
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshzftpsys.1'

$ man zshzftpsys.1

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

NAME

 zshzftpsys - zftp function front-end

DESCRIPTION

 This describes the set of shell functions supplied with the source dis?

 tribution as an interface to the zftp builtin command, allowing you to

 perform FTP operations from the shell command line or within functions

 or scripts. The interface is similar to a traditional FTP client (e.g.

 the ftp command itself, see ftp(1)), but as it is entirely done within

 the shell all the familiar completion, editing and globbing features,

 and so on, are present, and macros are particularly simple to write as

 they are just ordinary shell functions.

 The prerequisite is that the zftp command, as described in zshmod?

 ules(1) , must be available in the version of zsh installed at your

 site. If the shell is configured to load new commands at run time, it

 probably is: typing `zmodload zsh/zftp' will make sure (if that runs

 silently, it has worked). If this is not the case, it is possible zftp

 was linked into the shell anyway: to test this, type `which zftp' and Page 1/16

 if zftp is available you will get the message `zftp: shell built-in

 command'.

 Commands given directly with zftp builtin may be interspersed between

 the functions in this suite; in a few cases, using zftp directly may

 cause some of the status information stored in shell parameters to be?

 come invalid. Note in particular the description of the variables

 $ZFTP_TMOUT, $ZFTP_PREFS and $ZFTP_VERBOSE for zftp.

INSTALLATION

 You should make sure all the functions from the Functions/Zftp direc?

 tory of the source distribution are available; they all begin with the

 two letters `zf'. They may already have been installed on your system;

 otherwise, you will need to find them and copy them. The directory

 should appear as one of the elements of the $fpath array (this should

 already be the case if they were installed), and at least the function

 zfinit should be autoloaded; it will autoload the rest. Finally, to

 initialize the use of the system you need to call the zfinit function.

 The following code in your .zshrc will arrange for this; assume the

 functions are stored in the directory ~/myfns:

 fpath=(~/myfns $fpath)

 autoload -U zfinit

 zfinit

 Note that zfinit assumes you are using the zmodload method to load the

 zftp command. If it is already built into the shell, change zfinit to

 zfinit -n. It is helpful (though not essential) if the call to zfinit

 appears after any code to initialize the new completion system, else

 unnecessary compctl commands will be given.

FUNCTIONS

 The sequence of operations in performing a file transfer is essentially

 the same as that in a standard FTP client. Note that, due to a quirk

 of the shell's getopts builtin, for those functions that handle options

 you must use `--' rather than `-' to ensure the remaining arguments are

 treated literally (a single `-' is treated as an argument).

 Opening a connection Page 2/16

 zfparams [host [user [password ...]]]

 Set or show the parameters for a future zfopen with no argu?

 ments. If no arguments are given, the current parameters are

 displayed (the password will be shown as a line of asterisks).

 If a host is given, and either the user or password is not, they

 will be prompted for; also, any parameter given as `?' will be

 prompted for, and if the `?' is followed by a string, that will

 be used as the prompt. As zfopen calls zfparams to store the

 parameters, this usually need not be called directly.

 A single argument `-' will delete the stored parameters. This

 will also cause the memory of the last directory (and so on) on

 the other host to be deleted.

 zfopen [-1] [host [user [password [account]]]]

 If host is present, open a connection to that host under user?

 name user with password password (and, on the rare occasions

 when it is necessary, account account). If a necessary parame?

 ter is missing or given as `?' it will be prompted for. If host

 is not present, use a previously stored set of parameters.

 If the command was successful, and the terminal is compatible

 with xterm or is sun-cmd, a summary will appear in the title

 bar, giving the local host:directory and the remote host:direc?

 tory; this is handled by the function zftp_chpwd, described be?

 low.

 Normally, the host, user and password are internally recorded

 for later re-opening, either by a zfopen with no arguments, or

 automatically (see below). With the option `-1', no information

 is stored. Also, if an open command with arguments failed, the

 parameters will not be retained (and any previous parameters

 will also be deleted). A zfopen on its own, or a zfopen -1,

 never alters the stored parameters.

