
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshcontrib.1'

$ man zshcontrib.1

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

NAME

 zshcontrib - user contributions to zsh

DESCRIPTION

 The Zsh source distribution includes a number of items contributed by

 the user community. These are not inherently a part of the shell, and

 some may not be available in every zsh installation. The most signifi?

 cant of these are documented here. For documentation on other contrib?

 uted items such as shell functions, look for comments in the function

 source files.

UTILITIES

 Accessing On-Line Help

 The key sequence ESC h is normally bound by ZLE to execute the run-help

 widget (see zshzle(1)). This invokes the run-help command with the

 command word from the current input line as its argument. By default,

 run-help is an alias for the man command, so this often fails when the

 command word is a shell builtin or a user-defined function. By re?

 defining the run-help alias, one can improve the on-line help provided Page 1/110

 by the shell.

 The helpfiles utility, found in the Util directory of the distribution,

 is a Perl program that can be used to process the zsh manual to produce

 a separate help file for each shell builtin and for many other shell

 features as well. The autoloadable run-help function, found in Func?

 tions/Misc, searches for these helpfiles and performs several other

 tests to produce the most complete help possible for the command.

 Help files are installed by default to a subdirectory of /usr/share/zsh

 or /usr/local/share/zsh.

 To create your own help files with helpfiles, choose or create a direc?

 tory where the individual command help files will reside. For example,

 you might choose ~/zsh_help. If you unpacked the zsh distribution in

 your home directory, you would use the commands:

 mkdir ~/zsh_help

 perl ~/zsh-5.8/Util/helpfiles ~/zsh_help

 The HELPDIR parameter tells run-help where to look for the help files.

 When unset, it uses the default installation path. To use your own set

 of help files, set this to the appropriate path in one of your startup

 files:

 HELPDIR=~/zsh_help

 To use the run-help function, you need to add lines something like the

 following to your .zshrc or equivalent startup file:

 unalias run-help

 autoload run-help

 Note that in order for `autoload run-help' to work, the run-help file

 must be in one of the directories named in your fpath array (see zsh?

 param(1)). This should already be the case if you have a standard zsh

 installation; if it is not, copy Functions/Misc/run-help to an appro?

 priate directory.

 Recompiling Functions

 If you frequently edit your zsh functions, or periodically update your

 zsh installation to track the latest developments, you may find that

 function digests compiled with the zcompile builtin are frequently out Page 2/110

 of date with respect to the function source files. This is not usually

 a problem, because zsh always looks for the newest file when loading a

 function, but it may cause slower shell startup and function loading.

 Also, if a digest file is explicitly used as an element of fpath, zsh

 won't check whether any of its source files has changed.

 The zrecompile autoloadable function, found in Functions/Misc, can be

 used to keep function digests up to date.

 zrecompile [-qt] [name ...]

 zrecompile [-qt] -p arg ... [-- arg ...]

 This tries to find *.zwc files and automatically re-compile them

 if at least one of the original files is newer than the compiled

 file. This works only if the names stored in the compiled files

 are full paths or are relative to the directory that contains

 the .zwc file.

 In the first form, each name is the name of a compiled file or a

 directory containing *.zwc files that should be checked. If no

 arguments are given, the directories and *.zwc files in fpath

 are used.

 When -t is given, no compilation is performed, but a return sta?

 tus of zero (true) is set if there are files that need to be

 re-compiled and non-zero (false) otherwise. The -q option qui?

 ets the chatty output that describes what zrecompile is doing.

 Without the -t option, the return status is zero if all files

 that needed re-compilation could be compiled and non-zero if

 compilation for at least one of the files failed.

 If the -p option is given, the args are interpreted as one or

 more sets of arguments for zcompile, separated by `--'. For ex?

 ample:

 zrecompile -p \

 -R ~/.zshrc -- \

 -M ~/.zcompdump -- \

 ~/zsh/comp.zwc ~/zsh/Completion/*/_*

 This compiles ~/.zshrc into ~/.zshrc.zwc if that doesn't exist Page 3/110

 or if it is older than ~/.zshrc. The compiled file will be

 marked for reading instead of mapping. The same is done for

 ~/.zcompdump and ~/.zcompdump.zwc, but this compiled file is

 marked for mapping. The last line re-creates the file

 ~/zsh/comp.zwc if any of the files matching the given pattern is

 newer than it.

 Without the -p option, zrecompile does not create function di?

 gests that do not already exist, nor does it add new functions

 to the digest.

 The following shell loop is an example of a method for creating func?

 tion digests for all functions in your fpath, assuming that you have

 write permission to the directories:

 for ((i=1; i <= $#fpath; ++i)); do

 dir=$fpath[i]

 zwc=${dir:t}.zwc

 if [[$dir == (.|..) || $dir == (.|..)/*]]; then

 continue

 fi

 files=($dir/*(N-.))

 if [[-w $dir:h && -n $files]]; then

 files=(${${(M)files%/*/*}#/})

 if (cd $dir:h &&

 zrecompile -p -U -z $zwc $files); then

 fpath[i]=$fpath[i].zwc

 fi

 fi

 done

 The -U and -z options are appropriate for functions in the default zsh

 installation fpath; you may need to use different options for your per?

 sonal function directories.

 Once the digests have been created and your fpath modified to refer to

 them, you can keep them up to date by running zrecompile with no argu?

 ments. Page 4/110

 Keyboard Definition

 The large number of possible combinations of keyboards, workstations,

 terminals, emulators, and window systems makes it impossible for zsh to

 have built-in key bindings for every situation. The zkbd utility,

 found in Functions/Misc, can help you quickly create key bindings for

 your configuration.

 Run zkbd either as an autoloaded function, or as a shell script:

 zsh -f ~/zsh-5.8/Functions/Misc/zkbd

 When you run zkbd, it first asks you to enter your terminal type; if

 the default it offers is correct, just press return. It then asks you

 to press a number of different keys to determine characteristics of

 your keyboard and terminal; zkbd warns you if it finds anything out of

 the ordinary, such as a Delete key that sends neither ^H nor ^?.

 The keystrokes read by zkbd are recorded as a definition for an asso?

 ciative array named key, written to a file in the subdirectory .zkbd

 within either your HOME or ZDOTDIR directory. The name of the file is

 composed from the TERM, VENDOR and OSTYPE parameters, joined by hy?

 phens.

 You may read this file into your .zshrc or another startup file with

 the `source' or `.' commands, then reference the key parameter in bind?

 key commands, like this:

 source ${ZDOTDIR:-$HOME}/.zkbd/$TERM-$VENDOR-$OSTYPE

 [[-n ${key[Left]}]] && bindkey "${key[Left]}" backward-char

 [[-n ${key[Right]}]] && bindkey "${key[Right]}" forward-char

 # etc.

 Note that in order for `autoload zkbd' to work, the zkdb file must be

 in one of the directories named in your fpath array (see zshparam(1)).

 This should already be the case if you have a standard zsh installa?

 tion; if it is not, copy Functions/Misc/zkbd to an appropriate direc?

 tory.

 Dumping Shell State

 Occasionally you may encounter what appears to be a bug in the shell,

 particularly if you are using a beta version of zsh or a development Page 5/110

 release. Usually it is sufficient to send a description of the problem

 to one of the zsh mailing lists (see zsh(1)), but sometimes one of the

 zsh developers will need to recreate your environment in order to track

 the problem down.

 The script named reporter, found in the Util directory of the distribu?

 tion, is provided for this purpose. (It is also possible to autoload

 reporter, but reporter is not installed in fpath by default.) This

 script outputs a detailed dump of the shell state, in the form of an?

 other script that can be read with `zsh -f' to recreate that state.

 To use reporter, read the script into your shell with the `.' command

 and redirect the output into a file:

 . ~/zsh-5.8/Util/reporter > zsh.report

 You should check the zsh.report file for any sensitive information such

 as passwords and delete them by hand before sending the script to the

 developers. Also, as the output can be voluminous, it's best to wait

 for the developers to ask for this information before sending it.

 You can also use reporter to dump only a subset of the shell state.

 This is sometimes useful for creating startup files for the first time.

 Most of the output from reporter is far more detailed than usually is

 necessary for a startup file, but the aliases, options, and zstyles

 states may be useful because they include only changes from the de?

 faults. The bindings state may be useful if you have created any of

 your own keymaps, because reporter arranges to dump the keymap creation

 commands as well as the bindings for every keymap.

 As is usual with automated tools, if you create a startup file with re?

 porter, you should edit the results to remove unnecessary commands.

 Note that if you're using the new completion system, you should not

 dump the functions state to your startup files with reporter; use the

 compdump function instead (see zshcompsys(1)).

 reporter [state ...]

 Print to standard output the indicated subset of the current

 shell state. The state arguments may be one or more of:

 all Output everything listed below. Page 6/110

 aliases

 Output alias definitions.

 bindings

 Output ZLE key maps and bindings.

 completion

 Output old-style compctl commands. New completion is

 covered by functions and zstyles.

 functions

 Output autoloads and function definitions.

 limits Output limit commands.

 options

 Output setopt commands.

 styles Same as zstyles.

 variables

 Output shell parameter assignments, plus export commands

 for any environment variables.

 zstyles

 Output zstyle commands.

 If the state is omitted, all is assumed.

 With the exception of `all', every state can be abbreviated by any pre?

 fix, even a single letter; thus a is the same as aliases, z is the same

 as zstyles, etc.

 Manipulating Hook Functions

 add-zsh-hook [-L | -dD] [-Uzk] hook function

 Several functions are special to the shell, as described in the

 section SPECIAL FUNCTIONS, see zshmisc(1), in that they are au?

 tomatically called at specific points during shell execution.

 Each has an associated array consisting of names of functions to

 be called at the same point; these are so-called `hook func?

 tions'. The shell function add-zsh-hook provides a simple way

 of adding or removing functions from the array.

 hook is one of chpwd, periodic, precmd, preexec, zshaddhistory,

 zshexit, or zsh_directory_name, the special functions in ques? Page 7/110

 tion. Note that zsh_directory_name is called in a different way

 from the other functions, but may still be manipulated as a

 hook.

 function is name of an ordinary shell function. If no options

 are given this will be added to the array of functions to be ex?

 ecuted in the given context. Functions are invoked in the order

 they were added.

 If the option -L is given, the current values for the hook ar?

 rays are listed with typeset.

 If the option -d is given, the function is removed from the ar?

 ray of functions to be executed.

 If the option -D is given, the function is treated as a pattern

 and any matching names of functions are removed from the array

 of functions to be executed.

 The options -U, -z and -k are passed as arguments to autoload

 for function. For functions contributed with zsh, the options

 -Uz are appropriate.

 add-zle-hook-widget [-L | -dD] [-Uzk] hook widgetname

 Several widget names are special to the line editor, as de?

 scribed in the section Special Widgets, see zshzle(1), in that

 they are automatically called at specific points during editing.

 Unlike function hooks, these do not use a predefined array of

 other names to call at the same point; the shell function

 add-zle-hook-widget maintains a similar array and arranges for

 the special widget to invoke those additional widgets.

 hook is one of isearch-exit, isearch-update, line-pre-redraw,

 line-init, line-finish, history-line-set, or keymap-select, cor?

 responding to each of the special widgets zle-isearch-exit, etc.

 The special widget names are also accepted as the hook argument.

 widgetname is the name of a ZLE widget. If no options are given

 this is added to the array of widgets to be invoked in the given

 hook context. Widgets are invoked in the order they were added,

 with Page 8/110

 zle widgetname -Nw -- "$@"

 Note that this means that the `WIDGET' special parameter tracks

 the widgetname when the widget function is called, rather than

 tracking the name of the corresponding special hook widget.

 If the option -d is given, the widgetname is removed from the

 array of widgets to be executed.

 If the option -D is given, the widgetname is treated as a pat?

 tern and any matching names of widgets are removed from the ar?

 ray.

 If widgetname does not name an existing widget when added to the

 array, it is assumed that a shell function also named widgetname

 is meant to provide the implementation of the widget. This name

 is therefore marked for autoloading, and the options -U, -z and

 -k are passed as arguments to autoload as with add-zsh-hook.

 The widget is also created with `zle -N widgetname' to cause the

 corresponding function to be loaded the first time the hook is

 called.

 The arrays of widgetname are currently maintained in zstyle con?

 texts, one for each hook context, with a style of `widgets'. If

 the -L option is given, this set of styles is listed with

 `zstyle -L'. This implementation may change, and the special

 widgets that refer to the styles are created only if

 add-zle-hook-widget is called to add at least one widget, so if

 this function is used for any hooks, then all hooks should be

 managed only via this function.

REMEMBERING RECENT DIRECTORIES

 The function cdr allows you to change the working directory to a previ?

 ous working directory from a list maintained automatically. It is sim?

 ilar in concept to the directory stack controlled by the pushd, popd

 and dirs builtins, but is more configurable, and as it stores all en?

 tries in files it is maintained across sessions and (by default) be?

 tween terminal emulators in the current session. Duplicates are auto?

 matically removed, so that the list reflects the single most recent use Page 9/110

 of each directory.

 Note that the pushd directory stack is not actually modified or used by

 cdr unless you configure it to do so as described in the configuration

 section below.

 Installation

 The system works by means of a hook function that is called every time

 the directory changes. To install the system, autoload the required

 functions and use the add-zsh-hook function described above:

 autoload -Uz chpwd_recent_dirs cdr add-zsh-hook

 add-zsh-hook chpwd chpwd_recent_dirs

 Now every time you change directly interactively, no matter which com?

 mand you use, the directory to which you change will be remembered in

 most-recent-first order.

 Use

 All direct user interaction is via the cdr function.

 The argument to cdr is a number N corresponding to the Nth most re?

 cently changed-to directory. 1 is the immediately preceding directory;

 the current directory is remembered but is not offered as a destina?

 tion. Note that if you have multiple windows open 1 may refer to a di?

 rectory changed to in another window; you can avoid this by having

 per-terminal files for storing directory as described for the re?

 cent-dirs-file style below.

 If you set the recent-dirs-default style described below cdr will be?

 have the same as cd if given a non-numeric argument, or more than one

 argument. The recent directory list is updated just the same however

 you change directory.

 If the argument is omitted, 1 is assumed. This is similar to pushd's

 behaviour of swapping the two most recent directories on the stack.

 Completion for the argument to cdr is available if compinit has been

 run; menu selection is recommended, using:

 zstyle ':completion:*:*:cdr:*:*' menu selection

 to allow you to cycle through recent directories; the order is pre?

 served, so the first choice is the most recent directory before the Page 10/110

 current one. The verbose style is also recommended to ensure the di?

 rectory is shown; this style is on by default so no action is required

 unless you have changed it.

 Options

 The behaviour of cdr may be modified by the following options.

 -l lists the numbers and the corresponding directories in abbrevi?

 ated form (i.e. with ~ substitution reapplied), one per line.

 The directories here are not quoted (this would only be an issue

 if a directory name contained a newline). This is used by the

 completion system.

 -r sets the variable reply to the current set of directories.

 Nothing is printed and the directory is not changed.

 -e allows you to edit the list of directories, one per line. The

 list can be edited to any extent you like; no sanity checking is

 performed. Completion is available. No quoting is necessary

 (except for newlines, where I have in any case no sympathy); di?

 rectories are in unabbreviated from and contain an absolute

 path, i.e. they start with /. Usually the first entry should be

 left as the current directory.

 -p 'pattern'

 Prunes any items in the directory list that match the given ex?

 tended glob pattern; the pattern needs to be quoted from immedi?

 ate expansion on the command line. The pattern is matched

 against each completely expanded file name in the list; the full

 string must match, so wildcards at the end (e.g. '*removeme*')

 are needed to remove entries with a given substring.

 If output is to a terminal, then the function will print the new

 list after pruning and prompt for confirmation by the user.

 This output and confirmation step can be skipped by using -P in?

 stead of -p.

 Configuration

 Configuration is by means of the styles mechanism that should be famil?

 iar from completion; if not, see the description of the zstyle command Page 11/110

 in see zshmodules(1). The context for setting styles should be ':ch?

 pwd:*' in case the meaning of the context is extended in future, for

 example:

 zstyle ':chpwd:*' recent-dirs-max 0

 sets the value of the recent-dirs-max style to 0. In practice the

 style name is specific enough that a context of '*' should be fine.

 An exception is recent-dirs-insert, which is used exclusively by the

 completion system and so has the usual completion system context

 (':completion:*' if nothing more specific is needed), though again '*'

 should be fine in practice.

 recent-dirs-default

 If true, and the command is expecting a recent directory index,

 and either there is more than one argument or the argument is

 not an integer, then fall through to "cd". This allows the lazy

 to use only one command for directory changing. Completion

 recognises this, too; see recent-dirs-insert for how to control

 completion when this option is in use.

 recent-dirs-file

 The file where the list of directories is saved. The default is

 ${ZDOTDIR:-$HOME}/.chpwd-recent-dirs, i.e. this is in your home

 directory unless you have set the variable ZDOTDIR to point

 somewhere else. Directory names are saved in $'...' quoted

 form, so each line in the file can be supplied directly to the

 shell as an argument.

 The value of this style may be an array. In this case, the

 first file in the list will always be used for saving directo?

 ries while any other files are left untouched. When reading the

 recent directory list, if there are fewer than the maximum num?

 ber of entries in the first file, the contents of later files in

 the array will be appended with duplicates removed from the list

 shown. The contents of the two files are not sorted together,

 i.e. all the entries in the first file are shown first. The

 special value + can appear in the list to indicate the default Page 12/110

 file should be read at that point. This allows effects like the

 following:

 zstyle ':chpwd:*' recent-dirs-file \

 ~/.chpwd-recent-dirs-${TTY##*/} +

 Recent directories are read from a file numbered according to

 the terminal. If there are insufficient entries the list is

 supplemented from the default file.

 It is possible to use zstyle -e to make the directory config?

 urable at run time:

 zstyle -e ':chpwd:*' recent-dirs-file pick-recent-dirs-file

 pick-recent-dirs-file() {

 if [[$PWD = ~/text/writing(|/*)]]; then

 reply=(~/.chpwd-recent-dirs-writing)

 else

 reply=(+)

 fi

 }

 In this example, if the current directory is ~/text/writing or a

 directory under it, then use a special file for saving recent

 directories, else use the default.

 recent-dirs-insert

 Used by completion. If recent-dirs-default is true, then set?

 ting this to true causes the actual directory, rather than its

 index, to be inserted on the command line; this has the same ef?

 fect as using the corresponding index, but makes the history

 clearer and the line easier to edit. With this setting, if part

 of an argument was already typed, normal directory completion

 rather than recent directory completion is done; this is because

 recent directory completion is expected to be done by cycling

 through entries menu fashion.

 If the value of the style is always, then only recent directo?

 ries will be completed; in that case, use the cd command when

 you want to complete other directories. Page 13/110

 If the value is fallback, recent directories will be tried

 first, then normal directory completion is performed if recent

 directory completion failed to find a match.

 Finally, if the value is both then both sets of completions are

 presented; the usual tag mechanism can be used to distinguish

 results, with recent directories tagged as recent-dirs. Note

 that the recent directories inserted are abbreviated with direc?

 tory names where appropriate.

 recent-dirs-max

 The maximum number of directories to save to the file. If this

 is zero or negative there is no maximum. The default is 20.

