
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshmisc.1'

$ man zshmisc.1

ZSHMISC(1) General Commands Manual ZSHMISC(1)

NAME

 zshmisc - everything and then some

SIMPLE COMMANDS & PIPELINES

 A simple command is a sequence of optional parameter assignments fol?

 lowed by blank-separated words, with optional redirections inter?

 spersed. For a description of assignment, see the beginning of zsh?

 param(1).

 The first word is the command to be executed, and the remaining words,

 if any, are arguments to the command. If a command name is given, the

 parameter assignments modify the environment of the command when it is

 executed. The value of a simple command is its exit status, or 128

 plus the signal number if terminated by a signal. For example,

 echo foo

 is a simple command with arguments.

 A pipeline is either a simple command, or a sequence of two or more

 simple commands where each command is separated from the next by `|' or

 `|&'. Where commands are separated by `|', the standard output of the Page 1/54

 first command is connected to the standard input of the next. `|&' is

 shorthand for `2>&1 |', which connects both the standard output and the

 standard error of the command to the standard input of the next. The

 value of a pipeline is the value of the last command, unless the pipe?

 line is preceded by `!' in which case the value is the logical inverse

 of the value of the last command. For example,

 echo foo | sed 's/foo/bar/'

 is a pipeline, where the output (`foo' plus a newline) of the first

 command will be passed to the input of the second.

 If a pipeline is preceded by `coproc', it is executed as a coprocess; a

 two-way pipe is established between it and the parent shell. The shell

 can read from or write to the coprocess by means of the `>&p' and `<&p'

 redirection operators or with `print -p' and `read -p'. A pipeline

 cannot be preceded by both `coproc' and `!'. If job control is active,

 the coprocess can be treated in other than input and output as an ordi?

 nary background job.

 A sublist is either a single pipeline, or a sequence of two or more

 pipelines separated by `&&' or `||'. If two pipelines are separated by

 `&&', the second pipeline is executed only if the first succeeds (re?

 turns a zero status). If two pipelines are separated by `||', the sec?

 ond is executed only if the first fails (returns a nonzero status).

 Both operators have equal precedence and are left associative. The

 value of the sublist is the value of the last pipeline executed. For

 example,

 dmesg | grep panic && print yes

 is a sublist consisting of two pipelines, the second just a simple com?

 mand which will be executed if and only if the grep command returns a

 zero status. If it does not, the value of the sublist is that return

 status, else it is the status returned by the print (almost certainly

 zero).

 A list is a sequence of zero or more sublists, in which each sublist is

 terminated by `;', `&', `&|', `&!', or a newline. This terminator may

 optionally be omitted from the last sublist in the list when the list Page 2/54

 appears as a complex command inside `(...)' or `{...}'. When a sublist

 is terminated by `;' or newline, the shell waits for it to finish be?

 fore executing the next sublist. If a sublist is terminated by a `&',

 `&|', or `&!', the shell executes the last pipeline in it in the back?

 ground, and does not wait for it to finish (note the difference from

 other shells which execute the whole sublist in the background). A

 backgrounded pipeline returns a status of zero.

 More generally, a list can be seen as a set of any shell commands what?

 soever, including the complex commands below; this is implied wherever

 the word `list' appears in later descriptions. For example, the com?

 mands in a shell function form a special sort of list.

PRECOMMAND MODIFIERS

 A simple command may be preceded by a precommand modifier, which will

 alter how the command is interpreted. These modifiers are shell

 builtin commands with the exception of nocorrect which is a reserved

 word.

 - The command is executed with a `-' prepended to its argv[0]

 string.

 builtin

 The command word is taken to be the name of a builtin command,

 rather than a shell function or external command.

 command [-pvV]

 The command word is taken to be the name of an external command,

 rather than a shell function or builtin. If the POSIX_BUILTINS

 option is set, builtins will also be executed but certain spe?

 cial properties of them are suppressed. The -p flag causes a de?

 fault path to be searched instead of that in $path. With the -v

 flag, command is similar to whence and with -V, it is equivalent

 to whence -v.

 exec [-cl] [-a argv0]

 The following command together with any arguments is run in

 place of the current process, rather than as a sub-process. The

 shell does not fork and is replaced. The shell does not invoke Page 3/54

 TRAPEXIT, nor does it source zlogout files. The options are

 provided for compatibility with other shells.

 The -c option clears the environment.

 The -l option is equivalent to the - precommand modifier, to

 treat the replacement command as a login shell; the command is

 executed with a - prepended to its argv[0] string. This flag

 has no effect if used together with the -a option.

 The -a option is used to specify explicitly the argv[0] string

 (the name of the command as seen by the process itself) to be

 used by the replacement command and is directly equivalent to

 setting a value for the ARGV0 environment variable.

 nocorrect

 Spelling correction is not done on any of the words. This must

 appear before any other precommand modifier, as it is inter?

 preted immediately, before any parsing is done. It has no ef?

 fect in non-interactive shells.

 noglob Filename generation (globbing) is not performed on any of the

 words.

COMPLEX COMMANDS

 A complex command in zsh is one of the following:

 if list then list [elif list then list] ... [else list] fi

 The if list is executed, and if it returns a zero exit status,

 the then list is executed. Otherwise, the elif list is executed

 and if its status is zero, the then list is executed. If each

 elif list returns nonzero status, the else list is executed.

 for name ... [in word ...] term do list done

 Expand the list of words, and set the parameter name to each of

 them in turn, executing list each time. If the `in word' is

 omitted, use the positional parameters instead of the words.

 The term consists of one or more newline or ; which terminate

 the words, and are optional when the `in word' is omitted.

 More than one parameter name can appear before the list of

 words. If N names are given, then on each execution of the loop Page 4/54

 the next N words are assigned to the corresponding parameters.

 If there are more names than remaining words, the remaining pa?

 rameters are each set to the empty string. Execution of the

 loop ends when there is no remaining word to assign to the first

 name. It is only possible for in to appear as the first name in

 the list, else it will be treated as marking the end of the

 list.

 for (([expr1] ; [expr2] ; [expr3])) do list done

 The arithmetic expression expr1 is evaluated first (see the sec?

 tion `Arithmetic Evaluation'). The arithmetic expression expr2

 is repeatedly evaluated until it evaluates to zero and when

 non-zero, list is executed and the arithmetic expression expr3

 evaluated. If any expression is omitted, then it behaves as if

 it evaluated to 1.

 while list do list done

 Execute the do list as long as the while list returns a zero

 exit status.

 until list do list done

 Execute the do list as long as until list returns a nonzero exit

 status.

 repeat word do list done

 word is expanded and treated as an arithmetic expression, which

 must evaluate to a number n. list is then executed n times.

 The repeat syntax is disabled by default when the shell starts

 in a mode emulating another shell. It can be enabled with the

 command `enable -r repeat'

 case word in [[(] pattern [| pattern] ...) list (;;|;&|;|)] ...

 esac

 Execute the list associated with the first pattern that matches

 word, if any. The form of the patterns is the same as that used

 for filename generation. See the section `Filename Generation'.

 Note further that, unless the SH_GLOB option is set, the whole

 pattern with alternatives is treated by the shell as equivalent Page 5/54

 to a group of patterns within parentheses, although white space

 may appear about the parentheses and the vertical bar and will

 be stripped from the pattern at those points. White space may

 appear elsewhere in the pattern; this is not stripped. If the

 SH_GLOB option is set, so that an opening parenthesis can be un?

 ambiguously treated as part of the case syntax, the expression

 is parsed into separate words and these are treated as strict

 alternatives (as in other shells).

 If the list that is executed is terminated with ;& rather than

 ;;, the following list is also executed. The rule for the ter?

 minator of the following list ;;, ;& or ;| is applied unless the

 esac is reached.

 If the list that is executed is terminated with ;| the shell

 continues to scan the patterns looking for the next match, exe?

 cuting the corresponding list, and applying the rule for the

 corresponding terminator ;;, ;& or ;|. Note that word is not

 re-expanded; all applicable patterns are tested with the same

 word.

 select name [in word ... term] do list done

 where term is one or more newline or ; to terminate the words.

 Print the set of words, each preceded by a number. If the in

 word is omitted, use the positional parameters. The PROMPT3

 prompt is printed and a line is read from the line editor if the

 shell is interactive and that is active, or else standard input.

 If this line consists of the number of one of the listed words,

 then the parameter name is set to the word corresponding to this

 number. If this line is empty, the selection list is printed

 again. Otherwise, the value of the parameter name is set to

 null. The contents of the line read from standard input is

 saved in the parameter REPLY. list is executed for each selec?

 tion until a break or end-of-file is encountered.

 (list)

 Execute list in a subshell. Traps set by the trap builtin are Page 6/54

 reset to their default values while executing list.

 { list }

 Execute list.

 { try-list } always { always-list }

 First execute try-list. Regardless of errors, or break or con?

 tinue commands encountered within try-list, execute always-list.

 Execution then continues from the result of the execution of

 try-list; in other words, any error, or break or continue com?

 mand is treated in the normal way, as if always-list were not

 present. The two chunks of code are referred to as the `try

 block' and the `always block'.

 Optional newlines or semicolons may appear after the always;

 note, however, that they may not appear between the preceding

 closing brace and the always.

 An `error' in this context is a condition such as a syntax error

 which causes the shell to abort execution of the current func?

 tion, script, or list. Syntax errors encountered while the

 shell is parsing the code do not cause the always-list to be ex?

 ecuted. For example, an erroneously constructed if block in

 try-list would cause the shell to abort during parsing, so that

 always-list would not be executed, while an erroneous substitu?

 tion such as ${*foo*} would cause a run-time error, after which

 always-list would be executed.