 Both zfopen and zfanon (but not zfparams) understand URLs of the

 form ftp://host/path... as meaning to connect to the host, then

 change directory to path (which must be a directory, not a Page 3/16

 file). The `ftp://' can be omitted; the trailing `/' is enough

 to trigger recognition of the path. Note prefixes other than

 `ftp:' are not recognized, and that all characters after the

 first slash beyond host are significant in path.

 zfanon [-1] host

 Open a connection host for anonymous FTP. The username used is

 `anonymous'. The password (which will be reported the first

 time) is generated as user@host; this is then stored in the

 shell parameter $EMAIL_ADDR which can alternatively be set manu?

 ally to a suitable string.

 Directory management

 zfcd [dir]

 zfcd -

 zfcd old new

 Change the current directory on the remote server: this is im?

 plemented to have many of the features of the shell builtin cd.

 In the first form with dir present, change to the directory dir.

 The command `zfcd ..' is treated specially, so is guaranteed to

 work on non-UNIX servers (note this is handled internally by

 zftp). If dir is omitted, has the effect of `zfcd ~'.

 The second form changes to the directory previously current.

 The third form attempts to change the current directory by re?

 placing the first occurrence of the string old with the string

 new in the current directory.

 Note that in this command, and indeed anywhere a remote filename

 is expected, the string which on the local host corresponds to

 `~' is converted back to a `~' before being passed to the remote

 machine. This is convenient because of the way expansion is

 performed on the command line before zfcd receives a string.

 For example, suppose the command is `zfcd ~/foo'. The shell

 will expand this to a full path such as `zfcd

 /home/user2/pws/foo'. At this stage, zfcd recognises the ini?

 tial path as corresponding to `~' and will send the directory to Page 4/16

 the remote host as ~/foo, so that the `~' will be expanded by

 the server to the correct remote host directory. Other named

 directories of the form `~name' are not treated in this fashion.

 zfhere Change directory on the remote server to the one corresponding

 to the current local directory, with special handling of `~' as

 in zfcd. For example, if the current local directory is

 ~/foo/bar, then zfhere performs the effect of `zfcd ~/foo/bar'.

 zfdir [-rfd] [-] [dir-options] [dir]

 Produce a long directory listing. The arguments dir-options and

 dir are passed directly to the server and their effect is imple?

 mentation dependent, but specifying a particular remote direc?

 tory dir is usually possible. The output is passed through a

 pager given by the environment variable $PAGER, or `more' if

 that is not set.

 The directory is usually cached for re-use. In fact, two caches

 are maintained. One is for use when there is no dir-options or

 dir, i.e. a full listing of the current remote directory; it is

 flushed when the current remote directory changes. The other is

 kept for repeated use of zfdir with the same arguments; for ex?

 ample, repeated use of `zfdir /pub/gnu' will only require the

 directory to be retrieved on the first call. Alternatively,

 this cache can be re-viewed with the -r option. As relative di?

 rectories will confuse zfdir, the -f option can be used to force

 the cache to be flushed before the directory is listed. The op?

 tion -d will delete both caches without showing a directory

 listing; it will also delete the cache of file names in the cur?

 rent remote directory, if any.

 zfls [ls-options] [dir]

 List files on the remote server. With no arguments, this will

 produce a simple list of file names for the current remote di?

 rectory. Any arguments are passed directly to the server. No

 pager and no caching is used.

 Status commands Page 5/16

 zftype [type]

 With no arguments, show the type of data to be transferred, usu?

 ally ASCII or binary. With an argument, change the type: the

 types `A' or `ASCII' for ASCII data and `B' or `BINARY', `I' or

 `IMAGE' for binary data are understood case-insensitively.

 zfstat [-v]

 Show the status of the current or last connection, as well as

 the status of some of zftp's status variables. With the -v op?

 tion, a more verbose listing is produced by querying the server

 for its version of events, too.

