the current command argument applying the normal rules

 for quoting.

 select-a-word (aw)

 Select a word including adjacent blanks, using the normal

 vi-style word definition. With a numeric argument, multiple

 words will be selected.

 select-in-blank-word (iW)

 Select a word, where a word is defined as a series of non-blank

 characters. With a numeric argument, multiple words will be se?

 lected.

 select-in-shell-word (ia) Page 55/60

 Select the current command argument applying the normal rules

 for quoting. If the argument begins and ends with matching quote

 characters, these are not included in the selection.

 select-in-word (iw)

 Select a word, using the normal vi-style word definition. With a

 numeric argument, multiple words will be selected.

CHARACTER HIGHLIGHTING

 The line editor has the ability to highlight characters or regions of

 the line that have a particular significance. This is controlled by

 the array parameter zle_highlight, if it has been set by the user.

 If the parameter contains the single entry none all highlighting is

 turned off. Note the parameter is still expected to be an array.

 Otherwise each entry of the array should consist of a word indicating a

 context for highlighting, then a colon, then a comma-separated list of

 the types of highlighting to apply in that context.

 The contexts available for highlighting are the following:

 default

 Any text within the command line not affected by any other high?

 lighting. Text outside the editable area of the command line is

 not affected.

 isearch

 When one of the incremental history search widgets is active,

 the area of the command line matched by the search string or

 pattern.

 region The currently selected text. In emacs terminology, this is re?

 ferred to as the region and is bounded by the cursor (point) and

 the mark. The region is only highlighted if it is active, which

 is the case after the mark is modified with set-mark-command or

 exchange-point-and-mark. Note that whether or not the region is

 active has no effect on its use within emacs style widgets, it

 simply determines whether it is highlighted. In vi mode, the re?

 gion corresponds to selected text in visual mode.

 special Page 56/60

 Individual characters that have no direct printable representa?

 tion but are shown in a special manner by the line editor.

 These characters are described below.

 suffix This context is used in completion for characters that are

 marked as suffixes that will be removed if the completion ends

 at that point, the most obvious example being a slash (/) after

 a directory name. Note that suffix removal is configurable; the

 circumstances under which the suffix will be removed may differ

 for different completions.

 paste Following a command to paste text, the characters that were in?

 serted.

 When region_highlight is set, the contexts that describe a region --

 isearch, region, suffix, and paste -- are applied first, then re?

 gion_highlight is applied, then the remaining zle_highlight contexts

 are applied. If a particular character is affected by multiple speci?

 fications, the last specification wins.

 zle_highlight may contain additional fields for controlling how termi?

 nal sequences to change colours are output. Each of the following is

 followed by a colon and a string in the same form as for key bindings.

 This will not be necessary for the vast majority of terminals as the

 defaults shown in parentheses are widely used.

 fg_start_code (\e[3)

 The start of the escape sequence for the foreground colour.

 This is followed by one to three ASCII digits representing the

 colour. Only used for palette colors, i.e. not 24-bit colors

 specified via a color triplet.

 fg_default_code (9)

 The number to use instead of the colour to reset the default

 foreground colour.

 fg_end_code (m)

 The end of the escape sequence for the foreground colour.

 bg_start_code (\e[4)

 The start of the escape sequence for the background colour. See Page 57/60

 fg_start_code above.

 bg_default_code (9)

 The number to use instead of the colour to reset the default

 background colour.

 bg_end_code (m)

 The end of the escape sequence for the background colour.

 The available types of highlighting are the following. Note that not

 all types of highlighting are available on all terminals:

 none No highlighting is applied to the given context. It is not use?

 ful for this to appear with other types of highlighting; it is

 used to override a default.

 fg=colour

 The foreground colour should be set to colour, a decimal inte?

 ger, the name of one of the eight most widely-supported colours

 or as a `#' followed by an RGB triplet in hexadecimal format.

 Not all terminals support this and, of those that do, not all

 provide facilities to test the support, hence the user should

 decide based on the terminal type. Most terminals support the

 colours black, red, green, yellow, blue, magenta, cyan and

 white, which can be set by name. In addition. default may be

 used to set the terminal's default foreground colour. Abbrevia?

 tions are allowed; b or bl selects black. Some terminals may

 generate additional colours if the bold attribute is also

 present.

 On recent terminals and on systems with an up-to-date terminal

 database the number of colours supported may be tested by the

 command `echotc Co'; if this succeeds, it indicates a limit on

 the number of colours which will be enforced by the line editor.

 The number of colours is in any case limited to 256 (i.e. the

 range 0 to 255).

 Some modern terminal emulators have support for 24-bit true

 colour (16 million colours). In this case, the hex triplet for?

 mat can be used. This consists of a `#' followed by either a Page 58/60

 three or six digit hexadecimal number describing the red, green

 and blue components of the colour. Hex triplets can also be used

 with 88 and 256 colour terminals via the zsh/nearcolor module

 (see zshmodules(1)).

 Colour is also known as color.

 bg=colour

 The background colour should be set to colour. This works simi?

 larly to the foreground colour, except the background is not

 usually affected by the bold attribute.

 bold The characters in the given context are shown in a bold font.

 Not all terminals distinguish bold fonts.

 standout

 The characters in the given context are shown in the terminal's

 standout mode. The actual effect is specific to the terminal;

 on many terminals it is inverse video. On some such terminals,

 where the cursor does not blink it appears with standout mode

 negated, making it less than clear where the cursor actually is.

 On such terminals one of the other effects may be preferable for

 highlighting the region and matched search string.

 underline

 The characters in the given context are shown underlined. Some

 terminals show the foreground in a different colour instead; in

 this case whitespace will not be highlighted.

 The characters described above as `special' are as follows. The for?

 matting described here is used irrespective of whether the characters

 are highlighted:

 ASCII control characters

 Control characters in the ASCII range are shown as `^' followed

 by the base character.

 Unprintable multibyte characters

 This item applies to control characters not in the ASCII range,

 plus other characters as follows. If the MULTIBYTE option is in

 effect, multibyte characters not in the ASCII character set that Page 59/60

 are reported as having zero width are treated as combining char?

 acters when the option COMBINING_CHARS is on. If the option is

 off, or if a character appears where a combining character is

 not valid, the character is treated as unprintable.

 Unprintable multibyte characters are shown as a hexadecimal num?

 ber between angle brackets. The number is the code point of the

 character in the wide character set; this may or may not be Uni?

 code, depending on the operating system.

 Invalid multibyte characters

 If the MULTIBYTE option is in effect, any sequence of one or

 more bytes that does not form a valid character in the current

 character set is treated as a series of bytes each shown as a

 special character. This case can be distinguished from other

 unprintable characters as the bytes are represented as two hexa?

 decimal digits between angle brackets, as distinct from the four

 or eight digits that are used for unprintable characters that

 are nonetheless valid in the current character set.

 Not all systems support this: for it to work, the system's rep?

 resentation of wide characters must be code values from the Uni?

 versal Character Set, as defined by IS0 10646 (also known as

 Unicode).

 Wrapped double-width characters

 When a double-width character appears in the final column of a

 line, it is instead shown on the next line. The empty space left

 in the original position is highlighted as a special character.

 If zle_highlight is not set or no value applies to a particular con?

 text, the defaults applied are equivalent to

 zle_highlight=(region:standout special:standout

 suffix:bold isearch:underline paste:standout)

 i.e. both the region and special characters are shown in standout mode.

 Within widgets, arbitrary regions may be highlighted by setting the

 special array parameter region_highlight; see above.

zsh 5.8 February 14, 2020 ZSHZLE(1) Page 60/60