 An error condition can be tested and reset with the special in?

 teger variable TRY_BLOCK_ERROR. Outside an always-list the

 value is irrelevant, but it is initialised to -1. Inside al?

 ways-list, the value is 1 if an error occurred in the try-list,

 else 0. If TRY_BLOCK_ERROR is set to 0 during the always-list,

 the error condition caused by the try-list is reset, and shell

 execution continues normally after the end of always-list. Al?

 tering the value during the try-list is not useful (unless this

 forms part of an enclosing always block).

 Regardless of TRY_BLOCK_ERROR, after the end of always-list the Page 7/54

 normal shell status $? is the value returned from try-list.

 This will be non-zero if there was an error, even if

 TRY_BLOCK_ERROR was set to zero.

 The following executes the given code, ignoring any errors it

 causes. This is an alternative to the usual convention of pro?

 tecting code by executing it in a subshell.

 {

 # code which may cause an error

 } always {

 # This code is executed regardless of the error.

 ((TRY_BLOCK_ERROR = 0))

 }

 # The error condition has been reset.

 When a try block occurs outside of any function, a return or a

 exit encountered in try-list does not cause the execution of al?

 ways-list. Instead, the shell exits immediately after any EXIT

 trap has been executed. Otherwise, a return command encountered

 in try-list will cause the execution of always-list, just like

 break and continue.

 function word ... [()] [term] { list }

 word ... () [term] { list }

 word ... () [term] command

 where term is one or more newline or ;. Define a function which

 is referenced by any one of word. Normally, only one word is

 provided; multiple words are usually only useful for setting

 traps. The body of the function is the list between the { and

 }. See the section `Functions'.

 If the option SH_GLOB is set for compatibility with other

 shells, then whitespace may appear between the left and right

 parentheses when there is a single word; otherwise, the paren?

 theses will be treated as forming a globbing pattern in that

 case.

 In any of the forms above, a redirection may appear outside the Page 8/54

 function body, for example

 func() { ... } 2>&1

 The redirection is stored with the function and applied whenever

 the function is executed. Any variables in the redirection are

 expanded at the point the function is executed, but outside the

 function scope.

 time [pipeline]

 The pipeline is executed, and timing statistics are reported on

 the standard error in the form specified by the TIMEFMT parame?

 ter. If pipeline is omitted, print statistics about the shell

 process and its children.

 [[exp]]

 Evaluates the conditional expression exp and return a zero exit

 status if it is true. See the section `Conditional Expressions'

 for a description of exp.

ALTERNATE FORMS FOR COMPLEX COMMANDS

 Many of zsh's complex commands have alternate forms. These are

 non-standard and are likely not to be obvious even to seasoned shell

 programmers; they should not be used anywhere that portability of shell

 code is a concern.

 The short versions below only work if sublist is of the form `{ list }'

 or if the SHORT_LOOPS option is set. For the if, while and until com?

 mands, in both these cases the test part of the loop must also be suit?

 ably delimited, such as by `[[...]]' or `((...))', else the end of

 the test will not be recognized. For the for, repeat, case and select

 commands no such special form for the arguments is necessary, but the

 other condition (the special form of sublist or use of the SHORT_LOOPS

 option) still applies.

 if list { list } [elif list { list }] ... [else { list }]

 An alternate form of if. The rules mean that

 if [[-o ignorebraces]] {

 print yes

 } Page 9/54

 works, but

 if true { # Does not work!

 print yes

 }

 does not, since the test is not suitably delimited.

 if list sublist

 A short form of the alternate if. The same limitations on the

 form of list apply as for the previous form.

 for name ... (word ...) sublist

 A short form of for.

 for name ... [in word ...] term sublist

 where term is at least one newline or ;. Another short form of

 for.

 for (([expr1] ; [expr2] ; [expr3])) sublist

 A short form of the arithmetic for command.

 foreach name ... (word ...) list end

 Another form of for.

 while list { list }

 An alternative form of while. Note the limitations on the form

 of list mentioned above.

 until list { list }

 An alternative form of until. Note the limitations on the form

 of list mentioned above.

 repeat word sublist

 This is a short form of repeat.

 case word { [[(] pattern [| pattern] ...) list (;;|;&|;|)] ... }

 An alternative form of case.

 select name [in word ... term] sublist

 where term is at least one newline or ;. A short form of se?

 lect.

 function word ... [()] [term] sublist

 This is a short form of function.

RESERVED WORDS Page 10/54

 The following words are recognized as reserved words when used as the

 first word of a command unless quoted or disabled using disable -r:

 do done esac then elif else fi for case if while function repeat time

 until select coproc nocorrect foreach end ! [[{ } declare export float

 integer local readonly typeset

 Additionally, `}' is recognized in any position if neither the IG?

 NORE_BRACES option nor the IGNORE_CLOSE_BRACES option is set.

ERRORS

 Certain errors are treated as fatal by the shell: in an interactive

 shell, they cause control to return to the command line, and in a

 non-interactive shell they cause the shell to be aborted. In older

 versions of zsh, a non-interactive shell running a script would not

 abort completely, but would resume execution at the next command to be

 read from the script, skipping the remainder of any functions or shell

 constructs such as loops or conditions; this somewhat illogical behav?

 iour can be recovered by setting the option CONTINUE_ON_ERROR.

 Fatal errors found in non-interactive shells include:

 ? Failure to parse shell options passed when invoking the shell

 ? Failure to change options with the set builtin

 ? Parse errors of all sorts, including failures to parse mathemat?

 ical expressions

 ? Failures to set or modify variable behaviour with typeset, lo?

 cal, declare, export, integer, float

 ? Execution of incorrectly positioned loop control structures

 (continue, break)

 ? Attempts to use regular expression with no regular expression

 module available

 ? Disallowed operations when the RESTRICTED options is set

 ? Failure to create a pipe needed for a pipeline

 ? Failure to create a multio

 ? Failure to autoload a module needed for a declared shell feature

 ? Errors creating command or process substitutions

 ? Syntax errors in glob qualifiers Page 11/54

 ? File generation errors where not caught by the option BAD_PAT?

 TERN

 ? All bad patterns used for matching within case statements

 ? File generation failures where not caused by NO_MATCH or similar

 options

 ? All file generation errors where the pattern was used to create

 a multio

 ? Memory errors where detected by the shell

 ? Invalid subscripts to shell variables

 ? Attempts to assign read-only variables

 ? Logical errors with variables such as assignment to the wrong

 type

 ? Use of invalid variable names

 ? Errors in variable substitution syntax

 ? Failure to convert characters in $'...' expressions

 If the POSIX_BUILTINS option is set, more errors associated with shell

 builtin commands are treated as fatal, as specified by the POSIX stan?

 dard.

COMMENTS

 In non-interactive shells, or in interactive shells with the INTERAC?

 TIVE_COMMENTS option set, a word beginning with the third character of

 the histchars parameter (`#' by default) causes that word and all the

 following characters up to a newline to be ignored.

ALIASING

 Every eligible word in the shell input is checked to see if there is an

 alias defined for it. If so, it is replaced by the text of the alias

 if it is in command position (if it could be the first word of a simple

 command), or if the alias is global. If the replacement text ends with

 a space, the next word in the shell input is always eligible for pur?

 poses of alias expansion. An alias is defined using the alias builtin;

 global aliases may be defined using the -g option to that builtin.

 A word is defined as:

 ? Any plain string or glob pattern Page 12/54

 ? Any quoted string, using any quoting method (note that the

 quotes must be part of the alias definition for this to be eli?

 gible)

 ? Any parameter reference or command substitution

 ? Any series of the foregoing, concatenated without whitespace or

 other tokens between them

 ? Any reserved word (case, do, else, etc.)

 ? With global aliasing, any command separator, any redirection op?

 erator, and `(' or `)' when not part of a glob pattern

 Alias expansion is done on the shell input before any other expansion

 except history expansion. Therefore, if an alias is defined for the

 word foo, alias expansion may be avoided by quoting part of the word,

 e.g. \foo. Any form of quoting works, although there is nothing to

 prevent an alias being defined for the quoted form such as \foo as

 well.

 When POSIX_ALIASES is set, only plain unquoted strings are eligible for

 aliasing. The alias builtin does not reject ineligible aliases, but

 they are not expanded.

 For use with completion, which would remove an initial backslash fol?

 lowed by a character that isn't special, it may be more convenient to

 quote the word by starting with a single quote, i.e. 'foo; completion

 will automatically add the trailing single quote.

 Alias difficulties

 Although aliases can be used in ways that bend normal shell syntax, not

 every string of non-white-space characters can be used as an alias.

 Any set of characters not listed as a word above is not a word, hence

 no attempt is made to expand it as an alias, no matter how it is de?

 fined (i.e. via the builtin or the special parameter aliases described

 in the section THE ZSH/PARAMETER MODULE in zshmodules(1)). However, as

 noted in the case of POSIX_ALIASES above, the shell does not attempt to

 deduce whether the string corresponds to a word at the time the alias

 is created.

 For example, an expression containing an = at the start of a command Page 13/54

 line is an assignment and cannot be expanded as an alias; a lone = is

 not an assignment but can only be set as an alias using the parameter,

 as otherwise the = is taken part of the syntax of the builtin command.

 It is not presently possible to alias the `((' token that introduces

 arithmetic expressions, because until a full statement has been parsed,

 it cannot be distinguished from two consecutive `(' tokens introducing

 nested subshells. Also, if a separator such as && is aliased, \&&

 turns into the two tokens \& and &, each of which may have been aliased

 separately. Similarly for \<<, \>|, etc.

 There is a commonly encountered problem with aliases illustrated by the

 following code:

 alias echobar='echo bar'; echobar

 This prints a message that the command echobar could not be found.