 Retrieving files

 The commands for retrieving files all take at least two options. -G

 suppresses remote filename expansion which would otherwise be performed

 (see below for a more detailed description of that). -t attempts to

 set the modification time of the local file to that of the remote file:

 see the description of the function zfrtime below for more information.

 zfget [-Gtc] file1 ...

 Retrieve all the listed files file1 ... one at a time from the

 remote server. If a file contains a `/', the full name is

 passed to the remote server, but the file is stored locally un?

 der the name given by the part after the final `/'. The option

 -c (cat) forces all files to be sent as a single stream to stan?

 dard output; in this case the -t option has no effect.

 zfuget [-Gvst] file1 ...

 As zfget, but only retrieve files where the version on the re?

 mote server is newer (has a later modification time), or where

 the local file does not exist. If the remote file is older but

 the files have different sizes, or if the sizes are the same but

 the remote file is newer, the user will usually be queried.

 With the option -s, the command runs silently and will always

 retrieve the file in either of those two cases. With the option

 -v, the command prints more information about the files while it

 is working out whether or not to transfer them. Page 6/16

 zfcget [-Gt] file1 ...

 As zfget, but if any of the local files exists, and is shorter

 than the corresponding remote file, the command assumes that it

 is the result of a partially completed transfer and attempts to

 transfer the rest of the file. This is useful on a poor connec?

 tion which keeps failing.

 Note that this requires a commonly implemented, but non-stan?

 dard, version of the FTP protocol, so is not guaranteed to work

 on all servers.

 zfgcp [-Gt] remote-file local-file

 zfgcp [-Gt] rfile1 ... ldir

 This retrieves files from the remote server with arguments be?

 having similarly to the cp command.

 In the first form, copy remote-file from the server to the local

 file local-file.

 In the second form, copy all the remote files rfile1 ... into

 the local directory ldir retaining the same basenames. This as?

 sumes UNIX directory semantics.

 Sending files

 zfput [-r] file1 ...

 Send all the file1 ... given separately to the remote server.

 If a filename contains a `/', the full filename is used locally

 to find the file, but only the basename is used for the remote

 file name.

 With the option -r, if any of the files are directories they are

 sent recursively with all their subdirectories, including files

 beginning with `.'. This requires that the remote machine un?

 derstand UNIX file semantics, since `/' is used as a directory

 separator.

 zfuput [-vs] file1 ...

 As zfput, but only send files which are newer than their remote

 equivalents, or if the remote file does not exist. The logic is

 the same as for zfuget, but reversed between local and remote Page 7/16

 files.

 zfcput file1 ...

 As zfput, but if any remote file already exists and is shorter

 than the local equivalent, assume it is the result of an incom?

 plete transfer and send the rest of the file to append to the

 existing part. As the FTP append command is part of the stan?

 dard set, this is in principle more likely to work than zfcget.

 zfpcp local-file remote-file

 zfpcp lfile1 ... rdir

 This sends files to the remote server with arguments behaving

 similarly to the cp command.

 With two arguments, copy local-file to the server as re?

 mote-file.

 With more than two arguments, copy all the local files lfile1

 ... into the existing remote directory rdir retaining the same

 basenames. This assumes UNIX directory semantics.

 A problem arises if you attempt to use zfpcp lfile1 rdir, i.e.

 the second form of copying but with two arguments, as the com?

 mand has no simple way of knowing if rdir corresponds to a di?

 rectory or a filename. It attempts to resolve this in various

 ways. First, if the rdir argument is `.' or `..' or ends in a

 slash, it is assumed to be a directory. Secondly, if the opera?

 tion of copying to a remote file in the first form failed, and

 the remote server sends back the expected failure code 553 and a

 reply including the string `Is a directory', then zfpcp will

 retry using the second form.

 Closing the connection

 zfclose

 Close the connection.