 Note this includes the current directory, which isn't offered,

 so the highest number of directories you will be offered is one

 less than the maximum.

 recent-dirs-prune

 This style is an array determining what directories should (or

 should not) be added to the recent list. Elements of the array

 can include:

 parent Prune parents (more accurately, ancestors) from the re?

 cent list. If present, changing directly down by any

 number of directories causes the current directory to be

 overwritten. For example, changing from ~pws to

 ~pws/some/other/dir causes ~pws not to be left on the re?

 cent directory stack. This only applies to direct

 changes to descendant directories; earlier directories on

 the list are not pruned. For example, changing from

 ~pws/yet/another to ~pws/some/other/dir does not cause

 ~pws to be pruned.

 pattern:pattern

 Gives a zsh pattern for directories that should not be

 added to the recent list (if not already there). This

 element can be repeated to add different patterns. For

 example, 'pattern:/tmp(|/*)' stops /tmp or its descen? Page 14/110

 dants from being added. The EXTENDED_GLOB option is al?

 ways turned on for these patterns.

 recent-dirs-pushd

 If set to true, cdr will use pushd instead of cd to change the

 directory, so the directory is saved on the directory stack. As

 the directory stack is completely separate from the list of

 files saved by the mechanism used in this file there is no obvi?

 ous reason to do this.

 Use with dynamic directory naming

 It is possible to refer to recent directories using the dynamic direc?

 tory name syntax by using the supplied function zsh_directory_name_cdr

 a hook:

 autoload -Uz add-zsh-hook

 add-zsh-hook -Uz zsh_directory_name zsh_directory_name_cdr

 When this is done, ~[1] will refer to the most recent directory other

 than $PWD, and so on. Completion after ~[... also works.

 Details of directory handling

 This section is for the curious or confused; most users will not need

 to know this information.

 Recent directories are saved to a file immediately and hence are pre?

 served across sessions. Note currently no file locking is applied: the

 list is updated immediately on interactive commands and nowhere else

 (unlike history), and it is assumed you are only going to change direc?

 tory in one window at once. This is not safe on shared accounts, but

 in any case the system has limited utility when someone else is chang?

 ing to a different set of directories behind your back.

 To make this a little safer, only directory changes instituted from the

 command line, either directly or indirectly through shell function

 calls (but not through subshells, evals, traps, completion functions

 and the like) are saved. Shell functions should use cd -q or pushd -q

 to avoid side effects if the change to the directory is to be invisible

 at the command line. See the contents of the function chpwd_re?

 cent_dirs for more details. Page 15/110

ABBREVIATED DYNAMIC REFERENCES TO DIRECTORIES

 The dynamic directory naming system is described in the subsection Dy?

 namic named directories of the section Filename Expansion in expn(1).

 In this, a reference to ~[...] is expanded by a function found by the

 hooks mechanism.

 The contributed function zsh_directory_name_generic provides a system

 allowing the user to refer to directories with only a limited amount of

 new code. It supports all three of the standard interfaces for direc?

 tory naming: converting from a name to a directory, converting in the

 reverse direction to find a short name, and completion of names.

 The main feature of this function is a path-like syntax, combining ab?

 breviations at multiple levels separated by ":". As an example,

 ~[g:p:s] might specify:

 g The top level directory for your git area. This first component

 has to match, or the function will return indicating another di?

 rectory name hook function should be tried.

 p The name of a project within your git area.

 s The source area within that project. This allows you to col?

 lapse references to long hierarchies to a very compact form,

 particularly if the hierarchies are similar across different ar?

 eas of the disk.

 Name components may be completed: if a description is shown at the top

 of the list of completions, it includes the path to which previous com?

 ponents expand, while the description for an individual completion

 shows the path segment it would add. No additional configuration is

 needed for this as the completion system is aware of the dynamic direc?

 tory name mechanism.

 Usage

 To use the function, first define a wrapper function for your specific

 case. We'll assume it's to be autoloaded. This can have any name but

 we'll refer to it as zdn_mywrapper. This wrapper function will define

 various variables and then call this function with the same arguments

 that the wrapper function gets. This configuration is described below. Page 16/110

 Then arrange for the wrapper to be run as a zsh_directory_name hook:

 autoload -Uz add-zsh-hook zsh_diretory_name_generic zdn_mywrapper

 add-zsh-hook -U zsh_directory_name zdn_mywrapper

 Configuration

 The wrapper function should define a local associative array zdn_top.

 Alternatively, this can be set with a style called mapping. The con?

 text for the style is :zdn:wrapper-name where wrapper-name is the func?

 tion calling zsh_directory_name_generic; for example:

 zstyle :zdn:zdn_mywrapper: mapping zdn_mywrapper_top

 The keys in this associative array correspond to the first component of

 the name. The values are matching directories. They may have an op?

 tional suffix with a slash followed by a colon and the name of a vari?

 able in the same format to give the next component. (The slash before

 the colon is to disambiguate the case where a colon is needed in the

 path for a drive. There is otherwise no syntax for escaping this, so

 path components whose names start with a colon are not supported.) A

 special component :default: specifies a variable in the form /:var (the

 path section is ignored and so is usually empty) that will be used for

 the next component if no variable is given for the path. Variables re?

 ferred to within zdn_top have the same format as zdn_top itself, but

 contain relative paths.

 For example,

 local -A zdn_top=(

 g ~/git

 ga ~/alternate/git

 gs /scratch/$USER/git/:second2

 :default: /:second1

)

 This specifies the behaviour of a directory referred to as ~[g:...] or

 ~[ga:...] or ~[gs:...]. Later path components are optional; in that

 case ~[g] expands to ~/git, and so on. gs expands to

 /scratch/$USER/git and uses the associative array second2 to match the

 second component; g and ga use the associative array second1 to match Page 17/110

 the second component.

 When expanding a name to a directory, if the first component is not g

 or ga or gs, it is not an error; the function simply returns 1 so that

 a later hook function can be tried. However, matching the first compo?

 nent commits the function, so if a later component does not match, an

 error is printed (though this still does not stop later hooks from be?

 ing executed).

 For components after the first, a relative path is expected, but note

 that multiple levels may still appear. Here is an example of second1:

 local -A second1=(

 p myproject

 s somproject

 os otherproject/subproject/:third

)

 The path as found from zdn_top is extended with the matching directory,

 so ~[g:p] becomes ~/git/myproject. The slash between is added automat?

 ically (it's not possible to have a later component modify the name of

 a directory already matched). Only os specifies a variable for a third

 component, and there's no :default:, so it's an error to use a name

 like ~[g:p:x] or ~[ga:s:y] because there's nowhere to look up the x or

 y.

 The associative arrays need to be visible within this function; the

 generic function therefore uses internal variable names beginning _zdn_

 in order to avoid clashes. Note that the variable reply needs to be

 passed back to the shell, so should not be local in the calling func?

 tion.

 The function does not test whether directories assembled by component

 actually exist; this allows the system to work across automounted file

 systems. The error from the command trying to use a non-existent di?

 rectory should be sufficient to indicate the problem.

 Complete example

 Here is a full fictitious but usable autoloadable definition of the ex?

 ample function defined by the code above. So ~[gs:p:s] expands to Page 18/110

 /scratch/$USER/git/myscratchproject/top/srcdir (with $USER also ex?

 panded).

 local -A zdn_top=(

 g ~/git

 ga ~/alternate/git

 gs /scratch/$USER/git/:second2

 :default: /:second1

)

 local -A second1=(

 p myproject

 s somproject

 os otherproject/subproject/:third

)

 local -A second2=(

 p myscratchproject

 s somescratchproject

)

 local -A third=(

 s top/srcdir

 d top/documentation

)

 # autoload not needed if you did this at initialisation...

 autoload -Uz zsh_directory_name_generic

 zsh_directory_name_generic "$@

 It is also possible to use global associative arrays, suitably named,

 and set the style for the context of your wrapper function to refer to

 this. Then your set up code would contain the following:

 typeset -A zdn_mywrapper_top=(...)

 # ... and so on for other associative arrays ...

 zstyle ':zdn:zdn_mywrapper:' mapping zdn_mywrapper_top

 autoload -Uz add-zsh-hook zsh_directory_name_generic zdn_mywrapper

 add-zsh-hook -U zsh_directory_name zdn_mywrapper

 and the function zdn_mywrapper would contain only the following: Page 19/110

 zsh_directory_name_generic "$@"

GATHERING INFORMATION FROM VERSION CONTROL SYSTEMS

 In a lot of cases, it is nice to automatically retrieve information

 from version control systems (VCSs), such as subversion, CVS or git, to

 be able to provide it to the user; possibly in the user's prompt. So

 that you can instantly tell which branch you are currently on, for ex?

 ample.

 In order to do that, you may use the vcs_info function.

 The following VCSs are supported, showing the abbreviated name by which

 they are referred to within the system:

 Bazaar (bzr)

 https://bazaar.canonical.com/

 Codeville (cdv)

 http://freecode.com/projects/codeville/

 Concurrent Versioning System (cvs)

 https://www.nongnu.org/cvs/

 Darcs (darcs)

 http://darcs.net/

 Fossil (fossil)

 https://fossil-scm.org/

 Git (git)

 https://git-scm.com/

 GNU arch (tla)

 https://www.gnu.org/software/gnu-arch/

 Mercurial (hg)

 https://www.mercurial-scm.org/

 Monotone (mtn)

 https://monotone.ca/

 Perforce (p4)

 https://www.perforce.com/

 Subversion (svn)

 https://subversion.apache.org/

 SVK (svk) Page 20/110

 https://svk.bestpractical.com/

 There is also support for the patch management system quilt

 (https://savannah.nongnu.org/projects/quilt). See Quilt Support below

 for details.

 To load vcs_info:

 autoload -Uz vcs_info

 It can be used in any existing prompt, because it does not require any

 specific $psvar entries to be available.

 Quickstart

 To get this feature working quickly (including colors), you can do the

 following (assuming, you loaded vcs_info properly - see above):

 zstyle ':vcs_info:*' actionformats \

 '%F{5}(%f%s%F{5})%F{3}-%F{5}[%F{2}%b%F{3}|%F{1}%a%F{5}]%f '

 zstyle ':vcs_info:*' formats \

 '%F{5}(%f%s%F{5})%F{3}-%F{5}[%F{2}%b%F{5}]%f '

 zstyle ':vcs_info:(sv[nk]|bzr):*' branchformat '%b%F{1}:%F{3}%r'

 precmd () { vcs_info }

 PS1='%F{5}[%F{2}%n%F{5}] %F{3}%3~ ${vcs_info_msg_0_}%f%# '

 Obviously, the last two lines are there for demonstration. You need to

 call vcs_info from your precmd function. Once that is done you need a

 single quoted '${vcs_info_msg_0_}' in your prompt.

 To be able to use '${vcs_info_msg_0_}' directly in your prompt like

 this, you will need to have the PROMPT_SUBST option enabled.

 Now call the vcs_info_printsys utility from the command line:

 % vcs_info_printsys

 ## list of supported version control backends:

 ## disabled systems are prefixed by a hash sign (#)

 bzr

 cdv

 cvs

 darcs

 fossil

 git Page 21/110

 hg

 mtn

 p4

 svk

 svn

 tla

 ## flavours (cannot be used in the enable or disable styles; they

 ## are enabled and disabled with their master [git-svn -> git])

 ## they *can* be used in contexts: ':vcs_info:git-svn:*'.

 git-p4

 git-svn

 hg-git

 hg-hgsubversion

 hg-hgsvn

 You may not want all of these because there is no point in running the

 code to detect systems you do not use. So there is a way to disable

 some backends altogether:

 zstyle ':vcs_info:*' disable bzr cdv darcs mtn svk tla

 You may also pick a few from that list and enable only those:

 zstyle ':vcs_info:*' enable git cvs svn

 If you rerun vcs_info_printsys after one of these commands, you will

 see the backends listed in the disable style (or backends not in the

 enable style - if you used that) marked as disabled by a hash sign.

 That means the detection of these systems is skipped completely. No

 wasted time there.

 Configuration

 The vcs_info feature can be configured via zstyle.

 First, the context in which we are working:

 :vcs_info:vcs-string:user-context:repo-root-name

 vcs-string

 is one of: git, git-svn, git-p4, hg, hg-git, hg-hgsubversion,

 hg-hgsvn, darcs, bzr, cdv, mtn, svn, cvs, svk, tla, p4 or fos?

 sil. This is followed by `.quilt-quilt-mode' in Quilt mode (see Page 22/110

 Quilt Support for details) and by `+hook-name' while hooks are

 active (see Hooks in vcs_info for details).

 Currently, hooks in quilt mode don't add the `.quilt-quilt-mode'

 information. This may change in the future.

 user-context

 is a freely configurable string, assignable by the user as the

 first argument to vcs_info (see its description below).

 repo-root-name

 is the name of a repository in which you want a style to match.

 So, if you want a setting specific to /usr/src/zsh, with that

 being a CVS checkout, you can set repo-root-name to zsh to make

 it so.

 There are three special values for vcs-string: The first is named

 -init-, that is in effect as long as there was no decision what VCS

 backend to use. The second is -preinit-; it is used before vcs_info is

 run, when initializing the data exporting variables. The third special

 value is formats and is used by the vcs_info_lastmsg for looking up its

 styles.

 The initial value of repo-root-name is -all- and it is replaced with

 the actual name, as soon as it is known. Only use this part of the con?

 text for defining the formats, actionformats or branchformat styles, as

 it is guaranteed that repo-root-name is set up correctly for these

 only. For all other styles, just use '*' instead.

 There are two pre-defined values for user-context:

 default

 the one used if none is specified

 command

 used by vcs_info_lastmsg to lookup its styles

 You can of course use ':vcs_info:*' to match all VCSs in all user-con?

 texts at once.

 This is a description of all styles that are looked up.

 formats

 A list of formats, used when actionformats is not used (which is Page 23/110

 most of the time).

 actionformats

 A list of formats, used if there is a special action going on in

 your current repository; like an interactive rebase or a merge

 conflict.

 branchformat

 Some backends replace %b in the formats and actionformats styles

 above, not only by a branch name but also by a revision number.

 This style lets you modify how that string should look.

 nvcsformats

 These "formats" are set when we didn't detect a version control

 system for the current directory or vcs_info was disabled. This

 is useful if you want vcs_info to completely take over the gen?

 eration of your prompt. You would do something like

 PS1='${vcs_info_msg_0_}' to accomplish that.

 hgrevformat

 hg uses both a hash and a revision number to reference a spe?

 cific changeset in a repository. With this style you can format

 the revision string (see branchformat) to include either or

 both. It's only useful when get-revision is true. Note, the full

 40-character revision id is not available (except when using the

 use-simple option) because executing hg more than once per

 prompt is too slow; you may customize this behavior using hooks.

 max-exports

 Defines the maximum number of vcs_info_msg_*_ variables vcs_info

 will set.

 enable A list of backends you want to use. Checked in the -init- con?

 text. If this list contains an item called NONE no backend is

 used at all and vcs_info will do nothing. If this list contains

 ALL, vcs_info will use all known backends. Only with ALL in en?

 able will the disable style have any effect. ALL and NONE are

 case insensitive.

 disable Page 24/110

 A list of VCSs you don't want vcs_info to test for repositories

 (checked in the -init- context, too). Only used if enable con?

 tains ALL.

 disable-patterns

 A list of patterns that are checked against $PWD. If a pattern

 matches, vcs_info will be disabled. This style is checked in the

 :vcs_info:-init-:*:-all- context.

 Say, ~/.zsh is a directory under version control, in which you

 do not want vcs_info to be active, do:

 zstyle ':vcs_info:*' disable-patterns "${(b)HOME}/.zsh(|/*)"

 use-quilt

 If enabled, the quilt support code is active in `addon' mode.

 See Quilt Support for details.

 quilt-standalone

 If enabled, `standalone' mode detection is attempted if no VCS

 is active in a given directory. See Quilt Support for details.

 quilt-patch-dir

 Overwrite the value of the $QUILT_PATCHES environment variable.

 See Quilt Support for details.

 quiltcommand

 When quilt itself is called in quilt support, the value of this

 style is used as the command name.

 check-for-changes

 If enabled, this style causes the %c and %u format escapes to

 show when the working directory has uncommitted changes. The

 strings displayed by these escapes can be controlled via the

 stagedstr and unstagedstr styles. The only backends that cur?

 rently support this option are git, hg, and bzr (the latter two

 only support unstaged).

 For this style to be evaluated with the hg backend, the get-re?

 vision style needs to be set and the use-simple style needs to

 be unset. The latter is the default; the former is not.

 With the bzr backend, lightweight checkouts only honor this Page 25/110

 style if the use-server style is set.

 Note, the actions taken if this style is enabled are potentially

 expensive (read: they may be slow, depending on how big the cur?

 rent repository is). Therefore, it is disabled by default.

 check-for-staged-changes

 This style is like check-for-changes, but it never checks the

 worktree files, only the metadata in the .${vcs} dir. There?

 fore, this style initializes only the %c escape (with stagedstr)

 but not the %u escape. This style is faster than

 check-for-changes.

 In the git backend, this style checks for changes in the index.

 Other backends do not currently implement this style.

 This style is disabled by default.

 stagedstr

 This string will be used in the %c escape if there are staged

 changes in the repository.

 unstagedstr

 This string will be used in the %u escape if there are unstaged

 changes in the repository.

 command

 This style causes vcs_info to use the supplied string as the

 command to use as the VCS's binary. Note, that setting this in

 ':vcs_info:*' is not a good idea.

 If the value of this style is empty (which is the default), the

 used binary name is the name of the backend in use (e.g. svn is

 used in an svn repository).

 The repo-root-name part in the context is always the default

 -all- when this style is looked up.

 For example, this style can be used to use binaries from non-de?

 fault installation directories. Assume, git is installed in

 /usr/bin but your sysadmin installed a newer version in /usr/lo?

 cal/bin. Instead of changing the order of your $PATH parameter,

 you can do this: Page 26/110

 zstyle ':vcs_info:git:*:-all-' command /usr/local/bin/git

 use-server

 This is used by the Perforce backend (p4) to decide if it should

 contact the Perforce server to find out if a directory is man?

 aged by Perforce. This is the only reliable way of doing this,

 but runs the risk of a delay if the server name cannot be found.

 If the server (more specifically, the host:port pair describing

 the server) cannot be contacted, its name is put into the asso?

 ciative array vcs_info_p4_dead_servers and is not contacted

 again during the session until it is removed by hand. If you do

 not set this style, the p4 backend is only usable if you have

 set the environment variable P4CONFIG to a file name and have

 corresponding files in the root directories of each Perforce

 client. See comments in the function VCS_INFO_detect_p4 for

 more detail.

 The Bazaar backend (bzr) uses this to permit contacting the

 server about lightweight checkouts, see the check-for-changes

 style.

 use-simple

 If there are two different ways of gathering information, you

 can select the simpler one by setting this style to true; the

 default is to use the not-that-simple code, which is potentially

 a lot slower but might be more accurate in all possible cases.

 This style is used by the bzr and hg backends. In the case of hg

 it will invoke the external hexdump program to parse the binary

 dirstate cache file; this method will not return the local revi?

 sion number.

 get-revision

 If set to true, vcs_info goes the extra mile to figure out the

 revision of a repository's work tree (currently for the git and

 hg backends, where this kind of information is not always vi?

 tal). For git, the hash value of the currently checked out com?

 mit is available via the %i expansion. With hg, the local revi? Page 27/110

 sion number and the corresponding global hash are available via

 %i.

 get-mq If set to true, the hg backend will look for a Mercurial Queue

 (mq) patch directory. Information will be available via the `%m'

 replacement.

 get-bookmarks

 If set to true, the hg backend will try to get a list of current

 bookmarks. They will be available via the `%m' replacement.