 This happens because aliases are expanded when the code is read in; the

 entire line is read in one go, so that when echobar is executed it is

 too late to expand the newly defined alias. This is often a problem in

 shell scripts, functions, and code executed with `source' or `.'. Con?

 sequently, use of functions rather than aliases is recommended in

 non-interactive code.

 Note also the unhelpful interaction of aliases and function defini?

 tions:

 alias func='noglob func'

 func() {

 echo Do something with $*

 }

 Because aliases are expanded in function definitions, this causes the

 following command to be executed:

 noglob func() {

 echo Do something with $*

 }

 which defines noglob as well as func as functions with the body given.

 To avoid this, either quote the name func or use the alternative func?

 tion definition form `function func'. Ensuring the alias is defined Page 14/54

 after the function works but is problematic if the code fragment might

 be re-executed.

QUOTING

 A character may be quoted (that is, made to stand for itself) by pre?

 ceding it with a `\'. `\' followed by a newline is ignored.

 A string enclosed between `$'' and `'' is processed the same way as the

 string arguments of the print builtin, and the resulting string is con?

 sidered to be entirely quoted. A literal `'' character can be included

 in the string by using the `\'' escape.

 All characters enclosed between a pair of single quotes ('') that is

 not preceded by a `$' are quoted. A single quote cannot appear within

 single quotes unless the option RC_QUOTES is set, in which case a pair

 of single quotes are turned into a single quote. For example,

 print ''''

 outputs nothing apart from a newline if RC_QUOTES is not set, but one

 single quote if it is set.

 Inside double quotes (""), parameter and command substitution occur,

 and `\' quotes the characters `\', ``', `"', `$', and the first charac?

 ter of $histchars (default `!').

REDIRECTION

 If a command is followed by & and job control is not active, then the

 default standard input for the command is the empty file /dev/null.

 Otherwise, the environment for the execution of a command contains the

 file descriptors of the invoking shell as modified by input/output

 specifications.

 The following may appear anywhere in a simple command or may precede or

 follow a complex command. Expansion occurs before word or digit is

 used except as noted below. If the result of substitution on word pro?

 duces more than one filename, redirection occurs for each separate

 filename in turn.

 < word Open file word for reading as standard input. It is an error to

 open a file in this fashion if it does not exist.

 <> word Page 15/54

 Open file word for reading and writing as standard input. If

 the file does not exist then it is created.

 > word Open file word for writing as standard output. If the file does

 not exist then it is created. If the file exists, and the CLOB?

 BER option is unset, this causes an error; otherwise, it is

 truncated to zero length.

 >| word

 >! word

 Same as >, except that the file is truncated to zero length if

 it exists, regardless of CLOBBER.

 >> word

 Open file word for writing in append mode as standard output.

 If the file does not exist, and the CLOBBER and APPEND_CREATE

 options are both unset, this causes an error; otherwise, the

 file is created.

 >>| word

 >>! word

 Same as >>, except that the file is created if it does not ex?

 ist, regardless of CLOBBER and APPEND_CREATE.

 <<[-] word

 The shell input is read up to a line that is the same as word,

 or to an end-of-file. No parameter expansion, command substitu?

 tion or filename generation is performed on word. The resulting

 document, called a here-document, becomes the standard input.

 If any character of word is quoted with single or double quotes

 or a `\', no interpretation is placed upon the characters of the

 document. Otherwise, parameter and command substitution occurs,

 `\' followed by a newline is removed, and `\' must be used to

 quote the characters `\', `$', ``' and the first character of

 word.

 Note that word itself does not undergo shell expansion. Back?

 quotes in word do not have their usual effect; instead they be?

 have similarly to double quotes, except that the backquotes Page 16/54

 themselves are passed through unchanged. (This information is

 given for completeness and it is not recommended that backquotes

 be used.) Quotes in the form $'...' have their standard effect

 of expanding backslashed references to special characters.

 If <<- is used, then all leading tabs are stripped from word and

 from the document.

 <<< word

 Perform shell expansion on word and pass the result to standard

 input. This is known as a here-string. Compare the use of word

 in here-documents above, where word does not undergo shell ex?

 pansion.

 <& number

 >& number

 The standard input/output is duplicated from file descriptor

 number (see dup2(2)).

 <& -

 >& - Close the standard input/output.

 <& p

 >& p The input/output from/to the coprocess is moved to the standard

 input/output.

 >& word

 &> word

 (Except where `>& word' matches one of the above syntaxes; `&>'

 can always be used to avoid this ambiguity.) Redirects both

 standard output and standard error (file descriptor 2) in the

 manner of `> word'. Note that this does not have the same ef?

 fect as `> word 2>&1' in the presence of multios (see the sec?

 tion below).

 >&| word

 >&! word

 &>| word

 &>! word

 Redirects both standard output and standard error (file descrip? Page 17/54

 tor 2) in the manner of `>| word'.

 >>& word

 &>> word

 Redirects both standard output and standard error (file descrip?

 tor 2) in the manner of `>> word'.

 >>&| word

 >>&! word

 &>>| word

 &>>! word

 Redirects both standard output and standard error (file descrip?

 tor 2) in the manner of `>>| word'.

 If one of the above is preceded by a digit, then the file descriptor

 referred to is that specified by the digit instead of the default 0 or

 1. The order in which redirections are specified is significant. The

 shell evaluates each redirection in terms of the (file descriptor,

 file) association at the time of evaluation. For example:

 ... 1>fname 2>&1

 first associates file descriptor 1 with file fname. It then associates

 file descriptor 2 with the file associated with file descriptor 1 (that

 is, fname). If the order of redirections were reversed, file descrip?

 tor 2 would be associated with the terminal (assuming file descriptor 1

 had been) and then file descriptor 1 would be associated with file

 fname.

 The `|&' command separator described in Simple Commands & Pipelines in

 zshmisc(1) is a shorthand for `2>&1 |'.

 The various forms of process substitution, `<(list)', and `=(list)' for

 input and `>(list)' for output, are often used together with redirect?

 ion. For example, if word in an output redirection is of the form

 `>(list)' then the output is piped to the command represented by list.

 See Process Substitution in zshexpn(1).

OPENING FILE DESCRIPTORS USING PARAMETERS

 When the shell is parsing arguments to a command, and the shell option

 IGNORE_BRACES is not set, a different form of redirection is allowed: Page 18/54

 instead of a digit before the operator there is a valid shell identi?

 fier enclosed in braces. The shell will open a new file descriptor

 that is guaranteed to be at least 10 and set the parameter named by the

 identifier to the file descriptor opened. No whitespace is allowed be?

 tween the closing brace and the redirection character. For example:

 ... {myfd}>&1

 This opens a new file descriptor that is a duplicate of file descriptor

 1 and sets the parameter myfd to the number of the file descriptor,

 which will be at least 10. The new file descriptor can be written to

 using the syntax >&$myfd. The file descriptor remains open in sub?

 shells and forked external executables.

 The syntax {varid}>&-, for example {myfd}>&-, may be used to close a

 file descriptor opened in this fashion. Note that the parameter given

 by varid must previously be set to a file descriptor in this case.

 It is an error to open or close a file descriptor in this fashion when

 the parameter is readonly. However, it is not an error to read or

 write a file descriptor using <&$param or >&$param if param is read?

 only.

 If the option CLOBBER is unset, it is an error to open a file descrip?

 tor using a parameter that is already set to an open file descriptor

 previously allocated by this mechanism. Unsetting the parameter before

 using it for allocating a file descriptor avoids the error.

 Note that this mechanism merely allocates or closes a file descriptor;

 it does not perform any redirections from or to it. It is usually con?

 venient to allocate a file descriptor prior to use as an argument to

 exec. The syntax does not in any case work when used around complex

 commands such as parenthesised subshells or loops, where the opening

 brace is interpreted as part of a command list to be executed in the

 current shell.

 The following shows a typical sequence of allocation, use, and closing

 of a file descriptor:

 integer myfd

 exec {myfd}>~/logs/mylogfile.txt Page 19/54

 print This is a log message. >&$myfd

 exec {myfd}>&-

 Note that the expansion of the variable in the expression >&$myfd oc?

 curs at the point the redirection is opened. This is after the expan?

 sion of command arguments and after any redirections to the left on the

 command line have been processed.

MULTIOS

 If the user tries to open a file descriptor for writing more than once,

 the shell opens the file descriptor as a pipe to a process that copies

 its input to all the specified outputs, similar to tee, provided the

 MULTIOS option is set, as it is by default. Thus:

 date >foo >bar

 writes the date to two files, named `foo' and `bar'. Note that a pipe

 is an implicit redirection; thus

 date >foo | cat

 writes the date to the file `foo', and also pipes it to cat.

 Note that the shell opens all the files to be used in the multio

 process immediately, not at the point they are about to be written.

 Note also that redirections are always expanded in order. This happens

 regardless of the setting of the MULTIOS option, but with the option in

 effect there are additional consequences. For example, the meaning of

 the expression >&1 will change after a previous redirection:

 date >&1 >output

 In the case above, the >&1 refers to the standard output at the start

 of the line; the result is similar to the tee command. However, con?

 sider:

 date >output >&1

 As redirections are evaluated in order, when the >&1 is encountered the

 standard output is set to the file output and another copy of the out?

 put is therefore sent to that file. This is unlikely to be what is in?

 tended.

 If the MULTIOS option is set, the word after a redirection operator is

 also subjected to filename generation (globbing). Thus Page 20/54

 : > *

 will truncate all files in the current directory, assuming there's at

 least one. (Without the MULTIOS option, it would create an empty file

 called `*'.) Similarly, you can do

 echo exit 0 >> *.sh

 If the user tries to open a file descriptor for reading more than once,

 the shell opens the file descriptor as a pipe to a process that copies

 all the specified inputs to its output in the order specified, provided

 the MULTIOS option is set. It should be noted that each file is opened

 immediately, not at the point where it is about to be read: this behav?

 iour differs from cat, so if strictly standard behaviour is needed, cat

 should be used instead.