 Session management

 zfsession [-lvod] [sessname]

 Allows you to manage multiple FTP sessions at once. By default,

 connections take place in a session called `default'; by giving Page 8/16

 the command `zfsession sessname' you can change to a new or ex?

 isting session with a name of your choice. The new session re?

 members its own connection, as well as associated shell parame?

 ters, and also the host/user parameters set by zfparams. Hence

 you can have different sessions set up to connect to different

 hosts, each remembering the appropriate host, user and password.

 With no arguments, zfsession prints the name of the current ses?

 sion; with the option -l it lists all sessions which currently

 exist, and with the option -v it gives a verbose list showing

 the host and directory for each session, where the current ses?

 sion is marked with an asterisk. With -o, it will switch to the

 most recent previous session.

 With -d, the given session (or else the current one) is removed;

 everything to do with it is completely forgotten. If it was the

 only session, a new session called `default' is created and made

 current. It is safest not to delete sessions while background

 commands using zftp are active.

 zftransfer sess1:file1 sess2:file2

 Transfer files between two sessions; no local copy is made. The

 file is read from the session sess1 as file1 and written to ses?

 sion sess2 as file file2; file1 and file2 may be relative to the

 current directories of the session. Either sess1 or sess2 may

 be omitted (though the colon should be retained if there is a

 possibility of a colon appearing in the file name) and defaults

 to the current session; file2 may be omitted or may end with a

 slash, in which case the basename of file1 will be added. The

 sessions sess1 and sess2 must be distinct.

 The operation is performed using pipes, so it is required that

 the connections still be valid in a subshell, which is not the

 case under versions of some operating systems, presumably due to

 a system bug.

 Bookmarks

 The two functions zfmark and zfgoto allow you to `bookmark' the present Page 9/16

 location (host, user and directory) of the current FTP connection for

 later use. The file to be used for storing and retrieving bookmarks is

 given by the parameter $ZFTP_BMFILE; if not set when one of the two

 functions is called, it will be set to the file .zfbkmarks in the di?

 rectory where your zsh startup files live (usually ~).

 zfmark [bookmark]

 If given an argument, mark the current host, user and directory

 under the name bookmark for later use by zfgoto. If there is no

 connection open, use the values for the last connection immedi?

 ately before it was closed; it is an error if there was none.

 Any existing bookmark under the same name will be silently re?

 placed.

 If not given an argument, list the existing bookmarks and the

 points to which they refer in the form user@host:directory; this

 is the format in which they are stored, and the file may be

 edited directly.

 zfgoto [-n] bookmark

 Return to the location given by bookmark, as previously set by

 zfmark. If the location has user `ftp' or `anonymous', open the

 connection with zfanon, so that no password is required. If the

 user and host parameters match those stored for the current ses?

 sion, if any, those will be used, and again no password is re?

 quired. Otherwise a password will be prompted for.

 With the option -n, the bookmark is taken to be a nickname

 stored by the ncftp program in its bookmark file, which is as?

 sumed to be ~/.ncftp/bookmarks. The function works identically

 in other ways. Note that there is no mechanism for adding or

 modifying ncftp bookmarks from the zftp functions.

 Other functions

 Mostly, these functions will not be called directly (apart from

 zfinit), but are described here for completeness. You may wish to al?

 ter zftp_chpwd and zftp_progress, in particular.

 zfinit [-n] Page 10/16

 As described above, this is used to initialize the zftp function

 system. The -n option should be used if the zftp command is al?

 ready built into the shell.

 zfautocheck [-dn]

 This function is called to implement automatic reopening behav?

 iour, as described in more detail below. The options must ap?

 pear in the first argument; -n prevents the command from chang?

 ing to the old directory, while -d prevents it from setting the

 variable do_close, which it otherwise does as a flag for auto?

 matically closing the connection after a transfer. The host and

 directory for the last session are stored in the variable

 $zflastsession, but the internal host/user/password parameters

 must also be correctly set.

 zfcd_match prefix suffix

 This performs matching for completion of remote directory names.