 The default is to generate a comma-separated list of all book?

 mark names that refer to the currently checked out revision. If

 a bookmark is active, its name is suffixed an asterisk and

 placed first in the list.

 use-prompt-escapes

 Determines if we assume that the assembled string from vcs_info

 includes prompt escapes. (Used by vcs_info_lastmsg.)

 debug Enable debugging output to track possible problems. Currently

 this style is only used by vcs_info's hooks system.

 hooks A list style that defines hook-function names. See Hooks in

 vcs_info below for details.

 patch-format

 nopatch-format

 This pair of styles format the patch information used by the %m

 expando in formats and actionformats for the git and hg back?

 ends. The value is subject to certain %-expansions described

 below. The expanded value is made available in the global back?

 end_misc array as ${backend_misc[patches]} (also if a

 set-patch-format hook is used).

 get-unapplied

 This boolean style controls whether a backend should attempt to

 gather a list of unapplied patches (for example with Mercurial

 Queue patches).

 Used by the quilt and hg backends.

 The default values for these styles in all contexts are: Page 28/110

 formats

 " (%s)-[%b]%u%c-"

 actionformats

 " (%s)-[%b|%a]%u%c-"

 branchformat

 "%b:%r" (for bzr, svn, svk and hg)

 nvcsformats

 ""

 hgrevformat

 "%r:%h"

 max-exports

 2

 enable ALL

 disable

 (empty list)

 disable-patterns

 (empty list)

 check-for-changes

 false

 check-for-staged-changes

 false

 stagedstr

 (string: "S")

 unstagedstr

 (string: "U")

 command

 (empty string)

 use-server

 false

 use-simple

 false

 get-revision

 false Page 29/110

 get-mq true

 get-bookmarks

 false

 use-prompt-escapes

 true

 debug false

 hooks (empty list)

 use-quilt

 false

 quilt-standalone

 false

 quilt-patch-dir

 empty - use $QUILT_PATCHES

 quiltcommand

 quilt

 patch-format

 backend dependent

 nopatch-format

 backend dependent

 get-unapplied

 false

 In normal formats and actionformats the following replacements are

 done:

 %s The VCS in use (git, hg, svn, etc.).

 %b Information about the current branch.

 %a An identifier that describes the action. Only makes sense in ac?

 tionformats.

 %i The current revision number or identifier. For hg the hgrevfor?

 mat style may be used to customize the output.

 %c The string from the stagedstr style if there are staged changes

 in the repository.

 %u The string from the unstagedstr style if there are unstaged

 changes in the repository. Page 30/110

 %R The base directory of the repository.

 %r The repository name. If %R is /foo/bar/repoXY, %r is repoXY.

 %S A subdirectory within a repository. If $PWD is /foo/bar/re?

 poXY/beer/tasty, %S is beer/tasty.

 %m A "misc" replacement. It is at the discretion of the backend to

 decide what this replacement expands to.

 The hg and git backends use this expando to display patch infor?

 mation. hg sources patch information from the mq extensions;

 git from in-progress rebase and cherry-pick operations and from

 the stgit extension. The patch-format and nopatch-format styles

 control the generated string. The former is used when at least

 one patch from the patch queue has been applied, and the latter

 otherwise.

 The hg backend displays bookmark information in this expando (in

 addition to mq information). See the get-mq and get-bookmarks

 styles. Both of these styles may be enabled at the same time.

 If both are enabled, both resulting strings will be shown sepa?

 rated by a semicolon (that cannot currently be customized).

 The quilt `standalone' backend sets this expando to the same

 value as the %Q expando.

 %Q Quilt series information. When quilt is used (either in `addon'

 mode or as a `standalone' backend), this expando is set to quilt

 series' patch-format string. The set-patch-format hook and

 nopatch-format style are honoured.

 See Quilt Support below for details.

 In branchformat these replacements are done:

 %b The branch name.

 %r The current revision number or the hgrevformat style for hg.

 In hgrevformat these replacements are done:

 %r The current local revision number.

 %h The current global revision identifier.

 In patch-format and nopatch-format these replacements are done:

 %p The name of the top-most applied patch; may be overridden by the Page 31/110

 applied-string hook.

 %u The number of unapplied patches; may be overridden by the unap?

 plied-string hook.

 %n The number of applied patches.

 %c The number of unapplied patches.

 %a The number of all patches (%a = %n + %c).

 %g The names of active mq guards (hg backend).

 %G The number of active mq guards (hg backend).

 Not all VCS backends have to support all replacements. For nvcsformats

 no replacements are performed at all, it is just a string.

 Oddities

 If you want to use the %b (bold off) prompt expansion in formats, which

 expands %b itself, use %%b. That will cause the vcs_info expansion to

 replace %%b with %b, so that zsh's prompt expansion mechanism can han?

 dle it. Similarly, to hand down %b from branchformat, use %%%%b. Sorry

 for this inconvenience, but it cannot be easily avoided. Luckily we do

 not clash with a lot of prompt expansions and this only needs to be

 done for those.

 When one of the gen-applied-string, gen-unapplied-string, and

 set-patch-format hooks is defined, applying %-escaping

 (`foo=${foo//'%'/%%}') to the interpolated values for use in the prompt

 is the responsibility of those hooks (jointly); when neither of those

 hooks is defined, vcs_info handles escaping by itself. We regret this

 coupling, but it was required for backwards compatibility.

 Quilt Support

 Quilt is not a version control system, therefore this is not imple?

 mented as a backend. It can help keeping track of a series of patches.

 People use it to keep a set of changes they want to use on top of soft?

 ware packages (which is tightly integrated into the package build

 process - the Debian project does this for a large number of packages).

 Quilt can also help individual developers keep track of their own

 patches on top of real version control systems.

 The vcs_info integration tries to support both ways of using quilt by Page 32/110

 having two slightly different modes of operation: `addon' mode and

 `standalone' mode).

 Quilt integration is off by default; to enable it, set the use-quilt

 style, and add %Q to your formats or actionformats style:

 zstyle ':vcs_info:*' use-quilt true

 Styles looked up from the Quilt support code include

 `.quilt-quilt-mode' in the vcs-string part of the context, where

 quilt-mode is either addon or standalone. Example:

 :vcs_info:git.quilt-addon:default:repo-root-name.

 For `addon' mode to become active vcs_info must have already detected a

 real version control system controlling the directory. If that is the

 case, a directory that holds quilt's patches needs to be found. That

 directory is configurable via the `QUILT_PATCHES' environment variable.

 If that variable exists its value is used, otherwise the value

 `patches' is assumed. The value from $QUILT_PATCHES can be overwritten

 using the `quilt-patches' style. (Note: you can use vcs_info to keep

 the value of $QUILT_PATCHES correct all the time via the post-quilt

 hook).

 When the directory in question is found, quilt is assumed to be active.

 To gather more information, vcs_info looks for a directory called

 `.pc'; Quilt uses that directory to track its current state. If this

 directory does not exist we know that quilt has not done anything to

 the working directory (read: no patches have been applied yet).

 If patches are applied, vcs_info will try to find out which. If you

 want to know which patches of a series are not yet applied, you need to

 activate the get-unapplied style in the appropriate context.

 vcs_info allows for very detailed control over how the gathered infor?

 mation is presented (see the Configuration and Hooks in vcs_info sec?

 tions), all of which are documented below. Note there are a number of

 other patch tracking systems that work on top of a certain version con?

 trol system (like stgit for git, or mq for hg); the configuration for

 systems like that are generally configured the same way as the quilt

 support. Page 33/110

 If the quilt support is working in `addon' mode, the produced string is

 available as a simple format replacement (%Q to be precise), which can

 be used in formats and actionformats; see below for details).

 If, on the other hand, the support code is working in `standalone'

 mode, vcs_info will pretend as if quilt were an actual version control

 system. That means that the version control system identifier (which

 otherwise would be something like `svn' or `cvs') will be set to

 `-quilt-'. This has implications on the used style context where this

 identifier is the second element. vcs_info will have filled in a proper

 value for the "repository's" root directory and the string containing

 the information about quilt's state will be available as the `misc' re?

 placement (and %Q for compatibility with `addon' mode).

 What is left to discuss is how `standalone' mode is detected. The de?

 tection itself is a series of searches for directories. You can have

 this detection enabled all the time in every directory that is not oth?

 erwise under version control. If you know there is only a limited set

 of trees where you would like vcs_info to try and look for Quilt in

 `standalone' mode to minimise the amount of searching on every call to

 vcs_info, there are a number of ways to do that:

 Essentially, `standalone' mode detection is controlled by a style

 called `quilt-standalone'. It is a string style and its value can have

 different effects. The simplest values are: `always' to run detection

 every time vcs_info is run, and `never' to turn the detection off en?

 tirely.

 If the value of quilt-standalone is something else, it is interpreted

 differently. If the value is the name of a scalar variable the value of

 that variable is checked and that value is used in the same `al?

 ways'/`never' way as described above.

 If the value of quilt-standalone is an array, the elements of that ar?

 ray are used as directory names under which you want the detection to

 be active.

 If quilt-standalone is an associative array, the keys are taken as di?

 rectory names under which you want the detection to be active, but only Page 34/110

 if the corresponding value is the string `true'.

 Last, but not least, if the value of quilt-standalone is the name of a

 function, the function is called without arguments and the return value

 decides whether detection should be active. A `0' return value is true;

 a non-zero return value is interpreted as false.

 Note, if there is both a function and a variable by the name of

 quilt-standalone, the function will take precedence.

 Function Descriptions (Public API)

 vcs_info [user-context]

 The main function, that runs all backends and assembles all data

 into ${vcs_info_msg_*_}. This is the function you want to call

 from precmd if you want to include up-to-date information in

 your prompt (see Variable Description below). If an argument is

 given, that string will be used instead of default in the

 user-context field of the style context.

 vcs_info_hookadd

 Statically registers a number of functions to a given hook. The

 hook needs to be given as the first argument; what follows is a

 list of hook-function names to register to the hook. The `+vi-'

 prefix needs to be left out here. See Hooks in vcs_info below

 for details.

 vcs_info_hookdel

 Remove hook-functions from a given hook. The hook needs to be

 given as the first non-option argument; what follows is a list

 of hook-function names to un-register from the hook. If `-a' is

 used as the first argument, all occurrences of the functions are

 unregistered. Otherwise only the last occurrence is removed (if

 a function was registered to a hook more than once). The `+vi-'

 prefix needs to be left out here. See Hooks in vcs_info below

 for details.

 vcs_info_lastmsg

 Outputs the last ${vcs_info_msg_*_} value. Takes into account

 the value of the use-prompt-escapes style in ':vcs_info:for? Page 35/110

 mats:command:-all-'. It also only prints max-exports values.

 vcs_info_printsys [user-context]

 Prints a list of all supported version control systems. Useful

 to find out possible contexts (and which of them are enabled) or

 values for the disable style.

 vcs_info_setsys

 Initializes vcs_info's internal list of available backends. With

 this function, you can add support for new VCSs without restart?

 ing the shell.

 All functions named VCS_INFO_* are for internal use only.

 Variable Description

 ${vcs_info_msg_N_} (Note the trailing underscore)

 Where N is an integer, e.g., vcs_info_msg_0_. These variables

 are the storage for the informational message the last vcs_info

 call has assembled. These are strongly connected to the formats,

 actionformats and nvcsformats styles described above. Those

 styles are lists. The first member of that list gets expanded

 into ${vcs_info_msg_0_}, the second into ${vcs_info_msg_1_} and

 the Nth into ${vcs_info_msg_N-1_}. (See the max-exports style

 above.)

 All variables named VCS_INFO_* are for internal use only.

 Hooks in vcs_info

 Hooks are places in vcs_info where you can run your own code. That code

 can communicate with the code that called it and through that, change

 the system's behaviour.

 For configuration, hooks change the style context:

 :vcs_info:vcs-string+hook-name:user-context:repo-root-name

 To register functions to a hook, you need to list them in the hooks

 style in the appropriate context.

 Example:

 zstyle ':vcs_info:*+foo:*' hooks bar baz

 This registers functions to the hook `foo' for all backends. In order

 to avoid namespace problems, all registered function names are Page 36/110

 prepended by a `+vi-', so the actual functions called for the `foo'

 hook are `+vi-bar' and `+vi-baz'.

 If you would like to register a function to a hook regardless of the

 current context, you may use the vcs_info_hookadd function. To remove a

 function that was added like that, the vcs_info_hookdel function can be

 used.

 If something seems weird, you can enable the `debug' boolean style in

 the proper context and the hook-calling code will print what it tried

 to execute and whether the function in question existed.

 When you register more than one function to a hook, all functions are

 executed one after another until one function returns non-zero or until

 all functions have been called. Context-sensitive hook functions are

 executed before statically registered ones (the ones added by

 vcs_info_hookadd).

 You may pass data between functions via an associative array,

 user_data. For example:

 +vi-git-myfirsthook(){

 user_data[myval]=$myval

 }

 +vi-git-mysecondhook(){

 # do something with ${user_data[myval]}

 }

 There are a number of variables that are special in hook contexts:

 ret The return value that the hooks system will return to the

 caller. The default is an integer `zero'. If and how a changed

 ret value changes the execution of the caller depends on the

 specific hook. See the hook documentation below for details.

 hook_com

 An associated array which is used for bidirectional communica?

 tion from the caller to hook functions. The used keys depend on

 the specific hook.

 context

 The active context of the hook. Functions that wish to change Page 37/110

 this variable should make it local scope first.

 vcs The current VCS after it was detected. The same values as in the

 enable/disable style are used. Available in all hooks except

 start-up.

 Finally, the full list of currently available hooks:

 start-up

 Called after starting vcs_info but before the VCS in this direc?

 tory is determined. It can be used to deactivate vcs_info tempo?

 rarily if necessary. When ret is set to 1, vcs_info aborts and

 does nothing; when set to 2, vcs_info sets up everything as if

 no version control were active and exits.

 pre-get-data

 Same as start-up but after the VCS was detected.

 gen-hg-bookmark-string

 Called in the Mercurial backend when a bookmark string is gener?

 ated; the get-revision and get-bookmarks styles must be true.

 This hook gets the names of the Mercurial bookmarks that

 vcs_info collected from `hg'.

 If a bookmark is active, the key ${hook_com[hg-active-bookmark]}

 is set to its name. The key is otherwise unset.

 When setting ret to non-zero, the string in ${hook_com[hg-book?

 mark-string]} will be used in the %m escape in formats and ac?

 tionformats and will be available in the global backend_misc ar?

 ray as ${backend_misc[bookmarks]}.

 gen-applied-string

 Called in the git (with stgit or during rebase or merge), and hg

 (with mq) backends and in quilt support when the applied-string

 is generated; the use-quilt zstyle must be true for quilt (the

 mq and stgit backends are active by default).

 This hook gets the names of all applied patches which vcs_info

 collected so far in the opposite order, which means that the

 first argument is the top-most patch and so forth.

 When setting ret to non-zero, the string in ${hook_com[ap? Page 38/110

 plied-string]} will be available as %p in the patch-format and

 nopatch-format styles. This hook is, in concert with

 set-patch-format, responsible for %-escaping that value for use

 in the prompt. (See the Oddities section.)

 gen-unapplied-string

 Called in the git (with stgit or during rebase), and hg (with

 mq) backend and in quilt support when the unapplied-string is

 generated; the get-unapplied style must be true.

 This hook gets the names of all unapplied patches which vcs_info

 collected so far in order, which means that the first argument

 is the patch next-in-line to be applied and so forth.

 When setting ret to non-zero, the string in ${hook_com[unap?

 plied-string]} will be available as %u in the patch-format and

 nopatch-format styles. This hook is, in concert with

 set-patch-format, responsible for %-escaping that value for use

 in the prompt. (See the Oddities section.)

 gen-mqguards-string

 Called in the hg backend when guards-string is generated; the

 get-mq style must be true (default).

 This hook gets the names of any active mq guards.

 When setting ret to non-zero, the string in

 ${hook_com[guards-string]} will be used in the %g escape in the

 patch-format and nopatch-format styles.

 no-vcs This hooks is called when no version control system was de?

 tected.

 The `hook_com' parameter is not used.

 post-backend

 Called as soon as the backend has finished collecting informa?

 tion.

 The `hook_com' keys available are as for the set-message hook.

 post-quilt

 Called after the quilt support is done. The following informa?

 tion is passed as arguments to the hook: 1. the quilt-support Page 39/110

 mode (`addon' or `standalone'); 2. the directory that contains

 the patch series; 3. the directory that holds quilt's status in?

 formation (the `.pc' directory) or the string "-nopc-" if that

 directory wasn't found.

 The `hook_com' parameter is not used.

 set-branch-format

 Called before `branchformat' is set. The only argument to the

 hook is the format that is configured at this point.

 The `hook_com' keys considered are `branch' and `revision'.

 They are set to the values figured out so far by vcs_info and

 any change will be used directly when the actual replacement is

 done.

 If ret is set to non-zero, the string in ${hook_com[branch-re?

 place]} will be used unchanged as the `%b' replacement in the

 variables set by vcs_info.

 set-hgrev-format

 Called before a `hgrevformat' is set. The only argument to the

 hook is the format that is configured at this point.

 The `hook_com' keys considered are `hash' and `localrev'. They

 are set to the values figured out so far by vcs_info and any

 change will be used directly when the actual replacement is

 done.

 If ret is set to non-zero, the string in ${hook_com[rev-re?

 place]} will be used unchanged as the `%i' replacement in the

 variables set by vcs_info.

 pre-addon-quilt

 This hook is used when vcs_info's quilt functionality is active

 in "addon" mode (quilt used on top of a real version control

 system). It is activated right before any quilt specific action

 is taken.

 Setting the `ret' variable in this hook to a non-zero value

 avoids any quilt specific actions from being run at all.

 set-patch-format Page 40/110

 This hook is used to control some of the possible expansions in

 patch-format and nopatch-format styles with patch queue systems

 such as quilt, mqueue and the like.

 This hook is used in the git, hg and quilt backends.

 The hook allows the control of the %p (${hook_com[applied]}) and

 %u (${hook_com[unapplied]}) expansion in all backends that use

 the hook. With the mercurial backend, the %g

 (${hook_com[guards]}) expansion is controllable in addition to

 that.

 If ret is set to non-zero, the string in ${hook_com[patch-re?

 place]} will be used unchanged instead of an expanded format

 from patch-format or nopatch-format.

 This hook is, in concert with the gen-applied-string or gen-un?

 applied-string hooks if they are defined, responsible for %-es?

 caping the final patch-format value for use in the prompt. (See

 the Oddities section.)

 set-message

 Called each time before a `vcs_info_msg_N_' message is set. It

 takes two arguments; the first being the `N' in the message

 variable name, the second is the currently configured formats or

 actionformats.

 There are a number of `hook_com' keys, that are used here: `ac?

 tion', `branch', `base', `base-name', `subdir', `staged', `un?

 staged', `revision', `misc', `vcs' and one `miscN' entry for

 each backend-specific data field (N starting at zero). They are

 set to the values figured out so far by vcs_info and any change

 will be used directly when the actual replacement is done.