 Thus

 sort <foo <fubar

 or even

 sort <f{oo,ubar}

 is equivalent to `cat foo fubar | sort'.

 Expansion of the redirection argument occurs at the point the redirect?

 ion is opened, at the point described above for the expansion of the

 variable in >&$myfd.

 Note that a pipe is an implicit redirection; thus

 cat bar | sort <foo

 is equivalent to `cat bar foo | sort' (note the order of the inputs).

 If the MULTIOS option is unset, each redirection replaces the previous

 redirection for that file descriptor. However, all files redirected to

 are actually opened, so

 echo Hello > bar > baz

 when MULTIOS is unset will truncate `bar', and write `Hello' into

 `baz'.

 There is a problem when an output multio is attached to an external

 program. A simple example shows this:

 cat file >file1 >file2

 cat file1 file2 Page 21/54

 Here, it is possible that the second `cat' will not display the full

 contents of file1 and file2 (i.e. the original contents of file re?

 peated twice).

 The reason for this is that the multios are spawned after the cat

 process is forked from the parent shell, so the parent shell does not

 wait for the multios to finish writing data. This means the command as

 shown can exit before file1 and file2 are completely written. As a

 workaround, it is possible to run the cat process as part of a job in

 the current shell:

 { cat file } >file >file2

 Here, the {...} job will pause to wait for both files to be written.

REDIRECTIONS WITH NO COMMAND

 When a simple command consists of one or more redirection operators and

 zero or more parameter assignments, but no command name, zsh can behave

 in several ways.

 If the parameter NULLCMD is not set or the option CSH_NULLCMD is set,

 an error is caused. This is the csh behavior and CSH_NULLCMD is set by

 default when emulating csh.

 If the option SH_NULLCMD is set, the builtin `:' is inserted as a com?

 mand with the given redirections. This is the default when emulating

 sh or ksh.

 Otherwise, if the parameter NULLCMD is set, its value will be used as a

 command with the given redirections. If both NULLCMD and READNULLCMD

 are set, then the value of the latter will be used instead of that of

 the former when the redirection is an input. The default for NULLCMD

 is `cat' and for READNULLCMD is `more'. Thus

 < file

 shows the contents of file on standard output, with paging if that is a

 terminal. NULLCMD and READNULLCMD may refer to shell functions.

COMMAND EXECUTION

 If a command name contains no slashes, the shell attempts to locate it.

 If there exists a shell function by that name, the function is invoked

 as described in the section `Functions'. If there exists a shell Page 22/54

 builtin by that name, the builtin is invoked.

 Otherwise, the shell searches each element of $path for a directory

 containing an executable file by that name. If the search is unsuc?

 cessful, the shell prints an error message and returns a nonzero exit

 status.

 If execution fails because the file is not in executable format, and

 the file is not a directory, it is assumed to be a shell script.

 /bin/sh is spawned to execute it. If the program is a file beginning

 with `#!', the remainder of the first line specifies an interpreter for

 the program. The shell will execute the specified interpreter on oper?

 ating systems that do not handle this executable format in the kernel.

 If no external command is found but a function command_not_found_han?

 dler exists the shell executes this function with all command line ar?

 guments. The return status of the function becomes the status of the

 command. If the function wishes to mimic the behaviour of the shell

 when the command is not found, it should print the message `command not

 found: cmd' to standard error and return status 127. Note that the

 handler is executed in a subshell forked to execute an external com?

 mand, hence changes to directories, shell parameters, etc. have no ef?

 fect on the main shell.

FUNCTIONS

 Shell functions are defined with the function reserved word or the spe?

 cial syntax `funcname ()'. Shell functions are read in and stored in?

 ternally. Alias names are resolved when the function is read. Func?

 tions are executed like commands with the arguments passed as posi?

 tional parameters. (See the section `Command Execution'.)

 Functions execute in the same process as the caller and share all files

 and present working directory with the caller. A trap on EXIT set in?

 side a function is executed after the function completes in the envi?

 ronment of the caller.

 The return builtin is used to return from function calls.

 Function identifiers can be listed with the functions builtin. Func?

 tions can be undefined with the unfunction builtin. Page 23/54

AUTOLOADING FUNCTIONS

 A function can be marked as undefined using the autoload builtin (or

 `functions -u' or `typeset -fu'). Such a function has no body. When

 the function is first executed, the shell searches for its definition

 using the elements of the fpath variable. Thus to define functions for

 autoloading, a typical sequence is:

 fpath=(~/myfuncs $fpath)

 autoload myfunc1 myfunc2 ...

 The usual alias expansion during reading will be suppressed if the au?

 toload builtin or its equivalent is given the option -U. This is recom?

 mended for the use of functions supplied with the zsh distribution.

 Note that for functions precompiled with the zcompile builtin command

 the flag -U must be provided when the .zwc file is created, as the cor?

 responding information is compiled into the latter.

 For each element in fpath, the shell looks for three possible files,

 the newest of which is used to load the definition for the function:

 element.zwc

 A file created with the zcompile builtin command, which is ex?

 pected to contain the definitions for all functions in the di?

 rectory named element. The file is treated in the same manner

 as a directory containing files for functions and is searched

 for the definition of the function. If the definition is not

 found, the search for a definition proceeds with the other two

 possibilities described below.

 If element already includes a .zwc extension (i.e. the extension

 was explicitly given by the user), element is searched for the

 definition of the function without comparing its age to that of

 other files; in fact, there does not need to be any directory

 named element without the suffix. Thus including an element

 such as `/usr/local/funcs.zwc' in fpath will speed up the search

 for functions, with the disadvantage that functions included

 must be explicitly recompiled by hand before the shell notices

 any changes. Page 24/54

 element/function.zwc

 A file created with zcompile, which is expected to contain the

 definition for function. It may include other function defini?

 tions as well, but those are neither loaded nor executed; a file

 found in this way is searched only for the definition of func?

 tion.

 element/function

 A file of zsh command text, taken to be the definition for func?

 tion.

 In summary, the order of searching is, first, in the parents of direc?

 tories in fpath for the newer of either a compiled directory or a di?

 rectory in fpath; second, if more than one of these contains a defini?

 tion for the function that is sought, the leftmost in the fpath is cho?

 sen; and third, within a directory, the newer of either a compiled

 function or an ordinary function definition is used.

 If the KSH_AUTOLOAD option is set, or the file contains only a simple

 definition of the function, the file's contents will be executed. This

 will normally define the function in question, but may also perform

 initialization, which is executed in the context of the function execu?

 tion, and may therefore define local parameters. It is an error if the

 function is not defined by loading the file.

 Otherwise, the function body (with no surrounding `funcname() {...}')

 is taken to be the complete contents of the file. This form allows the

 file to be used directly as an executable shell script. If processing

 of the file results in the function being re-defined, the function it?

 self is not re-executed. To force the shell to perform initialization

 and then call the function defined, the file should contain initializa?

 tion code (which will be executed then discarded) in addition to a com?

 plete function definition (which will be retained for subsequent calls

 to the function), and a call to the shell function, including any argu?

 ments, at the end.

 For example, suppose the autoload file func contains

 func() { print This is func; } Page 25/54

 print func is initialized

 then `func; func' with KSH_AUTOLOAD set will produce both messages on

 the first call, but only the message `This is func' on the second and

 subsequent calls. Without KSH_AUTOLOAD set, it will produce the ini?

 tialization message on the first call, and the other message on the

 second and subsequent calls.

 It is also possible to create a function that is not marked as au?

 toloaded, but which loads its own definition by searching fpath, by us?

 ing `autoload -X' within a shell function. For example, the following

 are equivalent:

 myfunc() {

 autoload -X

 }

 myfunc args...

 and

 unfunction myfunc # if myfunc was defined

 autoload myfunc

 myfunc args...

 In fact, the functions command outputs `builtin autoload -X' as the

 body of an autoloaded function. This is done so that

 eval "$(functions)"

 produces a reasonable result. A true autoloaded function can be iden?

 tified by the presence of the comment `# undefined' in the body, be?

 cause all comments are discarded from defined functions.

 To load the definition of an autoloaded function myfunc without execut?

 ing myfunc, use:

 autoload +X myfunc

ANONYMOUS FUNCTIONS

 If no name is given for a function, it is `anonymous' and is handled

 specially. Either form of function definition may be used: a `()' with

 no preceding name, or a `function' with an immediately following open

 brace. The function is executed immediately at the point of definition

 and is not stored for future use. The function name is set to Page 26/54

 `(anon)'.

 Arguments to the function may be specified as words following the clos?

 ing brace defining the function, hence if there are none no arguments

 (other than $0) are set. This is a difference from the way other func?

 tions are parsed: normal function definitions may be followed by cer?

 tain keywords such as `else' or `fi', which will be treated as argu?

 ments to anonymous functions, so that a newline or semicolon is needed

 to force keyword interpretation.

 Note also that the argument list of any enclosing script or function is

 hidden (as would be the case for any other function called at this

 point).

 Redirections may be applied to the anonymous function in the same man?

 ner as to a current-shell structure enclosed in braces. The main use

 of anonymous functions is to provide a scope for local variables. This

 is particularly convenient in start-up files as these do not provide

 their own local variable scope.

 For example,

 variable=outside

 function {

 local variable=inside

 print "I am $variable with arguments $*"

 } this and that

 print "I am $variable"

 outputs the following:

 I am inside with arguments this and that

 I am outside

 Note that function definitions with arguments that expand to nothing,

 for example `name=; function $name { ... }', are not treated as anony?

 mous functions. Instead, they are treated as normal function defini?

 tions where the definition is silently discarded.