 If the remote server is UNIX, it will attempt to persuade the

 server to list the remote directory with subdirectories marked,

 which usually works but is not guaranteed. On other hosts it

 simply calls zfget_match and hence completes all files, not just

 directories. On some systems, directories may not even look

 like filenames.

 zfget_match prefix suffix

 This performs matching for completion of remote filenames. It

 caches files for the current directory (only) in the shell pa?

 rameter $zftp_fcache. It is in the form to be called by the -K

 option of compctl, but also works when called from a wid?

 get-style completion function with prefix and suffix set appro?

 priately.

 zfrglob varname

 Perform remote globbing, as describes in more detail below.

 varname is the name of a variable containing the pattern to be

 expanded; if there were any matches, the same variable will be

 set to the expanded set of filenames on return. Page 11/16

 zfrtime lfile rfile [time]

 Set the local file lfile to have the same modification time as

 the remote file rfile, or the explicit time time in FTP format

 CCYYMMDDhhmmSS for the GMT timezone. This uses the shell's

 zsh/datetime module to perform the conversion from GMT to local

 time.

 zftp_chpwd

 This function is called every time a connection is opened, or

 closed, or the remote directory changes. This version alters

 the title bar of an xterm-compatible or sun-cmd terminal emula?

 tor to reflect the local and remote hostnames and current direc?

 tories. It works best when combined with the function chpwd.

 In particular, a function of the form

 chpwd() {

 if [[-n $ZFTP_USER]]; then

 zftp_chpwd

 else

 # usual chpwd e.g put host:directory in title bar

 fi

 }

 fits in well.

 zftp_progress

 This function shows the status of the transfer. It will not

 write anything unless the output is going to a terminal; how?

 ever, if you transfer files in the background, you should turn

 off progress reports by hand using `zstyle ':zftp:*' progress

 none'. Note also that if you alter it, any output must be to

 standard error, as standard output may be a file being received.

 The form of the progress meter, or whether it is used at all,

 can be configured without altering the function, as described in

 the next section.

 zffcache

 This is used to implement caching of files in the current direc? Page 12/16

 tory for each session separately. It is used by zfget_match and

 zfrglob.

MISCELLANEOUS FEATURES

 Configuration

 Various styles are available using the standard shell style mechanism,

 described in zshmodules(1). Briefly, the command `zstyle ':zftp:*'

 style value ...'. defines the style to have value value; more than one

 value may be given, although that is not useful in the cases described

 here. These values will then be used throughout the zftp function sys?

 tem. For more precise control, the first argument, which gives a con?

 text in which the style applies, can be modified to include a particu?

 lar function, as for example `:zftp:zfget': the style will then have

 the given value only in the zfget function. Values for the same style

 in different contexts may be set; the most specific function will be

 used, where strings are held to be more specific than patterns, and

 longer patterns and shorter patterns. Note that only the top level

 function name, as called by the user, is used; calling of lower level

 functions is transparent to the user. Hence modifications to the title

 bar in zftp_chpwd use the contexts :zftp:zfopen, :zftp:zfcd, etc., de?

 pending where it was called from. The following styles are understood:

 progress

 Controls the way that zftp_progress reports on the progress of a

 transfer. If empty, unset, or `none', no progress report is

 made; if `bar' a growing bar of inverse video is shown; if `per?

 cent' (or any other string, though this may change in future),

 the percentage of the file transferred is shown. The bar meter

 requires that the width of the terminal be available via the

 $COLUMNS parameter (normally this is set automatically). If the

 size of the file being transferred is not available, bar and

 percent meters will simply show the number of bytes transferred

 so far.

 When zfinit is run, if this style is not defined for the context

 :zftp:*, it will be set to `bar'. Page 13/16

 update Specifies the minimum time interval between updates of the

 progress meter in seconds. No update is made unless new data

 has been received, so the actual time interval is limited only

 by $ZFTP_TIMEOUT.