 Since this hook is triggered multiple times (once for each con?

 figured formats or actionformats), each of the `hook_com' keys

 mentioned above (except for the miscN entries) has an `_orig'

 counterpart, so even if you changed a value to your liking you

 can still get the original value in the next run. Changing the

 `_orig' values is probably not a good idea. Page 41/110

 If ret is set to non-zero, the string in ${hook_com[message]}

 will be used unchanged as the message by vcs_info.

 If all of this sounds rather confusing, take a look at the Examples

 section below and also in the Misc/vcs_info-examples file in the Zsh

 source. They contain some explanatory code.

 Examples

 Don't use vcs_info at all (even though it's in your prompt):

 zstyle ':vcs_info:*' enable NONE

 Disable the backends for bzr and svk:

 zstyle ':vcs_info:*' disable bzr svk

 Disable everything but bzr and svk:

 zstyle ':vcs_info:*' enable bzr svk

 Provide a special formats for git:

 zstyle ':vcs_info:git:*' formats ' GIT, BABY! [%b]'

 zstyle ':vcs_info:git:*' actionformats ' GIT ACTION! [%b|%a]'

 All %x expansion in all sorts of formats (formats, actionformats,

 branchformat, you name it) are done using the `zformat' builtin from

 the `zsh/zutil' module. That means you can do everything with these %x

 items what zformat supports. In particular, if you want something that

 is really long to have a fixed width, like a hash in a mercurial

 branchformat, you can do this: %12.12i. That'll shrink the 40 character

 hash to its 12 leading characters. The form is actually `%min.maxx'.

 More is possible. See the section `The zsh/zutil Module' in zshmod?

 ules(1) for details.

 Use the quicker bzr backend

 zstyle ':vcs_info:bzr:*' use-simple true

 If you do use use-simple, please report if it does

 `the-right-thing[tm]'.

 Display the revision number in yellow for bzr and svn:

 zstyle ':vcs_info:(svn|bzr):*' \

 branchformat '%b%{'${fg[yellow]}'%}:%r'

 If you want colors, make sure you enclose the color codes in %{...%} if

 you want to use the string provided by vcs_info in prompts. Page 42/110

 Here is how to print the VCS information as a command (not in a

 prompt):

 alias vcsi='vcs_info command; vcs_info_lastmsg'

 This way, you can even define different formats for output via

 vcs_info_lastmsg in the ':vcs_info:*:command:*' namespace.

 Now as promised, some code that uses hooks: say, you'd like to replace

 the string `svn' by `subversion' in vcs_info's %s formats replacement.

 First, we will tell vcs_info to call a function when populating the

 message variables with the gathered information:

 zstyle ':vcs_info:*+set-message:*' hooks svn2subversion

 Nothing happens. Which is reasonable, since we didn't define the actual

 function yet. To see what the hooks subsystem is trying to do, enable

 the `debug' style:

 zstyle ':vcs_info:*+*:*' debug true

 That should give you an idea what is going on. Specifically, the func?

 tion that we are looking for is `+vi-svn2subversion'. Note, the `+vi-'

 prefix. So, everything is in order, just as documented. When you are

 done checking out the debugging output, disable it again:

 zstyle ':vcs_info:*+*:*' debug false

 Now, let's define the function:

 function +vi-svn2subversion() {

 [[${hook_com[vcs_orig]} == svn]] && hook_com[vcs]=subversion

 }

 Simple enough. And it could have even been simpler, if only we had reg?

 istered our function in a less generic context. If we do it only in the

 `svn' backend's context, we don't need to test which the active backend

 is:

 zstyle ':vcs_info:svn+set-message:*' hooks svn2subversion

 function +vi-svn2subversion() {

 hook_com[vcs]=subversion

 }

 And finally a little more elaborate example, that uses a hook to create

 a customised bookmark string for the hg backend. Page 43/110

 Again, we start off by registering a function:

 zstyle ':vcs_info:hg+gen-hg-bookmark-string:*' hooks hgbookmarks

 And then we define the `+vi-hgbookmarks' function:

 function +vi-hgbookmarks() {

 # The default is to connect all bookmark names by

 # commas. This mixes things up a little.

 # Imagine, there's one type of bookmarks that is

 # special to you. Say, because it's *your* work.

 # Those bookmarks look always like this: "sh/*"

 # (because your initials are sh, for example).

 # This makes the bookmarks string use only those

 # bookmarks. If there's more than one, it

 # concatenates them using commas.

 # The bookmarks returned by `hg' are available in

 # the function's positional parameters.

 local s="${(Mj:,:)@:#sh/*}"

 # Now, the communication with the code that calls

 # the hook functions is done via the hook_com[]

 # hash. The key at which the `gen-hg-bookmark-string'

 # hook looks is `hg-bookmark-string'. So:

 hook_com[hg-bookmark-string]=$s

 # And to signal that we want to use the string we

 # just generated, set the special variable `ret' to

 # something other than the default zero:

 ret=1

 return 0

 }

 Some longer examples and code snippets which might be useful are avail?

 able in the examples file located at Misc/vcs_info-examples in the Zsh

 source directory.

 This concludes our guided tour through zsh's vcs_info.

PROMPT THEMES

 Installation Page 44/110

 You should make sure all the functions from the Functions/Prompts di?

 rectory of the source distribution are available; they all begin with

 the string `prompt_' except for the special function`promptinit'. You

 also need the `colors' and `add-zsh-hook' functions from Func?

 tions/Misc. All these functions may already be installed on your sys?

 tem; if not, you will need to find them and copy them. The directory

 should appear as one of the elements of the fpath array (this should

 already be the case if they were installed), and at least the function

 promptinit should be autoloaded; it will autoload the rest. Finally,

 to initialize the use of the system you need to call the promptinit

 function. The following code in your .zshrc will arrange for this; as?

 sume the functions are stored in the directory ~/myfns:

 fpath=(~/myfns $fpath)

 autoload -U promptinit

 promptinit

 Theme Selection

 Use the prompt command to select your preferred theme. This command

 may be added to your .zshrc following the call to promptinit in order

 to start zsh with a theme already selected.

 prompt [-c | -l]

 prompt [-p | -h] [theme ...]

 prompt [-s] theme [arg ...]

 Set or examine the prompt theme. With no options and a theme

 argument, the theme with that name is set as the current theme.

 The available themes are determined at run time; use the -l op?

 tion to see a list. The special theme `random' selects at ran?

 dom one of the available themes and sets your prompt to that.

 In some cases the theme may be modified by one or more argu?

 ments, which should be given after the theme name. See the help

 for each theme for descriptions of these arguments.

 Options are:

 -c Show the currently selected theme and its parameters, if

 any. Page 45/110

 -l List all available prompt themes.

 -p Preview the theme named by theme, or all themes if no

 theme is given.

 -h Show help for the theme named by theme, or for the prompt

 function if no theme is given.

 -s Set theme as the current theme and save state.

 prompt_theme_setup

 Each available theme has a setup function which is called by the

 prompt function to install that theme. This function may define

 other functions as necessary to maintain the prompt, including

 functions used to preview the prompt or provide help for its

 use. You should not normally call a theme's setup function di?

 rectly.

 Utility Themes

 prompt off

 The theme `off' sets all the prompt variables to minimal values

 with no special effects.

 prompt default

 The theme `default' sets all prompt variables to the same state

 as if an interactive zsh was started with no initialization

 files.

 prompt restore

 The special theme `restore' erases all theme settings and sets

 prompt variables to their state before the first time the

 `prompt' function was run, provided each theme has properly de?

 fined its cleanup (see below).

 Note that you can undo `prompt off' and `prompt default' with

 `prompt restore', but a second restore does not undo the first.

 Writing Themes

 The first step for adding your own theme is to choose a name for it,

 and create a file `prompt_name_setup' in a directory in your fpath,

 such as ~/myfns in the example above. The file should at minimum con?

 tain assignments for the prompt variables that your theme wishes to Page 46/110

 modify. By convention, themes use PS1, PS2, RPS1, etc., rather than

 the longer PROMPT and RPROMPT.

 The file is autoloaded as a function in the current shell context, so

 it may contain any necessary commands to customize your theme, includ?

 ing defining additional functions. To make some complex tasks easier,

 your setup function may also do any of the following:

 Assign prompt_opts

 The array prompt_opts may be assigned any of "bang", "cr", "per?

 cent", "sp", and/or "subst" as values. The corresponding se?

 topts (promptbang, etc.) are turned on, all other prompt-related

 options are turned off. The prompt_opts array preserves setopts

 even beyond the scope of localoptions, should your function need

 that.

 Modify precmd and preexec

 Use of add-zsh-hook is recommended. The precmd and preexec

 hooks are automatically adjusted if the prompt theme changes or

 is disabled.

 Declare cleanup

 If your function makes any other changes that should be undone

 when the theme is disabled, your setup function may call

 prompt_cleanup command

 where command should be suitably quoted. If your theme is ever dis?

 abled or replaced by another, command is executed with eval. You may

 declare more than one such cleanup hook.

 Define preview

 Define or autoload a function prompt_name_preview to display a

 simulated version of your prompt. A simple default previewer is

 defined by promptinit for themes that do not define their own.

 This preview function is called by `prompt -p'.

 Provide help

 Define or autoload a function prompt_name_help to display docu?

 mentation or help text for your theme. This help function is

 called by `prompt -h'. Page 47/110

ZLE FUNCTIONS

 Widgets

 These functions all implement user-defined ZLE widgets (see zshzle(1))

 which can be bound to keystrokes in interactive shells. To use them,

 your .zshrc should contain lines of the form

 autoload function

 zle -N function

 followed by an appropriate bindkey command to associate the function

 with a key sequence. Suggested bindings are described below.

 bash-style word functions

 If you are looking for functions to implement moving over and

 editing words in the manner of bash, where only alphanumeric

 characters are considered word characters, you can use the func?

 tions described in the next section. The following is suffi?

 cient:

 autoload -U select-word-style

 select-word-style bash

 forward-word-match, backward-word-match

 kill-word-match, backward-kill-word-match

 transpose-words-match, capitalize-word-match

 up-case-word-match, down-case-word-match

 delete-whole-word-match, select-word-match

 select-word-style, match-word-context, match-words-by-style

 The first eight `-match' functions are drop-in replacements for

 the builtin widgets without the suffix. By default they behave

 in a similar way. However, by the use of styles and the func?

 tion select-word-style, the way words are matched can be al?

 tered. select-word-match is intended to be used as a text object

 in vi mode but with custom word styles. For comparison, the wid?

 gets described in zshzle(1) under Text Objects use fixed defini?

 tions of words, compatible with the vim editor.

 The simplest way of configuring the functions is to use se?

 lect-word-style, which can either be called as a normal function Page 48/110

 with the appropriate argument, or invoked as a user-defined wid?

 get that will prompt for the first character of the word style

 to be used. The first time it is invoked, the first eight

 -match functions will automatically replace the builtin ver?

 sions, so they do not need to be loaded explicitly.

 The word styles available are as follows. Only the first char?

 acter is examined.

 bash Word characters are alphanumeric characters only.

 normal As in normal shell operation: word characters are al?

 phanumeric characters plus any characters present in the

 string given by the parameter $WORDCHARS.

 shell Words are complete shell command arguments, possibly in?

 cluding complete quoted strings, or any tokens special to

 the shell.

 whitespace

 Words are any set of characters delimited by whitespace.

 default

 Restore the default settings; this is usually the same as

 `normal'.

 All but `default' can be input as an upper case character, which

 has the same effect but with subword matching turned on. In

 this case, words with upper case characters are treated spe?

 cially: each separate run of upper case characters, or an upper

 case character followed by any number of other characters, is

 considered a word. The style subword-range can supply an alter?

 native character range to the default `[:upper:]'; the value of

 the style is treated as the contents of a `[...]' pattern (note

 that the outer brackets should not be supplied, only those sur?

 rounding named ranges).

 More control can be obtained using the zstyle command, as de?

 scribed in zshmodules(1). Each style is looked up in the con?

 text :zle:widget where widget is the name of the user-defined

 widget, not the name of the function implementing it, so in the Page 49/110

 case of the definitions supplied by select-word-style the appro?

 priate contexts are :zle:forward-word, and so on. The function

 select-word-style itself always defines styles for the context

 `:zle:*' which can be overridden by more specific (longer) pat?

 terns as well as explicit contexts.

 The style word-style specifies the rules to use. This may have

 the following values.

 normal Use the standard shell rules, i.e. alphanumerics and

 $WORDCHARS, unless overridden by the styles word-chars or

 word-class.

 specified

 Similar to normal, but only the specified characters, and

 not also alphanumerics, are considered word characters.

 unspecified

 The negation of specified. The given characters are

 those which will not be considered part of a word.

 shell Words are obtained by using the syntactic rules for gen?

 erating shell command arguments. In addition, special

 tokens which are never command arguments such as `()' are

 also treated as words.

 whitespace

 Words are whitespace-delimited strings of characters.

 The first three of those rules usually use $WORDCHARS, but the

 value in the parameter can be overridden by the style

 word-chars, which works in exactly the same way as $WORDCHARS.

 In addition, the style word-class uses character class syntax to

 group characters and takes precedence over word-chars if both

 are set. The word-class style does not include the surrounding

 brackets of the character class; for example, `-:[:alnum:]' is a

 valid word-class to include all alphanumerics plus the charac?

 ters `-' and `:'. Be careful including `]', `^' and `-' as

 these are special inside character classes.

 word-style may also have `-subword' appended to its value to Page 50/110

 turn on subword matching, as described above.

 The style skip-chars is mostly useful for transpose-words and

 similar functions. If set, it gives a count of characters

 starting at the cursor position which will not be considered

 part of the word and are treated as space, regardless of what

 they actually are. For example, if

 zstyle ':zle:transpose-words' skip-chars 1

 has been set, and transpose-words-match is called with the cur?

 sor on the X of fooXbar, where X can be any character, then the

 resulting expression is barXfoo.

 Finer grained control can be obtained by setting the style

 word-context to an array of pairs of entries. Each pair of en?

 tries consists of a pattern and a subcontext. The shell argu?

 ment the cursor is on is matched against each pattern in turn

 until one matches; if it does, the context is extended by a

 colon and the corresponding subcontext. Note that the test is

 made against the original word on the line, with no stripping of

 quotes. Special handling is done between words: the current

 context is examined and if it contains the string between the

 word is set to a single space; else if it is contains the string

 back, the word before the cursor is considered, else the word

 after cursor is considered. Some examples are given below.

 The style skip-whitespace-first is only used with the for?

 ward-word widget. If it is set to true, then forward-word skips

 any non-word-characters, followed by any non-word-characters:

 this is similar to the behaviour of other word-orientated wid?

 gets, and also that used by other editors, however it differs

 from the standard zsh behaviour. When using select-word-style

 the widget is set in the context :zle:* to true if the word

 style is bash and false otherwise. It may be overridden by set?

 ting it in the more specific context :zle:forward-word*.

 It is possible to create widgets with specific behaviour by

 defining a new widget implemented by the appropriate generic Page 51/110

 function, then setting a style for the context of the specific

 widget. For example, the following defines a widget back?

 ward-kill-space-word using backward-kill-word-match, the generic

 widget implementing backward-kill-word behaviour, and ensures

 that the new widget always implements space-delimited behaviour.

 zle -N backward-kill-space-word backward-kill-word-match

 zstyle :zle:backward-kill-space-word word-style space

 The widget backward-kill-space-word can now be bound to a key.

 Here are some further examples of use of the styles, actually

 taken from the simplified interface in select-word-style:

 zstyle ':zle:*' word-style standard

 zstyle ':zle:*' word-chars ''

 Implements bash-style word handling for all widgets, i.e. only

 alphanumerics are word characters; equivalent to setting the pa?

 rameter WORDCHARS empty for the given context.

 style ':zle:*kill*' word-style space

 Uses space-delimited words for widgets with the word `kill' in

 the name. Neither of the styles word-chars nor word-class is

 used in this case.

 Here are some examples of use of the word-context style to ex?

 tend the context.

 zstyle ':zle:*' word-context \

 "*/*" filename "[[:space:]]" whitespace

 zstyle ':zle:transpose-words:whitespace' word-style shell

 zstyle ':zle:transpose-words:filename' word-style normal

 zstyle ':zle:transpose-words:filename' word-chars ''

 This provides two different ways of using transpose-words de?

 pending on whether the cursor is on whitespace between words or

 on a filename, here any word containing a /. On whitespace,

 complete arguments as defined by standard shell rules will be

 transposed. In a filename, only alphanumerics will be trans?

 posed. Elsewhere, words will be transposed using the default

 style for :zle:transpose-words. Page 52/110

 The word matching and all the handling of zstyle settings is ac?

 tually implemented by the function match-words-by-style. This

 can be used to create new user-defined widgets. The calling

 function should set the local parameter curcontext to :zle:wid?

 get, create the local parameter matched_words and call

 match-words-by-style with no arguments. On return,

 matched_words will be set to an array with the elements: (1) the

 start of the line (2) the word before the cursor (3) any

 non-word characters between that word and the cursor (4) any

 non-word character at the cursor position plus any remaining

 non-word characters before the next word, including all charac?

 ters specified by the skip-chars style, (5) the word at or fol?

 lowing the cursor (6) any non-word characters following that

 word (7) the remainder of the line. Any of the elements may be

 an empty string; the calling function should test for this to

 decide whether it can perform its function.

 If the variable matched_words is defined by the caller to

 match-words-by-style as an associative array (local -A

 matched_words), then the seven values given above should be re?

 trieved from it as elements named start, word-before-cursor,

 ws-before-cursor, ws-after-cursor, word-after-cursor, ws-af?

 ter-word, and end. In addition the element is-word-start is 1

 if the cursor is on the start of a word or subword, or on white

 space before it (the cases can be distinguished by testing the

 ws-after-cursor element) and 0 otherwise. This form is recom?

 mended for future compatibility.

 It is possible to pass options with arguments to

 match-words-by-style to override the use of styles. The options

 are:

 -w word-style

 -s skip-chars

 -c word-class

 -C word-chars Page 53/110

 -r subword-range

 For example, match-words-by-style -w shell -c 0 may be used to

 extract the command argument around the cursor.

 The word-context style is implemented by the function

 match-word-context. This should not usually need to be called

 directly.

 bracketed-paste-magic

 The bracketed-paste widget (see subsection Miscellaneous in zsh?

 zle(1)) inserts pasted text literally into the editor buffer

 rather than interpret it as keystrokes. This disables some com?

 mon usages where the self-insert widget is replaced in order to

 accomplish some extra processing. An example is the contributed

 url-quote-magic widget described below.

 The bracketed-paste-magic widget is meant to replace brack?

 eted-paste with a wrapper that re-enables these self-insert ac?

 tions, and other actions as selected by zstyles. Therefore this

 widget is installed with

 autoload -Uz bracketed-paste-magic

 zle -N bracketed-paste bracketed-paste-magic

 Other than enabling some widget processing, brack?

 eted-paste-magic attempts to replicate bracketed-paste as faith?

 fully as possible.

 The following zstyles may be set to control processing of pasted

 text. All are looked up in the context `:brack?

 eted-paste-magic'.

 active-widgets

 A list of patterns matching widget names that should be

 activated during the paste. All other key sequences are

 processed as self-insert-unmeta. The default is `self-*'

 so any user-defined widgets named with that prefix are

 active along with the builtin self-insert.