SPECIAL FUNCTIONS

 Certain functions, if defined, have special meaning to the shell.

 Hook Functions Page 27/54

 For the functions below, it is possible to define an array that has the

 same name as the function with `_functions' appended. Any element in

 such an array is taken as the name of a function to execute; it is exe?

 cuted in the same context and with the same arguments as the basic

 function. For example, if $chpwd_functions is an array containing the

 values `mychpwd', `chpwd_save_dirstack', then the shell attempts to ex?

 ecute the functions `chpwd', `mychpwd' and `chpwd_save_dirstack', in

 that order. Any function that does not exist is silently ignored. A

 function found by this mechanism is referred to elsewhere as a `hook

 function'. An error in any function causes subsequent functions not to

 be run. Note further that an error in a precmd hook causes an immedi?

 ately following periodic function not to run (though it may run at the

 next opportunity).

 chpwd Executed whenever the current working directory is changed.

 periodic

 If the parameter PERIOD is set, this function is executed every

 $PERIOD seconds, just before a prompt. Note that if multiple

 functions are defined using the array periodic_functions only

 one period is applied to the complete set of functions, and the

 scheduled time is not reset if the list of functions is altered.

 Hence the set of functions is always called together.

 precmd Executed before each prompt. Note that precommand functions are

 not re-executed simply because the command line is redrawn, as

 happens, for example, when a notification about an exiting job

 is displayed.

 preexec

 Executed just after a command has been read and is about to be

 executed. If the history mechanism is active (regardless of

 whether the line was discarded from the history buffer), the

 string that the user typed is passed as the first argument, oth?

 erwise it is an empty string. The actual command that will be

 executed (including expanded aliases) is passed in two different

 forms: the second argument is a single-line, size-limited ver? Page 28/54

 sion of the command (with things like function bodies elided);

 the third argument contains the full text that is being exe?

 cuted.

 zshaddhistory

 Executed when a history line has been read interactively, but

 before it is executed. The sole argument is the complete his?

 tory line (so that any terminating newline will still be

 present).

 If any of the hook functions returns status 1 (or any non-zero

 value other than 2, though this is not guaranteed for future

 versions of the shell) the history line will not be saved, al?

 though it lingers in the history until the next line is exe?

 cuted, allowing you to reuse or edit it immediately.

 If any of the hook functions returns status 2 the history line

 will be saved on the internal history list, but not written to

 the history file. In case of a conflict, the first non-zero

 status value is taken.

 A hook function may call `fc -p ...' to switch the history con?

 text so that the history is saved in a different file from the

 that in the global HISTFILE parameter. This is handled spe?

 cially: the history context is automatically restored after the

 processing of the history line is finished.

 The following example function works with one of the options

 INC_APPEND_HISTORY or SHARE_HISTORY set, in order that the line

 is written out immediately after the history entry is added. It

 first adds the history line to the normal history with the new?

 line stripped, which is usually the correct behaviour. Then it

 switches the history context so that the line will be written to

 a history file in the current directory.

 zshaddhistory() {

 print -sr -- ${1%%$'\n'}

 fc -p .zsh_local_history

 } Page 29/54

 zshexit

 Executed at the point where the main shell is about to exit nor?

 mally. This is not called by exiting subshells, nor when the

 exec precommand modifier is used before an external command.

 Also, unlike TRAPEXIT, it is not called when functions exit.

 Trap Functions

 The functions below are treated specially but do not have corresponding

 hook arrays.

 TRAPNAL

 If defined and non-null, this function will be executed whenever

 the shell catches a signal SIGNAL, where NAL is a signal name as

 specified for the kill builtin. The signal number will be

 passed as the first parameter to the function.

 If a function of this form is defined and null, the shell and

 processes spawned by it will ignore SIGNAL.

 The return status from the function is handled specially. If it

 is zero, the signal is assumed to have been handled, and execu?

 tion continues normally. Otherwise, the shell will behave as

 interrupted except that the return status of the trap is re?

 tained.

 Programs terminated by uncaught signals typically return the

 status 128 plus the signal number. Hence the following causes

 the handler for SIGINT to print a message, then mimic the usual

 effect of the signal.

 TRAPINT() {

 print "Caught SIGINT, aborting."

 return $((128 + $1))

 }

 The functions TRAPZERR, TRAPDEBUG and TRAPEXIT are never exe?

 cuted inside other traps.

 TRAPDEBUG

 If the option DEBUG_BEFORE_CMD is set (as it is by default), ex?

 ecuted before each command; otherwise executed after each com? Page 30/54

 mand. See the description of the trap builtin in zshbuiltins(1)

 for details of additional features provided in debug traps.

 TRAPEXIT

 Executed when the shell exits, or when the current function ex?

 its if defined inside a function. The value of $? at the start

 of execution is the exit status of the shell or the return sta?

 tus of the function exiting.

 TRAPZERR

 Executed whenever a command has a non-zero exit status. How?

 ever, the function is not executed if the command occurred in a

 sublist followed by `&&' or `||'; only the final command in a

 sublist of this type causes the trap to be executed. The func?

 tion TRAPERR acts the same as TRAPZERR on systems where there is

 no SIGERR (this is the usual case).

 The functions beginning `TRAP' may alternatively be defined with the

 trap builtin: this may be preferable for some uses. Setting a trap

 with one form removes any trap of the other form for the same signal;

 removing a trap in either form removes all traps for the same signal.

 The forms

 TRAPNAL() {

 # code

 }

 ('function traps') and

 trap '

 # code

 ' NAL

 ('list traps') are equivalent in most ways, the exceptions being the

 following:

 ? Function traps have all the properties of normal functions, ap?

 pearing in the list of functions and being called with their own

 function context rather than the context where the trap was

 triggered.

 ? The return status from function traps is special, whereas a re? Page 31/54

 turn from a list trap causes the surrounding context to return

 with the given status.

 ? Function traps are not reset within subshells, in accordance

 with zsh behaviour; list traps are reset, in accordance with

 POSIX behaviour.

JOBS

 If the MONITOR option is set, an interactive shell associates a job

 with each pipeline. It keeps a table of current jobs, printed by the

 jobs command, and assigns them small integer numbers. When a job is

 started asynchronously with `&', the shell prints a line to standard

 error which looks like:

 [1] 1234

 indicating that the job which was started asynchronously was job number

 1 and had one (top-level) process, whose process ID was 1234.

 If a job is started with `&|' or `&!', then that job is immediately

 disowned. After startup, it does not have a place in the job table,

 and is not subject to the job control features described here.

 If you are running a job and wish to do something else you may hit the

 key ^Z (control-Z) which sends a TSTP signal to the current job: this

 key may be redefined by the susp option of the external stty command.

 The shell will then normally indicate that the job has been `sus?

 pended', and print another prompt. You can then manipulate the state

 of this job, putting it in the background with the bg command, or run

 some other commands and then eventually bring the job back into the

 foreground with the foreground command fg. A ^Z takes effect immedi?

 ately and is like an interrupt in that pending output and unread input

 are discarded when it is typed.

 A job being run in the background will suspend if it tries to read from

 the terminal.

 Note that if the job running in the foreground is a shell function,

 then suspending it will have the effect of causing the shell to fork.

 This is necessary to separate the function's state from that of the

 parent shell performing the job control, so that the latter can return Page 32/54

 to the command line prompt. As a result, even if fg is used to con?

 tinue the job the function will no longer be part of the parent shell,

 and any variables set by the function will not be visible in the parent

 shell. Thus the behaviour is different from the case where the func?

 tion was never suspended. Zsh is different from many other shells in

 this regard.

 One additional side effect is that use of disown with a job created by

 suspending shell code in this fashion is delayed: the job can only be

 disowned once any process started from the parent shell has terminated.

 At that point, the disowned job disappears silently from the job list.

 The same behaviour is found when the shell is executing code as the

 right hand side of a pipeline or any complex shell construct such as

 if, for, etc., in order that the entire block of code can be managed as

 a single job. Background jobs are normally allowed to produce output,

 but this can be disabled by giving the command `stty tostop'. If you

 set this tty option, then background jobs will suspend when they try to

 produce output like they do when they try to read input.

 When a command is suspended and continued later with the fg or wait

 builtins, zsh restores tty modes that were in effect when it was sus?

 pended. This (intentionally) does not apply if the command is contin?

 ued via `kill -CONT', nor when it is continued with bg.

 There are several ways to refer to jobs in the shell. A job can be re?

 ferred to by the process ID of any process of the job or by one of the

 following:

 %number

 The job with the given number.

 %string

 The last job whose command line begins with string.

 %?string

 The last job whose command line contains string.

 %% Current job.

 %+ Equivalent to `%%'.

 %- Previous job. Page 33/54

 The shell learns immediately whenever a process changes state. It nor?

 mally informs you whenever a job becomes blocked so that no further

 progress is possible. If the NOTIFY option is not set, it waits until

 just before it prints a prompt before it informs you. All such notifi?

 cations are sent directly to the terminal, not to the standard output

 or standard error.

 When the monitor mode is on, each background job that completes trig?

 gers any trap set for CHLD.

 When you try to leave the shell while jobs are running or suspended,

 you will be warned that `You have suspended (running) jobs'. You may

 use the jobs command to see what they are. If you do this or immedi?

 ately try to exit again, the shell will not warn you a second time; the

 suspended jobs will be terminated, and the running jobs will be sent a

 SIGHUP signal, if the HUP option is set.

 To avoid having the shell terminate the running jobs, either use the

 nohup command (see nohup(1)) or the disown builtin.