 As described for progress, zfinit will force this to default to

 1.

 remote-glob

 If set to `1', `yes' or `true', filename generation (globbing)

 is performed on the remote machine instead of by zsh itself; see

 below.

 titlebar

 If set to `1', `yes' or `true', zftp_chpwd will put the remote

 host and remote directory into the titlebar of terminal emula?

 tors such as xterm or sun-cmd that allow this.

 As described for progress, zfinit will force this to default to

 1.

 chpwd If set to `1' `yes' or `true', zftp_chpwd will call the function

 chpwd when a connection is closed. This is useful if the remote

 host details were put into the terminal title bar by zftp_chpwd

 and your usual chpwd also modifies the title bar.

 When zfinit is run, it will determine whether chpwd exists and

 if so it will set the default value for the style to 1 if none

 exists already.

 Note that there is also an associative array zfconfig which contains

 values used by the function system. This should not be modified or

 overwritten.

 Remote globbing

 The commands for retrieving files usually perform filename generation

 (globbing) on their arguments; this can be turned off by passing the

 option -G to each of the commands. Normally this operates by retriev?

 ing a complete list of files for the directory in question, then match?

 ing these locally against the pattern supplied. This has the advantage

 that the full range of zsh patterns (respecting the setting of the op? Page 14/16

 tion EXTENDED_GLOB) can be used. However, it means that the directory

 part of a filename will not be expanded and must be given exactly. If

 the remote server does not support the UNIX directory semantics, direc?

 tory handling is problematic and it is recommended that globbing only

 be used within the current directory. The list of files in the current

 directory, if retrieved, will be cached, so that subsequent globs in

 the same directory without an intervening zfcd are much faster.

 If the remote-glob style (see above) is set, globbing is instead per?

 formed on the remote host: the server is asked for a list of matching

 files. This is highly dependent on how the server is implemented,

 though typically UNIX servers will provide support for basic glob pat?

 terns. This may in some cases be faster, as it avoids retrieving the

 entire list of directory contents.

 Automatic and temporary reopening

 As described for the zfopen command, a subsequent zfopen with no param?

 eters will reopen the connection to the last host (this includes con?

 nections made with the zfanon command). Opened in this fashion, the

 connection starts in the default remote directory and will remain open

 until explicitly closed.

 Automatic re-opening is also available. If a connection is not cur?

 rently open and a command requiring a connection is given, the last

 connection is implicitly reopened. In this case the directory which

 was current when the connection was closed again becomes the current

 directory (unless, of course, the command given changes it). Automatic

 reopening will also take place if the connection was close by the re?

 mote server for whatever reason (e.g. a timeout). It is not available

 if the -1 option to zfopen or zfanon was used.

 Furthermore, if the command issued is a file transfer, the connection

 will be closed after the transfer is finished, hence providing a

 one-shot mode for transfers. This does not apply to directory changing

 or listing commands; for example a zfdir may reopen a connection but

 will leave it open. Also, automatic closure will only ever happen in

 the same command as automatic opening, i.e a zfdir directly followed by Page 15/16

 a zfget will never close the connection automatically.

 Information about the previous connection is given by the zfstat func?

 tion. So, for example, if that reports:

 Session: default

 Not connected.

 Last session: ftp.bar.com:/pub/textfiles

 then the command zfget file.txt will attempt to reopen a connection to

 ftp.bar.com, retrieve the file /pub/textfiles/file.txt, and immediately

 close the connection again. On the other hand, zfcd .. will open the

 connection in the directory /pub and leave it open.

 Note that all the above is local to each session; if you return to a

 previous session, the connection for that session is the one which will

 be reopened.

 Completion

 Completion of local and remote files, directories, sessions and book?

 marks is supported. The older, compctl-style completion is defined

 when zfinit is called; support for the new widget-based completion sys?

 tem is provided in the function Completion/Zsh/Command/_zftp, which

 should be installed with the other functions of the completion system

 and hence should automatically be available.

zsh 5.8 February 14, 2020 ZSHZFTPSYS(1)

Page 16/16