 If this style is not set (explicitly deleted) or set to

 an empty value, no widgets are active and the pasted text Page 54/110

 is inserted literally. If the value includes `unde?

 fined-key', any unknown sequences are discarded from the

 pasted text.

 inactive-keys

 The inverse of active-widgets, a list of key sequences

 that always use self-insert-unmeta even when bound to an

 active widget. Note that this is a list of literal key

 sequences, not patterns.

 paste-init

 A list of function names, called in widget context (but

 not as widgets). The functions are called in order until

 one of them returns a non-zero status. The parameter

 `PASTED' contains the initial state of the pasted text.

 All other ZLE parameters such as `BUFFER' have their nor?

 mal values and side-effects, and full history is avail?

 able, so for example paste-init functions may move words

 from BUFFER into PASTED to make those words visible to

 the active-widgets.

 A non-zero return from a paste-init function does not

 prevent the paste itself from proceeding.

 Loading bracketed-paste-magic defines backward-ex?

 tend-paste, a helper function for use in paste-init.

 zstyle :bracketed-paste-magic paste-init \

 backward-extend-paste

 When a paste would insert into the middle of a word or

 append text to a word already on the line, backward-ex?

 tend-paste moves the prefix from LBUFFER into PASTED so

 that the active-widgets see the full word so far. This

 may be useful with url-quote-magic.

 paste-finish

 Another list of function names called in order until one

 returns non-zero. These functions are called after the

 pasted text has been processed by the active-widgets, but Page 55/110

 before it is inserted into `BUFFER'. ZLE parameters have

 their normal values and side-effects.

 A non-zero return from a paste-finish function does not

 prevent the paste itself from proceeding.

 Loading bracketed-paste-magic also defines quote-paste, a

 helper function for use in paste-finish.

 zstyle :bracketed-paste-magic paste-finish \

 quote-paste

 zstyle :bracketed-paste-magic:finish quote-style \

 qqq

 When the pasted text is inserted into BUFFER, it is

 quoted per the quote-style value. To forcibly turn off

 the built-in numeric prefix quoting of bracketed-paste,

 use:

 zstyle :bracketed-paste-magic:finish quote-style \

 none

 Important: During active-widgets processing of the paste (after

 paste-init and before paste-finish), BUFFER starts empty and

 history is restricted, so cursor motions, etc., may not pass

 outside of the pasted content. Text assigned to BUFFER by the

 active widgets is copied back into PASTED before paste-finish.

 copy-earlier-word

 This widget works like a combination of insert-last-word and

 copy-prev-shell-word. Repeated invocations of the widget re?

 trieve earlier words on the relevant history line. With a nu?

 meric argument N, insert the Nth word from the history line; N

 may be negative to count from the end of the line.

 If insert-last-word has been used to retrieve the last word on a

 previous history line, repeated invocations will replace that

 word with earlier words from the same line.

 Otherwise, the widget applies to words on the line currently be?

 ing edited. The widget style can be set to the name of another

 widget that should be called to retrieve words. This widget Page 56/110

 must accept the same three arguments as insert-last-word.

 cycle-completion-positions

 After inserting an unambiguous string into the command line, the

 new function based completion system may know about multiple

 places in this string where characters are missing or differ

 from at least one of the possible matches. It will then place

 the cursor on the position it considers to be the most interest?

 ing one, i.e. the one where one can disambiguate between as many

 matches as possible with as little typing as possible.

 This widget allows the cursor to be easily moved to the other

 interesting spots. It can be invoked repeatedly to cycle be?

 tween all positions reported by the completion system.

 delete-whole-word-match

 This is another function which works like the -match functions

 described immediately above, i.e. using styles to decide the

 word boundaries. However, it is not a replacement for any ex?

 isting function.

 The basic behaviour is to delete the word around the cursor.

 There is no numeric argument handling; only the single word

 around the cursor is considered. If the widget contains the

 string kill, the removed text will be placed in the cutbuffer

 for future yanking. This can be obtained by defining

 kill-whole-word-match as follows:

 zle -N kill-whole-word-match delete-whole-word-match

 and then binding the widget kill-whole-word-match.

 up-line-or-beginning-search, down-line-or-beginning-search

 These widgets are similar to the builtin functions

 up-line-or-search and down-line-or-search: if in a multiline

 buffer they move up or down within the buffer, otherwise they

 search for a history line matching the start of the current

 line. In this case, however, they search for a line which

 matches the current line up to the current cursor position, in

 the manner of history-beginning-search-backward and -forward, Page 57/110

 rather than the first word on the line.

 edit-command-line

 Edit the command line using your visual editor, as in ksh.

 bindkey -M vicmd v edit-command-line

 expand-absolute-path

 Expand the file name under the cursor to an absolute path, re?

 solving symbolic links. Where possible, the initial path seg?

 ment is turned into a named directory or reference to a user's

 home directory.

 history-search-end

 This function implements the widgets history-begin?

 ning-search-backward-end and history-beginning-search-for?

 ward-end. These commands work by first calling the correspond?

 ing builtin widget (see `History Control' in zshzle(1)) and then

 moving the cursor to the end of the line. The original cursor

 position is remembered and restored before calling the builtin

 widget a second time, so that the same search is repeated to

 look farther through the history.

 Although you autoload only one function, the commands to use it

 are slightly different because it implements two widgets.

 zle -N history-beginning-search-backward-end \

 history-search-end

 zle -N history-beginning-search-forward-end \

 history-search-end

 bindkey '\e^P' history-beginning-search-backward-end

 bindkey '\e^N' history-beginning-search-forward-end

 history-beginning-search-menu

 This function implements yet another form of history searching.

 The text before the cursor is used to select lines from the his?

 tory, as for history-beginning-search-backward except that all

 matches are shown in a numbered menu. Typing the appropriate

 digits inserts the full history line. Note that leading zeroes

 must be typed (they are only shown when necessary for removing Page 58/110

 ambiguity). The entire history is searched; there is no dis?

 tinction between forwards and backwards.

 With a numeric argument, the search is not anchored to the start

 of the line; the string typed by the use may appear anywhere in

 the line in the history.

 If the widget name contains `-end' the cursor is moved to the

 end of the line inserted. If the widget name contains `-space'

 any space in the text typed is treated as a wildcard and can

 match anything (hence a leading space is equivalent to giving a

 numeric argument). Both forms can be combined, for example:

 zle -N history-beginning-search-menu-space-end \

 history-beginning-search-menu

 history-pattern-search

 The function history-pattern-search implements widgets which

 prompt for a pattern with which to search the history backwards

 or forwards. The pattern is in the usual zsh format, however

 the first character may be ^ to anchor the search to the start

 of the line, and the last character may be $ to anchor the

 search to the end of the line. If the search was not anchored

 to the end of the line the cursor is positioned just after the

 pattern found.

 The commands to create bindable widgets are similar to those in

 the example immediately above:

 autoload -U history-pattern-search

 zle -N history-pattern-search-backward history-pattern-search

 zle -N history-pattern-search-forward history-pattern-search

 incarg Typing the keystrokes for this widget with the cursor placed on

 or to the left of an integer causes that integer to be incre?

 mented by one. With a numeric argument, the number is incre?

 mented by the amount of the argument (decremented if the numeric

 argument is negative). The shell parameter incarg may be set to

 change the default increment to something other than one.

 bindkey '^X+' incarg Page 59/110

 incremental-complete-word

 This allows incremental completion of a word. After starting

 this command, a list of completion choices can be shown after

 every character you type, which you can delete with ^H or DEL.

 Pressing return accepts the completion so far and returns you to

 normal editing (that is, the command line is not immediately ex?

 ecuted). You can hit TAB to do normal completion, ^G to abort

 back to the state when you started, and ^D to list the matches.

 This works only with the new function based completion system.

 bindkey '^Xi' incremental-complete-word

 insert-composed-char

 This function allows you to compose characters that don't appear

 on the keyboard to be inserted into the command line. The com?

 mand is followed by two keys corresponding to ASCII characters

 (there is no prompt). For accented characters, the two keys are

 a base character followed by a code for the accent, while for

 other special characters the two characters together form a mne?

 monic for the character to be inserted. The two-character codes

 are a subset of those given by RFC 1345 (see for example

 http://www.faqs.org/rfcs/rfc1345.html).

 The function may optionally be followed by up to two characters

 which replace one or both of the characters read from the key?

 board; if both characters are supplied, no input is read. For

 example, insert-composed-char a: can be used within a widget to

 insert an a with umlaut into the command line. This has the ad?

 vantages over use of a literal character that it is more porta?

 ble.

 For best results zsh should have been built with support for

 multibyte characters (configured with --enable-multibyte); how?

 ever, the function works for the limited range of characters

 available in single-byte character sets such as ISO-8859-1.

 The character is converted into the local representation and in?

 serted into the command line at the cursor position. (The con? Page 60/110

 version is done within the shell, using whatever facilities the

 C library provides.) With a numeric argument, the character and

 its code are previewed in the status line

 The function may be run outside zle in which case it prints the

 character (together with a newline) to standard output. Input

 is still read from keystrokes.

 See insert-unicode-char for an alternative way of inserting Uni?

 code characters using their hexadecimal character number.

 The set of accented characters is reasonably complete up to Uni?

 code character U+0180, the set of special characters less so.

 However, it is very sporadic from that point. Adding new char?

 acters is easy, however; see the function define-composed-chars.

 Please send any additions to zsh-workers@zsh.org.

 The codes for the second character when used to accent the first

 are as follows. Note that not every character can take every

 accent.

 ! Grave.

 ' Acute.

 > Circumflex.

 ? Tilde. (This is not ~ as RFC 1345 does not assume that

 character is present on the keyboard.)

 - Macron. (A horizontal bar over the base character.)

 (Breve. (A shallow dish shape over the base character.)

 . Dot above the base character, or in the case of i no dot,

 or in the case of L and l a centered dot.

 : Diaeresis (Umlaut).

 c Cedilla.

 _ Underline, however there are currently no underlined

 characters.

 / Stroke through the base character.

 " Double acute (only supported on a few letters).

 ; Ogonek. (A little forward facing hook at the bottom

 right of the character.) Page 61/110

 < Caron. (A little v over the letter.)

 0 Circle over the base character.

 2 Hook over the base character.

 9 Horn over the base character.

 The most common characters from the Arabic, Cyrillic, Greek and

 Hebrew alphabets are available; consult RFC 1345 for the appro?

 priate sequences. In addition, a set of two letter codes not in

 RFC 1345 are available for the double-width characters corre?

 sponding to ASCII characters from ! to ~ (0x21 to 0x7e) by pre?

 ceding the character with ^, for example ^A for a double-width

 A.

 The following other two-character sequences are understood.

 ASCII characters

 These are already present on most keyboards:

 <(Left square bracket

 // Backslash (solidus)

)> Right square bracket

 (! Left brace (curly bracket)

 !! Vertical bar (pipe symbol)

 !) Right brace (curly bracket)

 '? Tilde

 Special letters

 Characters found in various variants of the Latin alpha?

 bet:

 ss Eszett (scharfes S)

 D-, d- Eth

 TH, th Thorn

 kk Kra

 'n 'n

 NG, ng Ng

 OI, oi Oi

 yr yr

 ED ezh Page 62/110

 Currency symbols

 Ct Cent

 Pd Pound sterling (also lira and others)

 Cu Currency

 Ye Yen

 Eu Euro (N.B. not in RFC 1345)

 Punctuation characters

 References to "right" quotes indicate the shape (like a 9

 rather than 6) rather than their grammatical use. (For

 example, a "right" low double quote is used to open quo?

 tations in German.)

 !I Inverted exclamation mark

 BB Broken vertical bar

 SE Section

 Co Copyright

 -a Spanish feminine ordinal indicator

 << Left guillemet

 -- Soft hyphen

 Rg Registered trade mark

 PI Pilcrow (paragraph)

 -o Spanish masculine ordinal indicator

 >> Right guillemet

 ?I Inverted question mark

 -1 Hyphen

 -N En dash

 -M Em dash

 -3 Horizontal bar

 :3 Vertical ellipsis

 .3 Horizontal midline ellipsis

 !2 Double vertical line

 =2 Double low line

 '6 Left single quote

 '9 Right single quote Page 63/110

 .9 "Right" low quote

 9' Reversed "right" quote

 "6 Left double quote

 "9 Right double quote

 :9 "Right" low double quote

 9" Reversed "right" double quote

 /- Dagger

 /= Double dagger

 Mathematical symbols

 DG Degree

 -2, +-, -+

 - sign, +/- sign, -/+ sign

 2S Superscript 2

 3S Superscript 3

 1S Superscript 1

 My Micro

 .M Middle dot

 14 Quarter

 12 Half

 34 Three quarters

 *X Multiplication

 -: Division

 %0 Per mille

 FA, TE, /0

 For all, there exists, empty set

 dP, DE, NB

 Partial derivative, delta (increment), del (nabla)

 (-, -) Element of, contains

 *P, +Z Product, sum

 *-, Ob, Sb

 Asterisk, ring, bullet

 RT, 0(, 00

 Root sign, proportional to, infinity Page 64/110

 Other symbols

 cS, cH, cD, cC

 Card suits: spades, hearts, diamonds, clubs

 Md, M8, M2, Mb, Mx, MX

 Musical notation: crotchet (quarter note), quaver (eighth

 note), semiquavers (sixteenth notes), flag sign, natural

 sign, sharp sign

 Fm, Ml Female, male

 Accents on their own

 '> Circumflex (same as caret, ^)

 '! Grave (same as backtick, `)

 ', Cedilla

 ': Diaeresis (Umlaut)

 'm Macron

 '' Acute

 insert-files

 This function allows you type a file pattern, and see the re?

 sults of the expansion at each step. When you hit return, all

 expansions are inserted into the command line.

 bindkey '^Xf' insert-files

 insert-unicode-char

 When first executed, the user inputs a set of hexadecimal dig?

 its. This is terminated with another call to insert-uni?

 code-char. The digits are then turned into the corresponding

 Unicode character. For example, if the widget is bound to ^XU,

 the character sequence `^XU 4 c ^XU' inserts L (Unicode U+004c).

 See insert-composed-char for a way of inserting characters using

 a two-character mnemonic.

 narrow-to-region [-p pre] [-P post]

 [-S statepm | -R statepm | [-l lbufvar] [-r rbuf?

 var]]

 [-n] [start end]

 narrow-to-region-invisible Page 65/110

 Narrow the editable portion of the buffer to the region between

 the cursor and the mark, which may be in either order. The re?

 gion may not be empty.

 narrow-to-region may be used as a widget or called as a function

 from a user-defined widget; by default, the text outside the ed?

 itable area remains visible. A recursive-edit is performed and

 the original widening status is then restored. Various options

 and arguments are available when it is called as a function.

 The options -p pretext and -P posttext may be used to replace

 the text before and after the display for the duration of the

 function; either or both may be an empty string.

 If the option -n is also given, pretext or posttext will only be

 inserted if there is text before or after the region respec?

 tively which will be made invisible.

 Two numeric arguments may be given which will be used instead of

 the cursor and mark positions.

 The option -S statepm is used to narrow according to the other

 options while saving the original state in the parameter with

 name statepm, while the option -R statepm is used to restore the

 state from the parameter; note in both cases the name of the pa?

 rameter is required. In the second case, other options and ar?

 guments are irrelevant. When this method is used, no recur?

 sive-edit is performed; the calling widget should call this

 function with the option -S, perform its own editing on the com?

 mand line or pass control to the user via `zle recursive-edit',

 then call this function with the option -R. The argument

 statepm must be a suitable name for an ordinary parameter, ex?

 cept that parameters beginning with the prefix _ntr_ are re?

 served for use within narrow-to-region. Typically the parameter

 will be local to the calling function.

 The options -l lbufvar and -r rbufvar may be used to specify pa?

 rameters where the widget will store the resulting text from the

 operation. The parameter lbufvar will contain LBUFFER and rbuf? Page 66/110

 var will contain RBUFFER. Neither of these two options may be

 used with -S or -R.

 narrow-to-region-invisible is a simple widget which calls nar?

 row-to-region with arguments which replace any text outside the

 region with `...'. It does not take any arguments.

 The display is restored (and the widget returns) upon any zle

 command which would usually cause the line to be accepted or

 aborted. Hence an additional such command is required to accept

 or abort the current line.

 The return status of both widgets is zero if the line was ac?

 cepted, else non-zero.

 Here is a trivial example of a widget using this feature.

 local state

 narrow-to-region -p $'Editing restricted region\n' \

 -P '' -S state

 zle recursive-edit

 narrow-to-region -R state

 predict-on

 This set of functions implements predictive typing using history

 search. After predict-on, typing characters causes the editor

 to look backward in the history for the first line beginning

 with what you have typed so far. After predict-off, editing re?

 turns to normal for the line found. In fact, you often don't

 even need to use predict-off, because if the line doesn't match

 something in the history, adding a key performs standard comple?

 tion, and then inserts itself if no completions were found.

 However, editing in the middle of a line is liable to confuse

 prediction; see the toggle style below.

 With the function based completion system (which is needed for

 this), you should be able to type TAB at almost any point to ad?

 vance the cursor to the next ``interesting'' character position

 (usually the end of the current word, but sometimes somewhere in

 the middle of the word). And of course as soon as the entire Page 67/110

 line is what you want, you can accept with return, without need?

 ing to move the cursor to the end first.

 The first time predict-on is used, it creates several additional

 widget functions:

 delete-backward-and-predict

 Replaces the backward-delete-char widget. You do not

 need to bind this yourself.

 insert-and-predict

 Implements predictive typing by replacing the self-insert

 widget. You do not need to bind this yourself.

 predict-off

 Turns off predictive typing.

 Although you autoload only the predict-on function, it is neces?

 sary to create a keybinding for predict-off as well.

 zle -N predict-on

 zle -N predict-off

 bindkey '^X^Z' predict-on

 bindkey '^Z' predict-off

 read-from-minibuffer

 This is most useful when called as a function from inside a wid?

 get, but will work correctly as a widget in its own right. It

 prompts for a value below the current command line; a value may

 be input using all of the standard zle operations (and not

 merely the restricted set available when executing, for example,

 execute-named-cmd). The value is then returned to the calling

 function in the parameter $REPLY and the editing buffer restored

 to its previous state. If the read was aborted by a keyboard

 break (typically ^G), the function returns status 1 and $REPLY

 is not set.

 If one argument is supplied to the function it is taken as a

 prompt, otherwise `? ' is used. If two arguments are supplied,

 they are the prompt and the initial value of $LBUFFER, and if a

 third argument is given it is the initial value of $RBUFFER. Page 68/110

 This provides a default value and starting cursor placement.

 Upon return the entire buffer is the value of $REPLY.

 One option is available: `-k num' specifies that num characters

 are to be read instead of a whole line. The line editor is not

 invoked recursively in this case, so depending on the terminal

 settings the input may not be visible, and only the input keys

 are placed in $REPLY, not the entire buffer. Note that unlike

 the read builtin num must be given; there is no default.

 The name is a slight misnomer, as in fact the shell's own

 minibuffer is not used. Hence it is still possible to call exe?

 cuted-named-cmd and similar functions while reading a value.

 replace-argument, replace-argument-edit

 The function replace-argument can be used to replace a command

 line argument in the current command line or, if the current

 command line is empty, in the last command line executed (the

 new command line is not executed). Arguments are as delimited

 by standard shell syntax,

 If a numeric argument is given, that specifies the argument to

 be replaced. 0 means the command name, as in history expansion.