SIGNALS

 The INT and QUIT signals for an invoked command are ignored if the com?

 mand is followed by `&' and the MONITOR option is not active. The

 shell itself always ignores the QUIT signal. Otherwise, signals have

 the values inherited by the shell from its parent (but see the TRAPNAL

 special functions in the section `Functions').

 Certain jobs are run asynchronously by the shell other than those ex?

 plicitly put into the background; even in cases where the shell would

 usually wait for such jobs, an explicit exit command or exit due to the

 option ERR_EXIT will cause the shell to exit without waiting. Examples

 of such asynchronous jobs are process substitution, see the section

 PROCESS SUBSTITUTION in the zshexpn(1) manual page, and the handler

 processes for multios, see the section MULTIOS in the zshmisc(1) manual

 page.

ARITHMETIC EVALUATION

 The shell can perform integer and floating point arithmetic, either us?

 ing the builtin let, or via a substitution of the form $((...)). For Page 34/54

 integers, the shell is usually compiled to use 8-byte precision where

 this is available, otherwise precision is 4 bytes. This can be tested,

 for example, by giving the command `print - $((12345678901))'; if the

 number appears unchanged, the precision is at least 8 bytes. Floating

 point arithmetic always uses the `double' type with whatever corre?

 sponding precision is provided by the compiler and the library.

 The let builtin command takes arithmetic expressions as arguments; each

 is evaluated separately. Since many of the arithmetic operators, as

 well as spaces, require quoting, an alternative form is provided: for

 any command which begins with a `((', all the characters until a match?

 ing `))' are treated as a quoted expression and arithmetic expansion

 performed as for an argument of let. More precisely, `((...))' is

 equivalent to `let "..."'. The return status is 0 if the arithmetic

 value of the expression is non-zero, 1 if it is zero, and 2 if an error

 occurred.

 For example, the following statement

 ((val = 2 + 1))

 is equivalent to

 let "val = 2 + 1"

 both assigning the value 3 to the shell variable val and returning a

 zero status.

 Integers can be in bases other than 10. A leading `0x' or `0X' denotes

 hexadecimal and a leading `0b' or `0B' binary. Integers may also be of

 the form `base#n', where base is a decimal number between two and

 thirty-six representing the arithmetic base and n is a number in that

 base (for example, `16#ff' is 255 in hexadecimal). The base# may also

 be omitted, in which case base 10 is used. For backwards compatibility

 the form `[base]n' is also accepted.

 An integer expression or a base given in the form `base#n' may contain

 underscores (`_') after the leading digit for visual guidance; these

 are ignored in computation. Examples are 1_000_000 or 0xffff_ffff

 which are equivalent to 1000000 and 0xffffffff respectively.

 It is also possible to specify a base to be used for output in the form Page 35/54

 `[#base]', for example `[#16]'. This is used when outputting arith?

 metical substitutions or when assigning to scalar parameters, but an

 explicitly defined integer or floating point parameter will not be af?

 fected. If an integer variable is implicitly defined by an arithmetic

 expression, any base specified in this way will be set as the vari?

 able's output arithmetic base as if the option `-i base' to the typeset

 builtin had been used. The expression has no precedence and if it oc?

 curs more than once in a mathematical expression, the last encountered

 is used. For clarity it is recommended that it appear at the beginning

 of an expression. As an example:

 typeset -i 16 y

 print $(([#8] x = 32, y = 32))

 print $x $y

 outputs first `8#40', the rightmost value in the given output base, and

 then `8#40 16#20', because y has been explicitly declared to have out?

 put base 16, while x (assuming it does not already exist) is implicitly

 typed by the arithmetic evaluation, where it acquires the output base

 8.

 The base may be replaced or followed by an underscore, which may itself

 be followed by a positive integer (if it is missing the value 3 is

 used). This indicates that underscores should be inserted into the

 output string, grouping the number for visual clarity. The following

 integer specifies the number of digits to group together. For example:

 setopt cbases

 print $(([#16_4] 65536 ** 2))

 outputs `0x1_0000_0000'.

 The feature can be used with floating point numbers, in which case the

 base must be omitted; grouping is away from the decimal point. For ex?

 ample,

 zmodload zsh/mathfunc

 print $(([#_] sqrt(1e7)))

 outputs `3_162.277_660_168_379_5' (the number of decimal places shown

 may vary). Page 36/54

 If the C_BASES option is set, hexadecimal numbers are output in the

 standard C format, for example `0xFF' instead of the usual `16#FF'. If

 the option OCTAL_ZEROES is also set (it is not by default), octal num?

 bers will be treated similarly and hence appear as `077' instead of

 `8#77'. This option has no effect on the output of bases other than

 hexadecimal and octal, and these formats are always understood on in?

 put.

 When an output base is specified using the `[#base]' syntax, an appro?

 priate base prefix will be output if necessary, so that the value out?

 put is valid syntax for input. If the # is doubled, for example

 `[##16]', then no base prefix is output.

 Floating point constants are recognized by the presence of a decimal

 point or an exponent. The decimal point may be the first character of

 the constant, but the exponent character e or E may not, as it will be

 taken for a parameter name. All numeric parts (before and after the

 decimal point and in the exponent) may contain underscores after the

 leading digit for visual guidance; these are ignored in computation.

 An arithmetic expression uses nearly the same syntax and associativity

 of expressions as in C.

 In the native mode of operation, the following operators are supported

 (listed in decreasing order of precedence):

 + - ! ~ ++ --

 unary plus/minus, logical NOT, complement, {pre,post}{in,de}cre?

 ment

 << >> bitwise shift left, right

 & bitwise AND

 ^ bitwise XOR

 | bitwise OR

 ** exponentiation

 * / % multiplication, division, modulus (remainder)

 + - addition, subtraction

 < > <= >=

 comparison Page 37/54

 == != equality and inequality

 && logical AND

 || ^^ logical OR, XOR

 ? : ternary operator

 = += -= *= /= %= &= ^= |= <<= >>= &&= ||= ^^= **=

 assignment

 , comma operator

 The operators `&&', `||', `&&=', and `||=' are short-circuiting, and

 only one of the latter two expressions in a ternary operator is evalu?

 ated. Note the precedence of the bitwise AND, OR, and XOR operators.

 With the option C_PRECEDENCES the precedences (but no other properties)

 of the operators are altered to be the same as those in most other lan?

 guages that support the relevant operators:

 + - ! ~ ++ --

 unary plus/minus, logical NOT, complement, {pre,post}{in,de}cre?

 ment

 ** exponentiation

 * / % multiplication, division, modulus (remainder)

 + - addition, subtraction

 << >> bitwise shift left, right

 < > <= >=

 comparison

 == != equality and inequality

 & bitwise AND

 ^ bitwise XOR

 | bitwise OR

 && logical AND

 ^^ logical XOR

 || logical OR

 ? : ternary operator

 = += -= *= /= %= &= ^= |= <<= >>= &&= ||= ^^= **=

 assignment

 , comma operator Page 38/54

 Note the precedence of exponentiation in both cases is below that of

 unary operators, hence `-3**2' evaluates as `9', not `-9'. Use paren?

 theses where necessary: `-(3**2)'. This is for compatibility with

 other shells.

 Mathematical functions can be called with the syntax `func(args)',

 where the function decides if the args is used as a string or a

 comma-separated list of arithmetic expressions. The shell currently de?

 fines no mathematical functions by default, but the module zsh/mathfunc

 may be loaded with the zmodload builtin to provide standard floating

 point mathematical functions.

 An expression of the form `##x' where x is any character sequence such

 as `a', `^A', or `\M-\C-x' gives the value of this character and an ex?

 pression of the form `#name' gives the value of the first character of

 the contents of the parameter name. Character values are according to

 the character set used in the current locale; for multibyte character

 handling the option MULTIBYTE must be set. Note that this form is dif?

 ferent from `$#name', a standard parameter substitution which gives the

 length of the parameter name. `#\' is accepted instead of `##', but

 its use is deprecated.

 Named parameters and subscripted arrays can be referenced by name

 within an arithmetic expression without using the parameter expansion

 syntax. For example,

 ((val2 = val1 * 2))

 assigns twice the value of $val1 to the parameter named val2.

 An internal integer representation of a named parameter can be speci?

 fied with the integer builtin. Arithmetic evaluation is performed on

 the value of each assignment to a named parameter declared integer in

 this manner. Assigning a floating point number to an integer results

 in rounding towards zero.

 Likewise, floating point numbers can be declared with the float

 builtin; there are two types, differing only in their output format, as

 described for the typeset builtin. The output format can be bypassed

 by using arithmetic substitution instead of the parameter substitution, Page 39/54

 i.e. `${float}' uses the defined format, but `$((float))' uses a

 generic floating point format.

 Promotion of integer to floating point values is performed where neces?

 sary. In addition, if any operator which requires an integer (`&',

 `|', `^', `<<', `>>' and their equivalents with assignment) is given a

 floating point argument, it will be silently rounded towards zero ex?

 cept for `~' which rounds down.

 Users should beware that, in common with many other programming lan?

 guages but not software designed for calculation, the evaluation of an

 expression in zsh is taken a term at a time and promotion of integers

 to floating point does not occur in terms only containing integers. A

 typical result of this is that a division such as 6/8 is truncated, in

 this being rounded towards 0. The FORCE_FLOAT shell option can be used

 in scripts or functions where floating point evaluation is required

 throughout.

 Scalar variables can hold integer or floating point values at different

 times; there is no memory of the numeric type in this case.

 If a variable is first assigned in a numeric context without previously

 being declared, it will be implicitly typed as integer or float and re?

 tain that type either until the type is explicitly changed or until the

 end of the scope. This can have unforeseen consequences. For example,

 in the loop

 for ((f = 0; f < 1; f += 0.1)); do

 # use $f

 done

 if f has not already been declared, the first assignment will cause it

 to be created as an integer, and consequently the operation `f += 0.1'

 will always cause the result to be truncated to zero, so that the loop

 will fail. A simple fix would be to turn the initialization into `f =

 0.0'. It is therefore best to declare numeric variables with explicit

 types.

CONDITIONAL EXPRESSIONS

 A conditional expression is used with the [[compound command to test Page 40/54

 attributes of files and to compare strings. Each expression can be

 constructed from one or more of the following unary or binary expres?

 sions:

 -a file

 true if file exists.

 -b file

 true if file exists and is a block special file.

 -c file

 true if file exists and is a character special file.

 -d file

 true if file exists and is a directory.

 -e file

 true if file exists.

 -f file

 true if file exists and is a regular file.

 -g file

 true if file exists and has its setgid bit set.

 -h file

 true if file exists and is a symbolic link.

 -k file

 true if file exists and has its sticky bit set.

 -n string

 true if length of string is non-zero.

 -o option

 true if option named option is on. option may be a single char?

 acter, in which case it is a single letter option name. (See

 the section `Specifying Options'.)

 When no option named option exists, and the POSIX_BUILTINS op?

 tion hasn't been set, return 3 with a warning. If that option

 is set, return 1 with no warning.

 -p file

 true if file exists and is a FIFO special file (named pipe).

 -r file Page 41/54

 true if file exists and is readable by current process.

 -s file

 true if file exists and has size greater than zero.

 -t fd true if file descriptor number fd is open and associated with a

 terminal device. (note: fd is not optional)

 -u file

 true if file exists and has its setuid bit set.

 -v varname

 true if shell variable varname is set.

 -w file

 true if file exists and is writable by current process.

 -x file

 true if file exists and is executable by current process. If

 file exists and is a directory, then the current process has

 permission to search in the directory.

 -z string

 true if length of string is zero.

 -L file

 true if file exists and is a symbolic link.

 -O file

 true if file exists and is owned by the effective user ID of

 this process.

 -G file

 true if file exists and its group matches the effective group ID

 of this process.

 -S file

 true if file exists and is a socket.

 -N file

 true if file exists and its access time is not newer than its

 modification time.

 file1 -nt file2

 true if file1 exists and is newer than file2.

 file1 -ot file2 Page 42/54

 true if file1 exists and is older than file2.

 file1 -ef file2

 true if file1 and file2 exist and refer to the same file.

 string = pattern

 string == pattern

 true if string matches pattern. The two forms are exactly

 equivalent. The `=' form is the traditional shell syntax (and

 hence the only one generally used with the test and [builtins);

 the `==' form provides compatibility with other sorts of com?

 puter language.

 string != pattern

 true if string does not match pattern.

 string =~ regexp

 true if string matches the regular expression regexp. If the

 option RE_MATCH_PCRE is set regexp is tested as a PCRE regular

 expression using the zsh/pcre module, else it is tested as a

 POSIX extended regular expression using the zsh/regex module.

 Upon successful match, some variables will be updated; no vari?

 ables are changed if the matching fails.

 If the option BASH_REMATCH is not set the scalar parameter MATCH

 is set to the substring that matched the pattern and the integer

 parameters MBEGIN and MEND to the index of the start and end,

 respectively, of the match in string, such that if string is

 contained in variable var the expression `${var[$MBEGIN,$MEND]}'

 is identical to `$MATCH'. The setting of the option KSH_ARRAYS

 is respected. Likewise, the array match is set to the sub?

 strings that matched parenthesised subexpressions and the arrays

 mbegin and mend to the indices of the start and end positions,

 respectively, of the substrings within string. The arrays are

 not set if there were no parenthesised subexpressions. For ex?

 ample, if the string `a short string' is matched against the

 regular expression `s(...)t', then (assuming the option KSH_AR?

 RAYS is not set) MATCH, MBEGIN and MEND are `short', 3 and 7, Page 43/54

 respectively, while match, mbegin and mend are single entry ar?

 rays containing the strings `hor', `4' and `6', respectively.

 If the option BASH_REMATCH is set the array BASH_REMATCH is set

 to the substring that matched the pattern followed by the sub?

 strings that matched parenthesised subexpressions within the

 pattern.

 string1 < string2

 true if string1 comes before string2 based on ASCII value of

 their characters.

 string1 > string2

 true if string1 comes after string2 based on ASCII value of

 their characters.

 exp1 -eq exp2

 true if exp1 is numerically equal to exp2. Note that for purely

 numeric comparisons use of the ((...)) builtin described in the

 section `ARITHMETIC EVALUATION' is more convenient than condi?

 tional expressions.

 exp1 -ne exp2

 true if exp1 is numerically not equal to exp2.

 exp1 -lt exp2

 true if exp1 is numerically less than exp2.

 exp1 -gt exp2

 true if exp1 is numerically greater than exp2.

 exp1 -le exp2

 true if exp1 is numerically less than or equal to exp2.

 exp1 -ge exp2

 true if exp1 is numerically greater than or equal to exp2.

 (exp)

 true if exp is true.

 ! exp true if exp is false.

 exp1 && exp2

 true if exp1 and exp2 are both true.

 exp1 || exp2 Page 44/54

 true if either exp1 or exp2 is true.

 For compatibility, if there is a single argument that is not syntacti?

 cally significant, typically a variable, the condition is treated as a

 test for whether the expression expands as a string of non-zero length.

 In other words, [[$var]] is the same as [[-n $var]]. It is recom?

 mended that the second, explicit, form be used where possible.

 Normal shell expansion is performed on the file, string and pattern ar?

 guments, but the result of each expansion is constrained to be a single

 word, similar to the effect of double quotes.

 Filename generation is not performed on any form of argument to condi?

 tions. However, it can be forced in any case where normal shell expan?

 sion is valid and when the option EXTENDED_GLOB is in effect by using

 an explicit glob qualifier of the form (#q) at the end of the string.

 A normal glob qualifier expression may appear between the `q' and the

 closing parenthesis; if none appears the expression has no effect be?

 yond causing filename generation. The results of filename generation

 are joined together to form a single word, as with the results of other

 forms of expansion.

 This special use of filename generation is only available with the [[

 syntax. If the condition occurs within the [or test builtin commands

 then globbing occurs instead as part of normal command line expansion

 before the condition is evaluated. In this case it may generate multi?

 ple words which are likely to confuse the syntax of the test command.

 For example,

 [[-n file*(#qN)]]

 produces status zero if and only if there is at least one file in the

 current directory beginning with the string `file'. The globbing qual?

 ifier N ensures that the expression is empty if there is no matching

 file.

 Pattern metacharacters are active for the pattern arguments; the pat?

 terns are the same as those used for filename generation, see zsh?

 expn(1), but there is no special behaviour of `/' nor initial dots, and

 no glob qualifiers are allowed. Page 45/54

 In each of the above expressions, if file is of the form `/dev/fd/n',

 where n is an integer, then the test applied to the open file whose de?

 scriptor number is n, even if the underlying system does not support

 the /dev/fd directory.

 In the forms which do numeric comparison, the expressions exp undergo

 arithmetic expansion as if they were enclosed in $((...)).

 For example, the following:

 [[(-f foo || -f bar) && $report = y*]] && print File exists.

 tests if either file foo or file bar exists, and if so, if the value of

 the parameter report begins with `y'; if the complete condition is

 true, the message `File exists.' is printed.

EXPANSION OF PROMPT SEQUENCES

 Prompt sequences undergo a special form of expansion. This type of ex?

 pansion is also available using the -P option to the print builtin.

 If the PROMPT_SUBST option is set, the prompt string is first subjected

 to parameter expansion, command substitution and arithmetic expansion.

 See zshexpn(1).

 Certain escape sequences may be recognised in the prompt string.

 If the PROMPT_BANG option is set, a `!' in the prompt is replaced by

 the current history event number. A literal `!' may then be repre?

 sented as `!!'.

 If the PROMPT_PERCENT option is set, certain escape sequences that

 start with `%' are expanded. Many escapes are followed by a single

 character, although some of these take an optional integer argument

 that should appear between the `%' and the next character of the se?

 quence. More complicated escape sequences are available to provide

 conditional expansion.

SIMPLE PROMPT ESCAPES

 Special characters

 %% A `%'.

 %) A `)'.

 Login information

 %l The line (tty) the user is logged in on, without `/dev/' prefix. Page 46/54

 If the name starts with `/dev/tty', that prefix is stripped.

 %M The full machine hostname.

 %m The hostname up to the first `.'. An integer may follow the `%'

 to specify how many components of the hostname are desired.

 With a negative integer, trailing components of the hostname are

 shown.

 %n $USERNAME.

 %y The line (tty) the user is logged in on, without `/dev/' prefix.

 This does not treat `/dev/tty' names specially.

 Shell state

 %# A `#' if the shell is running with privileges, a `%' if not.

 Equivalent to `%(!.#.%%)'. The definition of `privileged', for

 these purposes, is that either the effective user ID is zero,

 or, if POSIX.1e capabilities are supported, that at least one

 capability is raised in either the Effective or Inheritable ca?

 pability vectors.

 %? The return status of the last command executed just before the

 prompt.

 %_ The status of the parser, i.e. the shell constructs (like `if'

 and `for') that have been started on the command line. If given

 an integer number that many strings will be printed; zero or

 negative or no integer means print as many as there are. This

 is most useful in prompts PS2 for continuation lines and PS4 for

 debugging with the XTRACE option; in the latter case it will

 also work non-interactively.

 %^ The status of the parser in reverse. This is the same as `%_'

 other than the order of strings. It is often used in RPS2.