 A negative numeric argument counts backward from the last word.

 If no numeric argument is given, the current argument is re?

 placed; this is the last argument if the previous history line

 is being used.

 The function prompts for a replacement argument.

 If the widget contains the string edit, for example is defined

 as

 zle -N replace-argument-edit replace-argument

 then the function presents the current value of the argument for

 editing, otherwise the editing buffer for the replacement is

 initially empty.

 replace-string, replace-pattern

 replace-string-again, replace-pattern-again

 The function replace-string implements three widgets. If de? Page 69/110

 fined under the same name as the function, it prompts for two

 strings; the first (source) string will be replaced by the sec?

 ond everywhere it occurs in the line editing buffer.

 If the widget name contains the word `pattern', for example by

 defining the widget using the command `zle -N replace-pattern

 replace-string', then the matching is performed using zsh pat?

 terns. All zsh extended globbing patterns can be used in the

 source string; note that unlike filename generation the pattern

 does not need to match an entire word, nor do glob qualifiers

 have any effect. In addition, the replacement string can con?

 tain parameter or command substitutions. Furthermore, a `&' in

 the replacement string will be replaced with the matched source

 string, and a backquoted digit `\N' will be replaced by the Nth

 parenthesised expression matched. The form `\{N}' may be used

 to protect the digit from following digits.

 If the widget instead contains the word `regex' (or `regexp'),

 then the matching is performed using regular expressions, re?

 specting the setting of the option RE_MATCH_PCRE (see the de?

 scription of the function regexp-replace below). The special

 replacement facilities described above for pattern matching are

 available.

 By default the previous source or replacement string will not be

 offered for editing. However, this feature can be activated by

 setting the style edit-previous in the context :zle:widget (for

 example, :zle:replace-string) to true. In addition, a positive

 numeric argument forces the previous values to be offered, a

 negative or zero argument forces them not to be.

 The function replace-string-again can be used to repeat the pre?

 vious replacement; no prompting is done. As with re?

 place-string, if the name of the widget contains the word `pat?

 tern' or `regex', pattern or regular expression matching is per?

 formed, else a literal string replacement. Note that the previ?

 ous source and replacement text are the same whether pattern, Page 70/110

 regular expression or string matching is used.

 In addition, replace-string shows the previous replacement above

 the prompt, so long as there was one during the current session;

 if the source string is empty, that replacement will be repeated

 without the widget prompting for a replacement string.

 For example, starting from the line:

 print This line contains fan and fond

 and invoking replace-pattern with the source string `f(?)n' and

 the replacement string `c\1r' produces the not very useful line:

 print This line contains car and cord

 The range of the replacement string can be limited by using the

 narrow-to-region-invisible widget. One limitation of the cur?

 rent version is that undo will cycle through changes to the re?

 placement and source strings before undoing the replacement it?

 self.

 send-invisible

 This is similar to read-from-minibuffer in that it may be called

 as a function from a widget or as a widget of its own, and in?

 teractively reads input from the keyboard. However, the input

 being typed is concealed and a string of asterisks (`*') is

 shown instead. The value is saved in the parameter $INVISIBLE

 to which a reference is inserted into the editing buffer at the

 restored cursor position. If the read was aborted by a keyboard

 break (typically ^G) or another escape from editing such as

 push-line, $INVISIBLE is set to empty and the original buffer is

 restored unchanged.

 If one argument is supplied to the function it is taken as a

 prompt, otherwise `Non-echoed text: ' is used (as in emacs). If

 a second and third argument are supplied they are used to begin

 and end the reference to $INVISIBLE that is inserted into the

 buffer. The default is to open with ${, then INVISIBLE, and

 close with }, but many other effects are possible.

 smart-insert-last-word Page 71/110

 This function may replace the insert-last-word widget, like so:

 zle -N insert-last-word smart-insert-last-word

 With a numeric argument, or when passed command line arguments

 in a call from another widget, it behaves like insert-last-word,

 except that words in comments are ignored when INTERACTIVE_COM?

 MENTS is set.

 Otherwise, the rightmost ``interesting'' word from the previous

 command is found and inserted. The default definition of ``in?

 teresting'' is that the word contains at least one alphabetic

 character, slash, or backslash. This definition may be overrid?

 den by use of the match style. The context used to look up the

 style is the widget name, so usually the context is :in?

 sert-last-word. However, you can bind this function to differ?

 ent widgets to use different patterns:

 zle -N insert-last-assignment smart-insert-last-word

 zstyle :insert-last-assignment match '[[:alpha:]][][[:alnum:]]#=*'

 bindkey '\e=' insert-last-assignment

 If no interesting word is found and the auto-previous style is

 set to a true value, the search continues upward through the

 history. When auto-previous is unset or false (the default),

 the widget must be invoked repeatedly in order to search earlier

 history lines.

 transpose-lines

 Only useful with a multi-line editing buffer; the lines here are

 lines within the current on-screen buffer, not history lines.

 The effect is similar to the function of the same name in Emacs.

 Transpose the current line with the previous line and move the

 cursor to the start of the next line. Repeating this (which can

 be done by providing a positive numeric argument) has the effect

 of moving the line above the cursor down by a number of lines.

 With a negative numeric argument, requires two lines above the

 cursor. These two lines are transposed and the cursor moved to

 the start of the previous line. Using a numeric argument less Page 72/110

 than -1 has the effect of moving the line above the cursor up by

 minus that number of lines.

 url-quote-magic

 This widget replaces the built-in self-insert to make it easier

 to type URLs as command line arguments. As you type, the input

 character is analyzed and, if it may need quoting, the current

 word is checked for a URI scheme. If one is found and the cur?

 rent word is not already in quotes, a backslash is inserted be?

 fore the input character.

 Styles to control quoting behavior:

 url-metas

 This style is looked up in the context

 `:url-quote-magic:scheme' (where scheme is that of the

 current URL, e.g. "ftp"). The value is a string listing

 the characters to be treated as globbing metacharacters

 when appearing in a URL using that scheme. The default

 is to quote all zsh extended globbing characters, exclud?

 ing '<' and '>' but including braces (as in brace expan?

 sion). See also url-seps.

 url-seps

 Like url-metas, but lists characters that should be con?

 sidered command separators, redirections, history refer?

 ences, etc. The default is to quote the standard set of

 shell separators, excluding those that overlap with the

 extended globbing characters, but including '<' and '>'

 and the first character of $histchars.

 url-globbers

 This style is looked up in the context

 `:url-quote-magic'. The values form a list of command

 names that are expected to do their own globbing on the

 URL string. This implies that they are aliased to use

 the `noglob' modifier. When the first word on the line

 matches one of the values and the URL refers to a local Page 73/110

 file (see url-local-schema), only the url-seps characters

 are quoted; the url-metas are left alone, allowing them

 to affect command-line parsing, completion, etc. The de?

 fault values are a literal `noglob' plus (when the

 zsh/parameter module is available) any commands aliased

 to the helper function `urlglobber' or its alias

 `globurl'.

 url-local-schema

 This style is always looked up in the context `:urlglob?

 ber', even though it is used by both url-quote-magic and

 urlglobber. The values form a list of URI schema that

 should be treated as referring to local files by their

 real local path names, as opposed to files which are

 specified relative to a web-server-defined document root.

 The defaults are "ftp" and "file".

 url-other-schema

 Like url-local-schema, but lists all other URI schema

 upon which urlglobber and url-quote-magic should act. If

 the URI on the command line does not have a scheme ap?

 pearing either in this list or in url-local-schema, it is

 not magically quoted. The default values are "http",

 "https", and "ftp". When a scheme appears both here and

 in url-local-schema, it is quoted differently depending

 on whether the command name appears in url-globbers.

 Loading url-quote-magic also defines a helper function `urlglob?

 ber' and aliases `globurl' to `noglob urlglobber'. This func?

 tion takes a local URL apart, attempts to pattern-match the lo?

 cal file portion of the URL path, and then puts the results back

 into URL format again.

 vi-pipe

 This function reads a movement command from the keyboard and

 then prompts for an external command. The part of the buffer

 covered by the movement is piped to the external command and Page 74/110

 then replaced by the command's output. If the movement command

 is bound to vi-pipe, the current line is used.

 The function serves as an example for reading a vi movement com?

 mand from within a user-defined widget.

 which-command

 This function is a drop-in replacement for the builtin widget

 which-command. It has enhanced behaviour, in that it correctly

 detects whether or not the command word needs to be expanded as

 an alias; if so, it continues tracing the command word from the

 expanded alias until it reaches the command that will be exe?

 cuted.

 The style whence is available in the context :zle:$WIDGET; this

 may be set to an array to give the command and options that will

 be used to investigate the command word found. The default is

 whence -c.

 zcalc-auto-insert

 This function is useful together with the zcalc function de?

 scribed in the section Mathematical Functions. It should be

 bound to a key representing a binary operator such as `+', `-',

 `*' or `/'. When running in zcalc, if the key occurs at the

 start of the line or immediately following an open parenthesis,

 the text "ans " is inserted before the representation of the key

 itself. This allows easy use of the answer from the previous

 calculation in the current line. The text to be inserted before

 the symbol typed can be modified by setting the variable

 ZCALC_AUTO_INSERT_PREFIX.

 Hence, for example, typing `+12' followed by return adds 12 to

 the previous result.

 If zcalc is in RPN mode (-r option) the effect of this binding

 is automatically suppressed as operators alone on a line are

 meaningful.

 When not in zcalc, the key simply inserts the symbol itself.

 Utility Functions Page 75/110

 These functions are useful in constructing widgets. They should be

 loaded with `autoload -U function' and called as indicated from

 user-defined widgets.

 split-shell-arguments

 This function splits the line currently being edited into shell

 arguments and whitespace. The result is stored in the array re?

 ply. The array contains all the parts of the line in order,

 starting with any whitespace before the first argument, and fin?

 ishing with any whitespace after the last argument. Hence (so

 long as the option KSH_ARRAYS is not set) whitespace is given by

 odd indices in the array and arguments by even indices. Note

 that no stripping of quotes is done; joining together all the

 elements of reply in order is guaranteed to produce the original

 line.

 The parameter REPLY is set to the index of the word in reply

 which contains the character after the cursor, where the first

 element has index 1. The parameter REPLY2 is set to the index

 of the character under the cursor in that word, where the first

 character has index 1.

 Hence reply, REPLY and REPLY2 should all be made local to the

 enclosing function.

 See the function modify-current-argument, described below, for

 an example of how to call this function.

 modify-current-argument [expr-using-$ARG | func]

 This function provides a simple method of allowing user-defined

 widgets to modify the command line argument under the cursor (or

 immediately to the left of the cursor if the cursor is between

 arguments).

 The argument can be an expression which when evaluated operates

 on the shell parameter ARG, which will have been set to the com?

 mand line argument under the cursor. The expression should be

 suitably quoted to prevent it being evaluated too early.

 Alternatively, if the argument does not contain the string ARG, Page 76/110

 it is assumed to be a shell function, to which the current com?

 mand line argument is passed as the only argument. The function

 should set the variable REPLY to the new value for the command

 line argument. If the function returns non-zero status, so does

 the calling function.

 For example, a user-defined widget containing the following code

 converts the characters in the argument under the cursor into

 all upper case:

 modify-current-argument '${(U)ARG}'

 The following strips any quoting from the current word (whether

 backslashes or one of the styles of quotes), and replaces it

 with single quoting throughout:

 modify-current-argument '${(qq)${(Q)ARG}}'

 The following performs directory expansion on the command line

 argument and replaces it by the absolute path:

 expand-dir() {

 REPLY=${~1}

 REPLY=${REPLY:a}

 }

 modify-current-argument expand-dir

 In practice the function expand-dir would probably not be de?

 fined within the widget where modify-current-argument is called.

 Styles

 The behavior of several of the above widgets can be controlled by the

 use of the zstyle mechanism. In particular, widgets that interact with

 the completion system pass along their context to any completions that

 they invoke.

 break-keys

 This style is used by the incremental-complete-word widget. Its

 value should be a pattern, and all keys matching this pattern

 will cause the widget to stop incremental completion without the

 key having any further effect. Like all styles used directly by

 incremental-complete-word, this style is looked up using the Page 77/110

 context `:incremental'.

 completer

 The incremental-complete-word and insert-and-predict widgets set

 up their top-level context name before calling completion. This

 allows one to define different sets of completer functions for

 normal completion and for these widgets. For example, to use

 completion, approximation and correction for normal completion,

 completion and correction for incremental completion and only

 completion for prediction one could use:

 zstyle ':completion:*' completer \

 _complete _correct _approximate

 zstyle ':completion:incremental:*' completer \

 _complete _correct

 zstyle ':completion:predict:*' completer \

 _complete

 It is a good idea to restrict the completers used in prediction,

 because they may be automatically invoked as you type. The

 _list and _menu completers should never be used with prediction.

 The _approximate, _correct, _expand, and _match completers may

 be used, but be aware that they may change characters anywhere

 in the word behind the cursor, so you need to watch carefully

 that the result is what you intended.

 cursor The insert-and-predict widget uses this style, in the context

 `:predict', to decide where to place the cursor after completion

 has been tried. Values are:

 complete

 The cursor is left where it was when completion finished,

 but only if it is after a character equal to the one just

 inserted by the user. If it is after another character,

 this value is the same as `key'.

 key The cursor is left after the nth occurrence of the char?

 acter just inserted, where n is the number of times that

 character appeared in the word before completion was at? Page 78/110

 tempted. In short, this has the effect of leaving the

 cursor after the character just typed even if the comple?

 tion code found out that no other characters need to be

 inserted at that position.

 Any other value for this style unconditionally leaves the cursor

 at the position where the completion code left it.

 list When using the incremental-complete-word widget, this style says

 if the matches should be listed on every key press (if they fit

 on the screen). Use the context prefix `:completion:incremen?

 tal'.

 The insert-and-predict widget uses this style to decide if the

 completion should be shown even if there is only one possible

 completion. This is done if the value of this style is the

 string always. In this case the context is `:predict' (not

 `:completion:predict').

 match This style is used by smart-insert-last-word to provide a pat?

 tern (using full EXTENDED_GLOB syntax) that matches an interest?

 ing word. The context is the name of the widget to which

 smart-insert-last-word is bound (see above). The default behav?

 ior of smart-insert-last-word is equivalent to:

 zstyle :insert-last-word match '*[[:alpha:]/\\]*'

 However, you might want to include words that contain spaces:

 zstyle :insert-last-word match '*[[:alpha:][:space:]/\\]*'

 Or include numbers as long as the word is at least two charac?

 ters long:

 zstyle :insert-last-word match '*([[:digit:]]?|[[:alpha:]/\\])*'

 The above example causes redirections like "2>" to be included.

 prompt The incremental-complete-word widget shows the value of this

 style in the status line during incremental completion. The

 string value may contain any of the following substrings in the

 manner of the PS1 and other prompt parameters:

 %c Replaced by the name of the completer function that gen?

 erated the matches (without the leading underscore). Page 79/110

 %l When the list style is set, replaced by `...' if the list

 of matches is too long to fit on the screen and with an

 empty string otherwise. If the list style is `false' or

 not set, `%l' is always removed.

 %n Replaced by the number of matches generated.

 %s Replaced by `-no match-', `-no prefix-', or an empty

 string if there is no completion matching the word on the

 line, if the matches have no common prefix different from

 the word on the line, or if there is such a common pre?

 fix, respectively.

 %u Replaced by the unambiguous part of all matches, if there

 is any, and if it is different from the word on the line.

 Like `break-keys', this uses the `:incremental' context.

 stop-keys

 This style is used by the incremental-complete-word widget. Its

 value is treated similarly to the one for the break-keys style

 (and uses the same context: `:incremental'). However, in this

 case all keys matching the pattern given as its value will stop

 incremental completion and will then execute their usual func?

 tion.

 toggle This boolean style is used by predict-on and its related widgets

 in the context `:predict'. If set to one of the standard `true'

 values, predictive typing is automatically toggled off in situa?

 tions where it is unlikely to be useful, such as when editing a

 multi-line buffer or after moving into the middle of a line and

 then deleting a character. The default is to leave prediction

 turned on until an explicit call to predict-off.

 verbose

 This boolean style is used by predict-on and its related widgets

 in the context `:predict'. If set to one of the standard `true'

 values, these widgets display a message below the prompt when

 the predictive state is toggled. This is most useful in combi?

 nation with the toggle style. The default does not display Page 80/110

 these messages.

 widget This style is similar to the command style: For widget functions

 that use zle to call other widgets, this style can sometimes be

 used to override the widget which is called. The context for

 this style is the name of the calling widget (not the name of

 the calling function, because one function may be bound to mul?

 tiple widget names).

 zstyle :copy-earlier-word widget smart-insert-last-word

 Check the documentation for the calling widget or function to

 determine whether the widget style is used.

EXCEPTION HANDLING

 Two functions are provided to enable zsh to provide exception handling

 in a form that should be familiar from other languages.

 throw exception

 The function throw throws the named exception. The name is an

 arbitrary string and is only used by the throw and catch func?

 tions. An exception is for the most part treated the same as a

 shell error, i.e. an unhandled exception will cause the shell to

 abort all processing in a function or script and to return to

 the top level in an interactive shell.

 catch exception-pattern

 The function catch returns status zero if an exception was

 thrown and the pattern exception-pattern matches its name. Oth?

 erwise it returns status 1. exception-pattern is a standard

 shell pattern, respecting the current setting of the EX?

 TENDED_GLOB option. An alias catch is also defined to prevent

 the argument to the function from matching filenames, so pat?

 terns may be used unquoted. Note that as exceptions are not

 fundamentally different from other shell errors it is possible

 to catch shell errors by using an empty string as the exception

 name. The shell variable CAUGHT is set by catch to the name of

 the exception caught. It is possible to rethrow an exception by

 calling the throw function again once an exception has been Page 81/110

 caught.

 The functions are designed to be used together with the always con?

 struct described in zshmisc(1). This is important as only this con?

 struct provides the required support for exceptions. A typical example

 is as follows.

 {

 # "try" block

 # ... nested code here calls "throw MyExcept"

 } always {

 # "always" block

 if catch MyExcept; then

 print "Caught exception MyExcept"

 elif catch ''; then

 print "Caught a shell error. Propagating..."

 throw ''

 fi

 # Other exceptions are not handled but may be caught further

 # up the call stack.

 }

 If all exceptions should be caught, the following idiom might be

 preferable.

 {

 # ... nested code here throws an exception

 } always {

 if catch *; then

 case $CAUGHT in

 (MyExcept)

 print "Caught my own exception"

 ;;

 (*)

 print "Caught some other exception"

 ;;

 esac Page 82/110

 fi

 }

 In common with exception handling in other languages, the exception may

 be thrown by code deeply nested inside the `try' block. However, note

 that it must be thrown inside the current shell, not in a subshell

 forked for a pipeline, parenthesised current-shell construct, or some

 form of command or process substitution.

 The system internally uses the shell variable EXCEPTION to record the

 name of the exception between throwing and catching. One drawback of

 this scheme is that if the exception is not handled the variable EXCEP?

 TION remains set and may be incorrectly recognised as the name of an

 exception if a shell error subsequently occurs. Adding unset EXCEPTION

 at the start of the outermost layer of any code that uses exception

 handling will eliminate this problem.

MIME FUNCTIONS

 Three functions are available to provide handling of files recognised

 by extension, for example to dispatch a file text.ps when executed as a

 command to an appropriate viewer.

 zsh-mime-setup [-fv] [-l [suffix ...]]

 zsh-mime-handler [-l] command argument ...

 These two functions use the files ~/.mime.types and

 /etc/mime.types, which associate types and extensions, as well

 as ~/.mailcap and /etc/mailcap files, which associate types and

 the programs that handle them. These are provided on many sys?

 tems with the Multimedia Internet Mail Extensions.

 To enable the system, the function zsh-mime-setup should be au?

 toloaded and run. This allows files with extensions to be

 treated as executable; such files be completed by the function

 completion system. The function zsh-mime-handler should not

 need to be called by the user.

 The system works by setting up suffix aliases with `alias -s'.

 Suffix aliases already installed by the user will not be over?

 written. Page 83/110

 For suffixes defined in lower case, upper case variants will

 also automatically be handled (e.g. PDF is automatically handled

 if handling for the suffix pdf is defined), but not vice versa.

 Repeated calls to zsh-mime-setup do not override the existing

 mapping between suffixes and executable files unless the option

 -f is given. Note, however, that this does not override exist?

 ing suffix aliases assigned to handlers other than zsh-mime-han?

 dler.

 Calling zsh-mime-setup with the option -l lists the existing

 mappings without altering them. Suffixes to list (which may

 contain pattern characters that should be quoted from immediate

 interpretation on the command line) may be given as additional

 arguments, otherwise all suffixes are listed.

 Calling zsh-mime-setup with the option -v causes verbose output

 to be shown during the setup operation.

 The system respects the mailcap flags needsterminal and copi?

 ousoutput, see mailcap(4).

 The functions use the following styles, which are defined with

 the zstyle builtin command (see zshmodules(1)). They should be

 defined before zsh-mime-setup is run. The contexts used all

 start with :mime:, with additional components in some cases. It

 is recommended that a trailing * (suitably quoted) be appended

 to style patterns in case the system is extended in future.

 Some examples are given below.

 For files that have multiple suffixes, e.g. .pdf.gz, where the

 context includes the suffix it will be looked up starting with

 the longest possible suffix until a match for the style is

 found. For example, if .pdf.gz produces a match for the han?

 dler, that will be used; otherwise the handler for .gz will be

 used. Note that, owing to the way suffix aliases work, it is

 always required that there be a handler for the shortest possi?

 ble suffix, so in this example .pdf.gz can only be handled if

 .gz is also handled (though not necessarily in the same way). Page 84/110

 Alternatively, if no handling for .gz on its own is needed, sim?

 ply adding the command

 alias -s gz=zsh-mime-handler

 to the initialisation code is sufficient; .gz will not be han?

 dled on its own, but may be in combination with other suffixes.

 current-shell

 If this boolean style is true, the mailcap handler for

 the context in question is run using the eval builtin in?

 stead of by starting a new sh process. This is more ef?

 ficient, but may not work in the occasional cases where

 the mailcap handler uses strict POSIX syntax.

 disown If this boolean style is true, mailcap handlers started

 in the background will be disowned, i.e. not subject to

 job control within the parent shell. Such handlers

 nearly always produce their own windows, so the only

 likely harmful side effect of setting the style is that

 it becomes harder to kill jobs from within the shell.

 execute-as-is

 This style gives a list of patterns to be matched against

 files passed for execution with a handler program. If

 the file matches the pattern, the entire command line is

 executed in its current form, with no handler. This is

 useful for files which might have suffixes but nonethe?

 less be executable in their own right. If the style is

 not set, the pattern *(*) *(/) is used; hence executable

 files are executed directly and not passed to a handler,

 and the option AUTO_CD may be used to change to directo?

 ries that happen to have MIME suffixes.

 execute-never

 This style is useful in combination with execute-as-is.

 It is set to an array of patterns corresponding to full

 paths to files that should never be treated as exe?

 cutable, even if the file passed to the MIME handler Page 85/110

 matches execute-as-is. This is useful for file systems

 that don't handle execute permission or that contain exe?

 cutables from another operating system. For example, if

 /mnt/windows is a Windows mount, then

 zstyle ':mime:*' execute-never '/mnt/windows/*'

 will ensure that any files found in that area will be ex?

 ecuted as MIME types even if they are executable. As

 this example shows, the complete file name is matched

 against the pattern, regardless of how the file was

 passed to the handler. The file is resolved to a full

 path using the :P modifier described in the subsection

 Modifiers in zshexpn(1); this means that symbolic links

 are resolved where possible, so that links into other

 file systems behave in the correct fashion.

 file-path

 Used if the style find-file-in-path is true for the same

 context. Set to an array of directories that are used

 for searching for the file to be handled; the default is

 the command path given by the special parameter path.

 The shell option PATH_DIRS is respected; if that is set,

 the appropriate path will be searched even if the name of

 the file to be handled as it appears on the command line

 contains a `/'. The full context is :mime:.suffix:, as

 described for the style handler.

 find-file-in-path

 If set, allows files whose names do not contain absolute

 paths to be searched for in the command path or the path

 specified by the file-path style. If the file is not

 found in the path, it is looked for locally (whether or

 not the current directory is in the path); if it is not

 found locally, the handler will abort unless the han?

 dle-nonexistent style is set. Files found in the path

 are tested as described for the style execute-as-is. The Page 86/110

 full context is :mime:.suffix:, as described for the

 style handler.

 flags Defines flags to go with a handler; the context is as for

 the handler style, and the format is as for the flags in

 mailcap.

 handle-nonexistent

 By default, arguments that don't correspond to files are

 not passed to the MIME handler in order to prevent it

 from intercepting commands found in the path that happen

 to have suffixes. This style may be set to an array of

 extended glob patterns for arguments that will be passed

 to the handler even if they don't exist. If it is not

 explicitly set it defaults to [[:alpha:]]#:/* which al?

 lows URLs to be passed to the MIME handler even though

 they don't exist in that format in the file system. The

 full context is :mime:.suffix:, as described for the

 style handler.

 handler

 Specifies a handler for a suffix; the suffix is given by

 the context as :mime:.suffix:, and the format of the han?

 dler is exactly that in mailcap. Note in particular the

 `.' and trailing colon to distinguish this use of the

 context. This overrides any handler specified by the

 mailcap files. If the handler requires a terminal, the

 flags style should be set to include the word needstermi?

 nal, or if the output is to be displayed through a pager

 (but not if the handler is itself a pager), it should in?

 clude copiousoutput.

 mailcap

 A list of files in the format of ~/.mailcap and

 /etc/mailcap to be read during setup, replacing the de?

 fault list which consists of those two files. The con?

 text is :mime:. A + in the list will be replaced by the Page 87/110

 default files.

 mailcap-priorities

 This style is used to resolve multiple mailcap entries

 for the same MIME type. It consists of an array of the

 following elements, in descending order of priority;

 later entries will be used if earlier entries are unable

 to resolve the entries being compared. If none of the

 tests resolve the entries, the first entry encountered is

 retained.

 files The order of files (entries in the mailcap style)

 read. Earlier files are preferred. (Note this

 does not resolve entries in the same file.)

 priority

 The priority flag from the mailcap entry. The

 priority is an integer from 0 to 9 with the de?

 fault value being 5.

 flags The test given by the mailcap-prio-flags option is

 used to resolve entries.

 place Later entries are preferred; as the entries are

 strictly ordered, this test always succeeds.

 Note that as this style is handled during initialisation,

 the context is always :mime:, with no discrimination by

 suffix.

 mailcap-prio-flags

 This style is used when the keyword flags is encountered

 in the list of tests specified by the mailcap-priorities

 style. It should be set to a list of patterns, each of

 which is tested against the flags specified in the mail?

 cap entry (in other words, the sets of assignments found

 with some entries in the mailcap file). Earlier patterns

 in the list are preferred to later ones, and matched pat?

 terns are preferred to unmatched ones.

 mime-types Page 88/110

 A list of files in the format of ~/.mime.types and

 /etc/mime.types to be read during setup, replacing the

 default list which consists of those two files. The con?

 text is :mime:. A + in the list will be replaced by the

 default files.

 never-background

 If this boolean style is set, the handler for the given

 context is always run in the foreground, even if the

 flags provided in the mailcap entry suggest it need not

 be (for example, it doesn't require a terminal).

 pager If set, will be used instead of $PAGER or more to handle

 suffixes where the copiousoutput flag is set. The con?

 text is as for handler, i.e. :mime:.suffix: for handling

 a file with the given suffix.

 Examples:

 zstyle ':mime:*' mailcap ~/.mailcap /usr/local/etc/mailcap

 zstyle ':mime:.txt:' handler less %s

 zstyle ':mime:.txt:' flags needsterminal

 When zsh-mime-setup is subsequently run, it will look for mail?

 cap entries in the two files given. Files of suffix .txt will

 be handled by running `less file.txt'. The flag needsterminal

 is set to show that this program must run attached to a termi?

 nal.

 As there are several steps to dispatching a command, the follow?

 ing should be checked if attempting to execute a file by exten?

 sion .ext does not have the expected effect.

 The command `alias -s ext' should show `ps=zsh-mime-handler'.

 If it shows something else, another suffix alias was already in?

 stalled and was not overwritten. If it shows nothing, no han?

 dler was installed: this is most likely because no handler was

 found in the .mime.types and mailcap combination for .ext files.

 In that case, appropriate handling should be added to

 ~/.mime.types and mailcap. Page 89/110

 If the extension is handled by zsh-mime-handler but the file is

 not opened correctly, either the handler defined for the type is

 incorrect, or the flags associated with it are in appropriate.

 Running zsh-mime-setup -l will show the handler and, if there

 are any, the flags. A %s in the handler is replaced by the file

 (suitably quoted if necessary). Check that the handler program

 listed lists and can be run in the way shown. Also check that

 the flags needsterminal or copiousoutput are set if the handler

 needs to be run under a terminal; the second flag is used if the

 output should be sent to a pager. An example of a suitable

 mailcap entry for such a program is:

 text/html; /usr/bin/lynx '%s'; needsterminal

 Running `zsh-mime-handler -l command line' prints the command

 line that would be executed, simplified to remove the effect of

 any flags, and quoted so that the output can be run as a com?

 plete zsh command line. This is used by the completion system

 to decide how to complete after a file handled by

 zsh-mime-setup.

 pick-web-browser

 This function is separate from the two MIME functions described

 above and can be assigned directly to a suffix:

 autoload -U pick-web-browser

 alias -s html=pick-web-browser

 It is provided as an intelligent front end to dispatch a web

 browser. It may be run as either a function or a shell script.

 The status 255 is returned if no browser could be started.

 Various styles are available to customize the choice of

 browsers:

 browser-style

 The value of the style is an array giving preferences in

 decreasing order for the type of browser to use. The

 values of elements may be

 running Page 90/110

 Use a GUI browser that is already running when an

 X Window display is available. The browsers

 listed in the x-browsers style are tried in order

 until one is found; if it is, the file will be

 displayed in that browser, so the user may need to

 check whether it has appeared. If no running

 browser is found, one is not started. Browsers

 other than Firefox, Opera and Konqueror are as?

 sumed to understand the Mozilla syntax for opening

 a URL remotely.

 x Start a new GUI browser when an X Window display

 is available. Search for the availability of one

 of the browsers listed in the x-browsers style and

 start the first one that is found. No check is

 made for an already running browser.

 tty Start a terminal-based browser. Search for the

 availability of one of the browsers listed in the

 tty-browsers style and start the first one that is

 found.

 If the style is not set the default running x tty is

 used.

 x-browsers

 An array in decreasing order of preference of browsers to

 use when running under the X Window System. The array

 consists of the command name under which to start the

 browser. They are looked up in the context :mime: (which

 may be extended in future, so appending `*' is recom?

 mended). For example,

 zstyle ':mime:*' x-browsers opera konqueror firefox

 specifies that pick-web-browser should first look for a

 running instance of Opera, Konqueror or Firefox, in that

 order, and if it fails to find any should attempt to

 start Opera. The default is firefox mozilla netscape Page 91/110

 opera konqueror.

 tty-browsers

 An array similar to x-browsers, except that it gives

 browsers to use when no X Window display is available.

 The default is elinks links lynx.

 command

 If it is set this style is used to pick the command used

 to open a page for a browser. The context is

 :mime:browser:new:$browser: to start a new browser or

 :mime:browser:running:$browser: to open a URL in a

 browser already running on the current X display, where

 $browser is the value matched in the x-browsers or

 tty-browsers style. The escape sequence %b in the

 style's value will be replaced by the browser, while %u

 will be replaced by the URL. If the style is not set,

 the default for all new instances is equivalent to %b %u

 and the defaults for using running browsers are equiva?

 lent to the values kfmclient openURL %u for Konqueror,

 firefox -new-tab %u for Firefox, opera -newpage %u for

 Opera, and %b -remote "openUrl(%u)" for all others.

MATHEMATICAL FUNCTIONS

 zcalc [-erf] [expression ...]

 A reasonably powerful calculator based on zsh's arithmetic eval?

 uation facility. The syntax is similar to that of formulae in

 most programming languages; see the section `Arithmetic Evalua?

 tion' in zshmisc(1) for details.

 Non-programmers should note that, as in many other programming

 languages, expressions involving only integers (whether con?

 stants without a `.', variables containing such constants as

 strings, or variables declared to be integers) are by default

 evaluated using integer arithmetic, which is not how an ordinary

 desk calculator operates. To force floating point operation,

 pass the option -f; see further notes below. Page 92/110

 If the file ~/.zcalcrc exists it will be sourced inside the

 function once it is set up and about to process the command

 line. This can be used, for example, to set shell options; emu?

 late -L zsh and setopt extendedglob are in effect at this point.

 Any failure to source the file if it exists is treated as fatal.

 As with other initialisation files, the directory $ZDOTDIR is

 used instead of $HOME if it is set.

 The mathematical library zsh/mathfunc will be loaded if it is

 available; see the section `The zsh/mathfunc Module' in zshmod?

 ules(1). The mathematical functions correspond to the raw sys?

 tem libraries, so trigonometric functions are evaluated using

 radians, and so on.

 Each line typed is evaluated as an expression. The prompt shows

 a number, which corresponds to a positional parameter where the

 result of that calculation is stored. For example, the result

 of the calculation on the line preceded by `4> ' is available as

 $4. The last value calculated is available as ans. Full com?

 mand line editing, including the history of previous calcula?

 tions, is available; the history is saved in the file

 ~/.zcalc_history. To exit, enter a blank line or type `:q' on

 its own (`q' is allowed for historical compatibility).

 A line ending with a single backslash is treated in the same

 fashion as it is in command line editing: the backslash is re?

 moved, the function prompts for more input (the prompt is pre?

 ceded by `...' to indicate this), and the lines are combined

 into one to get the final result. In addition, if the input so

 far contains more open than close parentheses zcalc will prompt

 for more input.

 If arguments are given to zcalc on start up, they are used to

 prime the first few positional parameters. A visual indication

 of this is given when the calculator starts.

 The constants PI (3.14159...) and E (2.71828...) are provided.

 Parameter assignment is possible, but note that all parameters Page 93/110

 will be put into the global namespace unless the :local special

 command is used. The function creates local variables whose

 names start with _, so users should avoid doing so. The vari?

 ables ans (the last answer) and stack (the stack in RPN mode)

 may be referred to directly; stack is an array but elements of

 it are numeric. Various other special variables are used lo?

 cally with their standard meaning, for example compcontext,

 match, mbegin, mend, psvar.

 The output base can be initialised by passing the option

 `-#base', for example `zcalc -#16' (the `#' may have to be

 quoted, depending on the globbing options set).

 If the option `-e' is set, the function runs non-interactively:

 the arguments are treated as expressions to be evaluated as if

 entered interactively line by line.

 If the option `-f' is set, all numbers are treated as floating

 point, hence for example the expression `3/4' evaluates to 0.75

 rather than 0. Options must appear in separate words.

 If the option `-r' is set, RPN (Reverse Polish Notation) mode is

 entered. This has various additional properties:

 Stack Evaluated values are maintained in a stack; this is con?

 tained in an array named stack with the most recent value

 in ${stack[1]}.

 Operators and functions

 If the line entered matches an operator (+, -, *, /, **,

 ^, | or &) or a function supplied by the zsh/mathfunc li?

 brary, the bottom element or elements of the stack are

 popped to use as the argument or arguments. The higher

 elements of stack (least recent) are used as earlier ar?

 guments. The result is then pushed into ${stack[1]}.

 Expressions

 Other expressions are evaluated normally, printed, and

 added to the stack as numeric values. The syntax within

 expressions on a single line is normal shell arithmetic Page 94/110

 (not RPN).

 Stack listing

 If an integer follows the option -r with no space, then

 on every evaluation that many elements of the stack,

 where available, are printed instead of just the most re?

 cent result. Hence, for example, zcalc -r4 shows

 $stack[4] to $stack[1] each time results are printed.

 Duplication: =

 The pseudo-operator = causes the most recent element of

 the stack to be duplicated onto the stack.

 pop The pseudo-function pop causes the most recent element of

 the stack to be popped. A `>' on its own has the same

 effect.

 >ident The expression > followed (with no space) by a shell

 identifier causes the most recent element of the stack to

 be popped and assigned to the variable with that name.

 The variable is local to the zcalc function.

 <ident The expression < followed (with no space) by a shell

 identifier causes the value of the variable with that

 name to be pushed onto the stack. ident may be an inte?

 ger, in which case the previous result with that number

 (as shown before the > in the standard zcalc prompt) is

 put on the stack.

 Exchange: xy

 The pseudo-function xy causes the most recent two ele?

 ments of the stack to be exchanged. `<>' has the same

 effect.

 The prompt is configurable via the parameter ZCALCPROMPT, which

 undergoes standard prompt expansion. The index of the current

 entry is stored locally in the first element of the array psvar,

 which can be referred to in ZCALCPROMPT as `%1v'. The default

 prompt is `%1v> '.

 The variable ZCALC_ACTIVE is set within the function and can be Page 95/110

 tested by nested functions; it has the value rpn if RPN mode is

 active, else 1.

 A few special commands are available; these are introduced by a

 colon. For backward compatibility, the colon may be omitted for

 certain commands. Completion is available if compinit has been

 run.

 The output precision may be specified within zcalc by special

 commands familiar from many calculators.

 :norm The default output format. It corresponds to the printf

 %g specification. Typically this shows six decimal dig?

 its.

 :sci digits

 Scientific notation, corresponding to the printf %g out?

 put format with the precision given by digits. This pro?

 duces either fixed point or exponential notation depend?

 ing on the value output.

 :fix digits

 Fixed point notation, corresponding to the printf %f out?

 put format with the precision given by digits.

 :eng digits

 Exponential notation, corresponding to the printf %E out?

 put format with the precision given by digits.

 :raw Raw output: this is the default form of the output from

 a math evaluation. This may show more precision than the

 number actually possesses.

 Other special commands:

 :!line...

 Execute line... as a normal shell command line. Note

 that it is executed in the context of the function, i.e.

 with local variables. Space is optional after :!.

 :local arg ...

 Declare variables local to the function. Other variables

 may be used, too, but they will be taken from or put into Page 96/110

 the global scope.