 %d

 %/ Current working directory. If an integer follows the `%', it

 specifies a number of trailing components of the current working

 directory to show; zero means the whole path. A negative inte?

 ger specifies leading components, i.e. %-1d specifies the first

 component. Page 47/54

 %~ As %d and %/, but if the current working directory starts with

 $HOME, that part is replaced by a `~'. Furthermore, if it has a

 named directory as its prefix, that part is replaced by a `~'

 followed by the name of the directory, but only if the result is

 shorter than the full path; see Dynamic and Static named direc?

 tories in zshexpn(1).

 %e Evaluation depth of the current sourced file, shell function, or

 eval. This is incremented or decremented every time the value

 of %N is set or reverted to a previous value, respectively.

 This is most useful for debugging as part of $PS4.

 %h

 %! Current history event number.

 %i The line number currently being executed in the script, sourced

 file, or shell function given by %N. This is most useful for

 debugging as part of $PS4.

 %I The line number currently being executed in the file %x. This

 is similar to %i, but the line number is always a line number in

 the file where the code was defined, even if the code is a shell

 function.

 %j The number of jobs.

 %L The current value of $SHLVL.

 %N The name of the script, sourced file, or shell function that zsh

 is currently executing, whichever was started most recently. If

 there is none, this is equivalent to the parameter $0. An inte?

 ger may follow the `%' to specify a number of trailing path com?

 ponents to show; zero means the full path. A negative integer

 specifies leading components.

 %x The name of the file containing the source code currently being

 executed. This behaves as %N except that function and eval com?

 mand names are not shown, instead the file where they were de?

 fined.

 %c

 %. Page 48/54

 %C Trailing component of the current working directory. An integer

 may follow the `%' to get more than one component. Unless `%C'

 is used, tilde contraction is performed first. These are depre?

 cated as %c and %C are equivalent to %1~ and %1/, respectively,

 while explicit positive integers have the same effect as for the

 latter two sequences.

 Date and time

 %D The date in yy-mm-dd format.

 %T Current time of day, in 24-hour format.

 %t

 %@ Current time of day, in 12-hour, am/pm format.

 %* Current time of day in 24-hour format, with seconds.

 %w The date in day-dd format.

 %W The date in mm/dd/yy format.

 %D{string}

 string is formatted using the strftime function. See strf?

 time(3) for more details. Various zsh extensions provide num?

 bers with no leading zero or space if the number is a single

 digit:

 %f a day of the month

 %K the hour of the day on the 24-hour clock

 %L the hour of the day on the 12-hour clock

 In addition, if the system supports the POSIX gettimeofday sys?

 tem call, %. provides decimal fractions of a second since the

 epoch with leading zeroes. By default three decimal places are

 provided, but a number of digits up to 9 may be given following

 the %; hence %6. outputs microseconds, and %9. outputs nanosec?

 onds. (The latter requires a nanosecond-precision clock_get?

 time; systems lacking this will return a value multiplied by the

 appropriate power of 10.) A typical example of this is the for?

 mat `%D{%H:%M:%S.%.}'.

 The GNU extension %N is handled as a synonym for %9..

 Additionally, the GNU extension that a `-' between the % and the Page 49/54

 format character causes a leading zero or space to be stripped

 is handled directly by the shell for the format characters d, f,

 H, k, l, m, M, S and y; any other format characters are provided

 to the system's strftime(3) with any leading `-' present, so the

 handling is system dependent. Further GNU (or other) extensions

 are also passed to strftime(3) and may work if the system sup?

 ports them.

 Visual effects

 %B (%b)

 Start (stop) boldface mode.

 %E Clear to end of line.

 %U (%u)

 Start (stop) underline mode.

 %S (%s)

 Start (stop) standout mode.

 %F (%f)

 Start (stop) using a different foreground colour, if supported

 by the terminal. The colour may be specified two ways: either

 as a numeric argument, as normal, or by a sequence in braces

 following the %F, for example %F{red}. In the latter case the

 values allowed are as described for the fg zle_highlight attri?

 bute; see Character Highlighting in zshzle(1). This means that

 numeric colours are allowed in the second format also.

 %K (%k)

 Start (stop) using a different bacKground colour. The syntax is

 identical to that for %F and %f.

 %{...%}

 Include a string as a literal escape sequence. The string

 within the braces should not change the cursor position. Brace

 pairs can nest.

 A positive numeric argument between the % and the { is treated

 as described for %G below.

 %G Within a %{...%} sequence, include a `glitch': that is, assume Page 50/54

 that a single character width will be output. This is useful

 when outputting characters that otherwise cannot be correctly

 handled by the shell, such as the alternate character set on

 some terminals. The characters in question can be included

 within a %{...%} sequence together with the appropriate number

 of %G sequences to indicate the correct width. An integer be?

 tween the `%' and `G' indicates a character width other than

 one. Hence %{seq%2G%} outputs seq and assumes it takes up the

 width of two standard characters.

 Multiple uses of %G accumulate in the obvious fashion; the posi?

 tion of the %G is unimportant. Negative integers are not han?

 dled.

 Note that when prompt truncation is in use it is advisable to

 divide up output into single characters within each %{...%}

 group so that the correct truncation point can be found.

CONDITIONAL SUBSTRINGS IN PROMPTS

 %v The value of the first element of the psvar array parameter.

 Following the `%' with an integer gives that element of the ar?

 ray. Negative integers count from the end of the array.

 %(x.true-text.false-text)

 Specifies a ternary expression. The character following the x

 is arbitrary; the same character is used to separate the text

 for the `true' result from that for the `false' result. This

 separator may not appear in the true-text, except as part of a

 %-escape sequence. A `)' may appear in the false-text as `%)'.

 true-text and false-text may both contain arbitrarily-nested es?

 cape sequences, including further ternary expressions.

 The left parenthesis may be preceded or followed by a positive

 integer n, which defaults to zero. A negative integer will be

 multiplied by -1, except as noted below for `l'. The test char?

 acter x may be any of the following:

 ! True if the shell is running with privileges.

 # True if the effective uid of the current process is n. Page 51/54

 ? True if the exit status of the last command was n.

 _ True if at least n shell constructs were started.

 C

 / True if the current absolute path has at least n elements

 relative to the root directory, hence / is counted as 0

 elements.

 c

 .

 ~ True if the current path, with prefix replacement, has at

 least n elements relative to the root directory, hence /

 is counted as 0 elements.

 D True if the month is equal to n (January = 0).

 d True if the day of the month is equal to n.

 e True if the evaluation depth is at least n.

 g True if the effective gid of the current process is n.

 j True if the number of jobs is at least n.

 L True if the SHLVL parameter is at least n.

 l True if at least n characters have already been printed

 on the current line. When n is negative, true if at

 least abs(n) characters remain before the opposite margin

 (thus the left margin for RPROMPT).

 S True if the SECONDS parameter is at least n.

 T True if the time in hours is equal to n.

 t True if the time in minutes is equal to n.

 v True if the array psvar has at least n elements.

 V True if element n of the array psvar is set and

 non-empty.

 w True if the day of the week is equal to n (Sunday = 0).

 %<string<

 %>string>

 %[xstring]

 Specifies truncation behaviour for the remainder of the prompt

 string. The third, deprecated, form is equivalent to Page 52/54

 `%xstringx', i.e. x may be `<' or `>'. The string will be dis?

 played in place of the truncated portion of any string; note

 this does not undergo prompt expansion.

 The numeric argument, which in the third form may appear immedi?

 ately after the `[', specifies the maximum permitted length of

 the various strings that can be displayed in the prompt. In the

 first two forms, this numeric argument may be negative, in which

 case the truncation length is determined by subtracting the ab?

 solute value of the numeric argument from the number of charac?

 ter positions remaining on the current prompt line. If this re?

 sults in a zero or negative length, a length of 1 is used. In

 other words, a negative argument arranges that after truncation

 at least n characters remain before the right margin (left mar?

 gin for RPROMPT).

 The forms with `<' truncate at the left of the string, and the

 forms with `>' truncate at the right of the string. For exam?

 ple, if the current directory is `/home/pike', the prompt

 `%8<..<%/' will expand to `..e/pike'. In this string, the ter?

 minating character (`<', `>' or `]'), or in fact any character,

 may be quoted by a preceding `\'; note when using print -P, how?

 ever, that this must be doubled as the string is also subject to

 standard print processing, in addition to any backslashes re?

 moved by a double quoted string: the worst case is therefore

 `print -P "%<\\\\<<..."'.

 If the string is longer than the specified truncation length, it

 will appear in full, completely replacing the truncated string.

 The part of the prompt string to be truncated runs to the end of

 the string, or to the end of the next enclosing group of the

 `%(' construct, or to the next truncation encountered at the

 same grouping level (i.e. truncations inside a `%(' are sepa?

 rate), which ever comes first. In particular, a truncation with

 argument zero (e.g., `%<<') marks the end of the range of the

 string to be truncated while turning off truncation from there Page 53/54

 on. For example, the prompt `%10<...<%~%<<%# ' will print a

 truncated representation of the current directory, followed by a

 `%' or `#', followed by a space. Without the `%<<', those two

 characters would be included in the string to be truncated.

 Note that `%-0<<' is not equivalent to `%<<' but specifies that

 the prompt is truncated at the right margin.

 Truncation applies only within each individual line of the

 prompt, as delimited by embedded newlines (if any). If the to?

 tal length of any line of the prompt after truncation is greater

 than the terminal width, or if the part to be truncated contains

 embedded newlines, truncation behavior is undefined and may

 change in a future version of the shell. Use

 `%-n(l.true-text.false-text)' to remove parts of the prompt when

 the available space is less than n.

zsh 5.8 February 14, 2020 ZSHMISC(1)

Page 54/54