 :function name [body]

 Define a mathematical function or (with no body) delete

 it. :function may be abbreviated to :func or simply :f.

 The name may contain the same characters as a shell func?

 tion name. The function is defined using zmathfuncdef,

 see below.

 Note that zcalc takes care of all quoting. Hence for ex?

 ample:

 :f cube $1 * $1 * $1

 defines a function to cube the sole argument. Functions

 so defined, or indeed any functions defined directly or

 indirectly using functions -M, are available to execute

 by typing only the name on the line in RPN mode; this

 pops the appropriate number of arguments off the stack to

 pass to the function, i.e. 1 in the case of the example

 cube function. If there are optional arguments only the

 mandatory arguments are supplied by this means.

 [#base]

 This is not a special command, rather part of normal

 arithmetic syntax; however, when this form appears on a

 line by itself the default output radix is set to base.

 Use, for example, `[#16]' to display hexadecimal output

 preceded by an indication of the base, or `[##16]' just

 to display the raw number in the given base. Bases them?

 selves are always specified in decimal. `[#]' restores

 the normal output format. Note that setting an output

 base suppresses floating point output; use `[#]' to re?

 turn to normal operation.

 $var Print out the value of var literally; does not affect the

 calculation. To use the value of var, omit the leading

 `$'.

 See the comments in the function for a few extra tips. Page 97/110

 min(arg, ...)

 max(arg, ...)

 sum(arg, ...)

 zmathfunc

 The function zmathfunc defines the three mathematical functions

 min, max, and sum. The functions min and max take one or more

 arguments. The function sum takes zero or more arguments. Ar?

 guments can be of different types (ints and floats).

 Not to be confused with the zsh/mathfunc module, described in

 the section `The zsh/mathfunc Module' in zshmodules(1).

 zmathfuncdef [mathfunc [body]]

 A convenient front end to functions -M.

 With two arguments, define a mathematical function named math?

 func which can be used in any form of arithmetic evaluation.

 body is a mathematical expression to implement the function. It

 may contain references to position parameters $1, $2, ... to

 refer to mandatory parameters and ${1:-defvalue} ... to refer

 to optional parameters. Note that the forms must be strictly

 adhered to for the function to calculate the correct number of

 arguments. The implementation is held in a shell function named

 zsh_math_func_mathfunc; usually the user will not need to refer

 to the shell function directly. Any existing function of the

 same name is silently replaced.

 With one argument, remove the mathematical function mathfunc as

 well as the shell function implementation.

 With no arguments, list all mathfunc functions in a form suit?

 able for restoring the definition. The functions have not nec?

 essarily been defined by zmathfuncdef.

USER CONFIGURATION FUNCTIONS

 The zsh/newuser module comes with a function to aid in configuring

 shell options for new users. If the module is installed, this function

 can also be run by hand. It is available even if the module's default

 behaviour, namely running the function for a new user logging in with? Page 98/110

 out startup files, is inhibited.

 zsh-newuser-install [-f]

 The function presents the user with various options for cus?

 tomizing their initialization scripts. Currently only ~/.zshrc

 is handled. $ZDOTDIR/.zshrc is used instead if the parameter

 ZDOTDIR is set; this provides a way for the user to configure a

 file without altering an existing .zshrc.

 By default the function exits immediately if it finds any of the

 files .zshenv, .zprofile, .zshrc, or .zlogin in the appropriate

 directory. The option -f is required in order to force the

 function to continue. Note this may happen even if .zshrc it?

 self does not exist.

 As currently configured, the function will exit immediately if

 the user has root privileges; this behaviour cannot be overrid?

 den.

 Once activated, the function's behaviour is supposed to be

 self-explanatory. Menus are present allowing the user to alter

 the value of options and parameters. Suggestions for improve?

 ments are always welcome.

 When the script exits, the user is given the opportunity to save

 the new file or not; changes are not irreversible until this

 point. However, the script is careful to restrict changes to

 the file only to a group marked by the lines `# Lines configured

 by zsh-newuser-install' and `# End of lines configured by

 zsh-newuser-install'. In addition, the old version of .zshrc is

 saved to a file with the suffix .zni appended.

 If the function edits an existing .zshrc, it is up to the user

 to ensure that the changes made will take effect. For example,

 if control usually returns early from the existing .zshrc the

 lines will not be executed; or a later initialization file may

 override options or parameters, and so on. The function itself

 does not attempt to detect any such conflicts.

OTHER FUNCTIONS Page 99/110

 There are a large number of helpful functions in the Functions/Misc di?

 rectory of the zsh distribution. Most are very simple and do not re?

 quire documentation here, but a few are worthy of special mention.

 Descriptions

 colors This function initializes several associative arrays to map

 color names to (and from) the ANSI standard eight-color terminal

 codes. These are used by the prompt theme system (see above).

 You seldom should need to run colors more than once.

 The eight base colors are: black, red, green, yellow, blue, ma?

 genta, cyan, and white. Each of these has codes for foreground

 and background. In addition there are seven intensity at?

 tributes: bold, faint, standout, underline, blink, reverse, and

 conceal. Finally, there are seven codes used to negate at?

 tributes: none (reset all attributes to the defaults), normal

 (neither bold nor faint), no-standout, no-underline, no-blink,

 no-reverse, and no-conceal.

 Some terminals do not support all combinations of colors and in?

 tensities.

 The associative arrays are:

 color

 colour Map all the color names to their integer codes, and inte?

 ger codes to the color names. The eight base names map

 to the foreground color codes, as do names prefixed with

 `fg-', such as `fg-red'. Names prefixed with `bg-', such

 as `bg-blue', refer to the background codes. The reverse

 mapping from code to color yields base name for fore?

 ground codes and the bg- form for backgrounds.

 Although it is a misnomer to call them `colors', these

 arrays also map the other fourteen attributes from names

 to codes and codes to names.

 fg

 fg_bold

 fg_no_bold Page 100/110

 Map the eight basic color names to ANSI terminal escape

 sequences that set the corresponding foreground text

 properties. The fg sequences change the color without

 changing the eight intensity attributes.

 bg

 bg_bold

 bg_no_bold

 Map the eight basic color names to ANSI terminal escape

 sequences that set the corresponding background proper?

 ties. The bg sequences change the color without changing

 the eight intensity attributes.

 In addition, the scalar parameters reset_color and bold_color

 are set to the ANSI terminal escapes that turn off all at?

 tributes and turn on bold intensity, respectively.

 fned [-x num] name

 Same as zed -f. This function does not appear in the zsh dis?

 tribution, but can be created by linking zed to the name fned in

 some directory in your fpath.

 is-at-least needed [present]

 Perform a greater-than-or-equal-to comparison of two strings

 having the format of a zsh version number; that is, a string of

 numbers and text with segments separated by dots or dashes. If

 the present string is not provided, $ZSH_VERSION is used. Seg?

 ments are paired left-to-right in the two strings with leading

 non-number parts ignored. If one string has fewer segments than

 the other, the missing segments are considered zero.

 This is useful in startup files to set options and other state

 that are not available in all versions of zsh.

 is-at-least 3.1.6-15 && setopt NO_GLOBAL_RCS

 is-at-least 3.1.0 && setopt HIST_REDUCE_BLANKS

 is-at-least 2.6-17 || print "You can't use is-at-least here."

 nslookup [arg ...]

 This wrapper function for the nslookup command requires the Page 101/110

 zsh/zpty module (see zshmodules(1)). It behaves exactly like

 the standard nslookup except that it provides customizable

 prompts (including a right-side prompt) and completion of

 nslookup commands, host names, etc. (if you use the func?

 tion-based completion system). Completion styles may be set

 with the context prefix `:completion:nslookup'.

 See also the pager, prompt and rprompt styles below.

 regexp-replace var regexp replace

 Use regular expressions to perform a global search and replace

 operation on a variable. POSIX extended regular expressions are

 used, unless the option RE_MATCH_PCRE has been set, in which

 case Perl-compatible regular expressions are used (this requires

 the shell to be linked against the pcre library).

 var is the name of the variable containing the string to be

 matched. The variable will be modified directly by the func?

 tion. The variables MATCH, MBEGIN, MEND, match, mbegin, mend

 should be avoided as these are used by the regular expression

 code.

 regexp is the regular expression to match against the string.

 replace is the replacement text. This can contain parameter,

 command and arithmetic expressions which will be replaced: in

 particular, a reference to $MATCH will be replaced by the text

 matched by the pattern.

 The return status is 0 if at least one match was performed, else

 1.

 run-help cmd

 This function is designed to be invoked by the run-help ZLE wid?

 get, in place of the default alias. See `Accessing On-Line

 Help' above for setup instructions.

 In the discussion which follows, if cmd is a file system path,

 it is first reduced to its rightmost component (the file name).

 Help is first sought by looking for a file named cmd in the di?

 rectory named by the HELPDIR parameter. If no file is found, an Page 102/110

 assistant function, alias, or command named run-help-cmd is

 sought. If found, the assistant is executed with the rest of

 the current command line (everything after the command name cmd)

 as its arguments. When neither file nor assistant is found, the

 external command `man cmd' is run.

 An example assistant for the "ssh" command:

 run-help-ssh() {

 emulate -LR zsh

 local -a args

 # Delete the "-l username" option

 zparseopts -D -E -a args l:

 # Delete other options, leaving: host command

 args=(${@:#-*})

 if [[${#args} -lt 2]]; then

 man ssh

 else

 run-help $args[2]

 fi

 }

 Several of these assistants are provided in the Functions/Misc

 directory. These must be autoloaded, or placed as executable

 scripts in your search path, in order to be found and used by

 run-help.

 run-help-git

 run-help-ip

 run-help-openssl

 run-help-p4

 run-help-sudo

 run-help-svk

 run-help-svn

 Assistant functions for the git, ip, openssl, p4, sudo,

 svk, and svn, commands.

 tetris Zsh was once accused of not being as complete as Emacs, because Page 103/110

 it lacked a Tetris game. This function was written to refute

 this vicious slander.

 This function must be used as a ZLE widget:

 autoload -U tetris

 zle -N tetris

 bindkey keys tetris

 To start a game, execute the widget by typing the keys. What?

 ever command line you were editing disappears temporarily, and

 your keymap is also temporarily replaced by the Tetris control

 keys. The previous editor state is restored when you quit the

 game (by pressing `q') or when you lose.

 If you quit in the middle of a game, the next invocation of the

 tetris widget will continue where you left off. If you lost, it

 will start a new game.

 tetriscurses

 This is a port of the above to zcurses. The input handling is

 improved a bit so that moving a block sideways doesn't automati?

 cally advance a timestep, and the graphics use unicode block

 graphics.

 This version does not save the game state between invocations,

 and is not invoked as a widget, but rather as:

 autoload -U tetriscurses

 tetriscurses

 zargs [option ... --] [input ...] [-- command [arg ...]]

 This function has a similar purpose to GNU xargs. Instead of

 reading lines of arguments from the standard input, it takes

 them from the command line. This is useful because zsh, espe?

 cially with recursive glob operators, often can construct a com?

 mand line for a shell function that is longer than can be ac?

 cepted by an external command.

 The option list represents options of the zargs command itself,

 which are the same as those of xargs. The input list is the

 collection of strings (often file names) that become the argu? Page 104/110

 ments of the command, analogous to the standard input of xargs.

 Finally, the arg list consists of those arguments (usually op?

 tions) that are passed to the command each time it runs. The

 arg list precedes the elements from the input list in each run.

 If no command is provided, then no arg list may be provided, and

 in that event the default command is `print' with arguments `-r

 --'.

 For example, to get a long ls listing of all non-hidden plain

 files in the current directory or its subdirectories:

 autoload -U zargs

 zargs -- **/*(.) -- ls -ld --

 The first and third occurrences of `--' are used to mark the end

 of options for zargs and ls respectively to guard against file?

 names starting with `-', while the second is used to separate

 the list of files from the command to run (`ls -ld --').

 The first `--' would also be needed if there was a chance the

 list might be empty as in:

 zargs -r -- ./*.back(#qN) -- rm -f

 In the event that the string `--' is or may be an input, the -e

 option may be used to change the end-of-inputs marker. Note

 that this does not change the end-of-options marker. For exam?

 ple, to use `..' as the marker:

 zargs -e.. -- **/*(.) .. ls -ld --

 This is a good choice in that example because no plain file can

 be named `..', but the best end-marker depends on the circum?

 stances.

 The options -i, -I, -l, -L, and -n differ slightly from their

 usage in xargs. There are no input lines for zargs to count, so

 -l and -L count through the input list, and -n counts the number

 of arguments passed to each execution of command, including any

 arg list. Also, any time -i or -I is used, each input is pro?

 cessed separately as if by `-L 1'.

 For details of the other zargs options, see xargs(1) (but note Page 105/110

 the difference in function between zargs and xargs) or run zargs

 with the --help option.

 zed [-f [-x num]] name

 zed -b This function uses the ZLE editor to edit a file or function.

 Only one name argument is allowed. If the -f option is given,

 the name is taken to be that of a function; if the function is

 marked for autoloading, zed searches for it in the fpath and

 loads it. Note that functions edited this way are installed

 into the current shell, but not written back to the autoload

 file. In this case the -x option specifies that leading tabs

 indenting the function according to syntax should be converted

 into the given number of spaces; `-x 2' is consistent with the

 layout of functions distributed with the shell.

 Without -f, name is the path name of the file to edit, which

 need not exist; it is created on write, if necessary.

 While editing, the function sets the main keymap to zed and the

 vi command keymap to zed-vicmd. These will be copied from the

 existing main and vicmd keymaps if they do not exist the first

 time zed is run. They can be used to provide special key bind?

 ings used only in zed.

 If it creates the keymap, zed rebinds the return key to insert a

 line break and `^X^W' to accept the edit in the zed keymap, and

 binds `ZZ' to accept the edit in the zed-vicmd keymap.

 The bindings alone can be installed by running `zed -b'. This

 is suitable for putting into a startup file. Note that, if re?

 run, this will overwrite the existing zed and zed-vicmd keymaps.

 Completion is available, and styles may be set with the context

 prefix `:completion:zed'.

 A zle widget zed-set-file-name is available. This can be called

 by name from within zed using `\ex zed-set-file-name' (note,

 however, that because of zed's rebindings you will have to type

 ^j at the end instead of the return key), or can be bound to a

 key in either of the zed or zed-vicmd keymaps after `zed -b' has Page 106/110

 been run. When the widget is called, it prompts for a new name

 for the file being edited. When zed exits the file will be

 written under that name and the original file will be left

 alone. The widget has no effect with `zed -f'.

 While zed-set-file-name is running, zed uses the keymap zed-nor?

 mal-keymap, which is linked from the main keymap in effect at

 the time zed initialised its bindings. (This is to make the re?

 turn key operate normally.) The result is that if the main

 keymap has been changed, the widget won't notice. This is not a

 concern for most users.

 zcp [-finqQvwW] srcpat dest

 zln [-finqQsvwW] srcpat dest

 Same as zmv -C and zmv -L, respectively. These functions do not

 appear in the zsh distribution, but can be created by linking

 zmv to the names zcp and zln in some directory in your fpath.

 zkbd See `Keyboard Definition' above.

 zmv [-finqQsvwW] [-C | -L | -M | -{p|P} program] [-o optstring]

 srcpat dest

 Move (usually, rename) files matching the pattern srcpat to cor?

 responding files having names of the form given by dest, where

 srcpat contains parentheses surrounding patterns which will be

 replaced in turn by $1, $2, ... in dest. For example,

 zmv '(*).lis' '$1.txt'

 renames `foo.lis' to `foo.txt', `my.old.stuff.lis' to

 `my.old.stuff.txt', and so on.

 The pattern is always treated as an EXTENDED_GLOB pattern. Any

 file whose name is not changed by the substitution is simply ig?

 nored. Any error (a substitution resulted in an empty string,

 two substitutions gave the same result, the destination was an

 existing regular file and -f was not given) causes the entire

 function to abort without doing anything.

 In addition to pattern replacement, the variable $f can be re?

 ferrred to in the second (replacement) argument. This makes it Page 107/110

 possible to use variable substitution to alter the argument; see

 examples below.

 Options:

 -f Force overwriting of destination files. Not currently

 passed down to the mv/cp/ln command due to vagaries of

 implementations (but you can use -o-f to do that).

 -i Interactive: show each line to be executed and ask the

 user whether to execute it. `Y' or `y' will execute it,

 anything else will skip it. Note that you just need to

 type one character.

 -n No execution: print what would happen, but don't do it.

 -q Turn bare glob qualifiers off: now assumed by default, so

 this has no effect.

 -Q Force bare glob qualifiers on. Don't turn this on unless

 you are actually using glob qualifiers in a pattern.

 -s Symbolic, passed down to ln; only works with -L.

 -v Verbose: print each command as it's being executed.

 -w Pick out wildcard parts of the pattern, as described

 above, and implicitly add parentheses for referring to

 them.

 -W Just like -w, with the addition of turning wildcards in

 the replacement pattern into sequential ${1} .. ${N} ref?

 erences.

 -C

 -L

 -M Force cp, ln or mv, respectively, regardless of the name

 of the function.

 -p program

 Call program instead of cp, ln or mv. Whatever it does,

 it should at least understand the form `program -- old?

 name newname' where oldname and newname are filenames

 generated by zmv. program will be split into words, so

 might be e.g. the name of an archive tool plus a copy or Page 108/110

 rename subcommand.

 -P program

 As -p program, except that program does not accept a fol?

 lowing -- to indicate the end of options. In this case

 filenames must already be in a sane form for the program

 in question.

 -o optstring

 The optstring is split into words and passed down verba?

 tim to the cp, ln or mv command called to perform the

 work. It should probably begin with a `-'.

 Further examples:

 zmv -v '(* *)' '${1// /_}'

 For any file in the current directory with at least one space in

 the name, replace every space by an underscore and display the

 commands executed.

 zmv -v '* *' '${f// /_}'

 This does exactly the same by referring to the file name stored

 in $f.

 For more complete examples and other implementation details, see

 the zmv source file, usually located in one of the directories

 named in your fpath, or in Functions/Misc/zmv in the zsh distri?

 bution.

 zrecompile

 See `Recompiling Functions' above.

 zstyle+ context style value [+ subcontext style value ...]

 This makes defining styles a bit simpler by using a single `+'

 as a special token that allows you to append a context name to

 the previously used context name. Like this:

 zstyle+ ':foo:bar' style1 value1 \

 +':baz' style2 value2 \

 +':frob' style3 value3

 This defines style1 with value1 for the context :foo:bar as

 usual, but it also defines style2 with value2 for the context Page 109/110

 :foo:bar:baz and style3 with value3 for :foo:bar:frob. Any sub?

 context may be the empty string to re-use the first context un?

 changed.

 Styles

 insert-tab

 The zed function sets this style in context `:completion:zed:*'

 to turn off completion when TAB is typed at the beginning of a

 line. You may override this by setting your own value for this

 context and style.

 pager The nslookup function looks up this style in the context

 `:nslookup' to determine the program used to display output that

 does not fit on a single screen.

 prompt

 rprompt

 The nslookup function looks up this style in the context

 `:nslookup' to set the prompt and the right-side prompt, respec?

 tively. The usual expansions for the PS1 and RPS1 parameters

 may be used (see EXPANSION OF PROMPT SEQUENCES in zshmisc(1)).

zsh 5.8 February 14, 2020 ZSHCONTRIB(1)

Page 110/110

