
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshcompwid.1'

$ man zshcompwid.1

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

NAME

 zshcompwid - zsh completion widgets

DESCRIPTION

 The shell's programmable completion mechanism can be manipulated in two

 ways; here the low-level features supporting the newer, function-based

 mechanism are defined. A complete set of shell functions based on

 these features is described in zshcompsys(1), and users with no inter?

 est in adding to that system (or, potentially, writing their own -- see

 dictionary entry for `hubris') should skip the current section. The

 older system based on the compctl builtin command is described in zsh?

 compctl(1).

 Completion widgets are defined by the -C option to the zle builtin com?

 mand provided by the zsh/zle module (see zshzle(1)). For example,

 zle -C complete expand-or-complete completer

 defines a widget named `complete'. The second argument is the name of

 any of the builtin widgets that handle completions: complete-word, ex?

 pand-or-complete, expand-or-complete-prefix, menu-complete, menu-ex? Page 1/29

 pand-or-complete, reverse-menu-complete, list-choices, or

 delete-char-or-list. Note that this will still work even if the widget

 in question has been re-bound.

 When this newly defined widget is bound to a key using the bindkey

 builtin command defined in the zsh/zle module (see zshzle(1)), typing

 that key will call the shell function `completer'. This function is re?

 sponsible for generating the possible matches using the builtins de?

 scribed below. As with other ZLE widgets, the function is called with

 its standard input closed.

 Once the function returns, the completion code takes over control again

 and treats the matches in the same manner as the specified builtin wid?

 get, in this case expand-or-complete.

COMPLETION SPECIAL PARAMETERS

 The parameters ZLE_REMOVE_SUFFIX_CHARS and ZLE_SPACE_SUFFIX_CHARS are

 used by the completion mechanism, but are not special. See Parameters

 Used By The Shell in zshparam(1).

 Inside completion widgets, and any functions called from them, some pa?

 rameters have special meaning; outside these functions they are not

 special to the shell in any way. These parameters are used to pass in?

 formation between the completion code and the completion widget. Some

 of the builtin commands and the condition codes use or change the cur?

 rent values of these parameters. Any existing values will be hidden

 during execution of completion widgets; except for compstate, the pa?

 rameters are reset on each function exit (including nested function

 calls from within the completion widget) to the values they had when

 the function was entered.

 CURRENT

 This is the number of the current word, i.e. the word the cursor

 is currently on in the words array. Note that this value is

 only correct if the ksharrays option is not set.

 IPREFIX

 Initially this will be set to the empty string. This parameter

 functions like PREFIX; it contains a string which precedes the Page 2/29

 one in PREFIX and is not considered part of the list of matches.

 Typically, a string is transferred from the beginning of PREFIX

 to the end of IPREFIX, for example:

 IPREFIX=${PREFIX%%\=*}=

 PREFIX=${PREFIX#*=}

 causes the part of the prefix up to and including the first

 equal sign not to be treated as part of a matched string. This

 can be done automatically by the compset builtin, see below.

 ISUFFIX

 As IPREFIX, but for a suffix that should not be considered part

 of the matches; note that the ISUFFIX string follows the SUFFIX

 string.

 PREFIX Initially this will be set to the part of the current word from

 the beginning of the word up to the position of the cursor; it

 may be altered to give a common prefix for all matches.

 QIPREFIX

 This parameter is read-only and contains the quoted string up to

 the word being completed. E.g. when completing `"foo', this pa?

 rameter contains the double quote. If the -q option of compset

 is used (see below), and the original string was `"foo bar' with

 the cursor on the `bar', this parameter contains `"foo '.

 QISUFFIX

 Like QIPREFIX, but containing the suffix.

 SUFFIX Initially this will be set to the part of the current word from

 the cursor position to the end; it may be altered to give a com?

 mon suffix for all matches. It is most useful when the option

 COMPLETE_IN_WORD is set, as otherwise the whole word on the com?

 mand line is treated as a prefix.

 compstate

 This is an associative array with various keys and values that

 the completion code uses to exchange information with the com?

 pletion widget. The keys are:

 all_quotes Page 3/29

 The -q option of the compset builtin command (see below)

 allows a quoted string to be broken into separate words;

 if the cursor is on one of those words, that word will be

 completed, possibly invoking `compset -q' recursively.

 With this key it is possible to test the types of quoted

 strings which are currently broken into parts in this

 fashion. Its value contains one character for each quot?

 ing level. The characters are a single quote or a double

 quote for strings quoted with these characters, a dollars

 sign for strings quoted with $'...' and a backslash for

 strings not starting with a quote character. The first

 character in the value always corresponds to the inner?

 most quoting level.

 context

 This will be set by the completion code to the overall

 context in which completion is attempted. Possible values

 are:

 array_value

 when completing inside the value of an array pa?

 rameter assignment; in this case the words array

 contains the words inside the parentheses.

 brace_parameter

 when completing the name of a parameter in a pa?

 rameter expansion beginning with ${. This context

 will also be set when completing parameter flags

 following ${(; the full command line argument is

 presented and the handler must test the value to

 be completed to ascertain that this is the case.

 assign_parameter

 when completing the name of a parameter in a pa?

 rameter assignment.

 command

 when completing for a normal command (either in Page 4/29

 command position or for an argument of the com?

 mand).

 condition

 when completing inside a `[[...]]' conditional ex?

 pression; in this case the words array contains

 only the words inside the conditional expression.

 math when completing in a mathematical environment such

 as a `((...))' construct.

 parameter

 when completing the name of a parameter in a pa?

 rameter expansion beginning with $ but not ${.

 redirect

 when completing after a redirection operator.

 subscript

 when completing inside a parameter subscript.

 value when completing the value of a parameter assign?

 ment.

 exact Controls the behaviour when the REC_EXACT option is set.

 It will be set to accept if an exact match would be ac?

 cepted, and will be unset otherwise.

 If it was set when at least one match equal to the string

 on the line was generated, the match is accepted.

 exact_string

 The string of an exact match if one was found, otherwise

 unset.

 ignored

 The number of words that were ignored because they

 matched one of the patterns given with the -F option to

 the compadd builtin command.

 insert This controls the manner in which a match is inserted

 into the command line. On entry to the widget function,

 if it is unset the command line is not to be changed; if

 set to unambiguous, any prefix common to all matches is Page 5/29

 to be inserted; if set to automenu-unambiguous, the com?

 mon prefix is to be inserted and the next invocation of

 the completion code may start menu completion (due to the

 AUTO_MENU option being set); if set to menu or automenu

 menu completion will be started for the matches currently

 generated (in the latter case this will happen because

 the AUTO_MENU is set). The value may also contain the

 string `tab' when the completion code would normally not

 really do completion, but only insert the TAB character.

 On exit it may be set to any of the values above (where

 setting it to the empty string is the same as unsetting

 it), or to a number, in which case the match whose number

 is given will be inserted into the command line. Nega?

 tive numbers count backward from the last match (with

 `-1' selecting the last match) and out-of-range values

 are wrapped around, so that a value of zero selects the

 last match and a value one more than the maximum selects

 the first. Unless the value of this key ends in a space,

 the match is inserted as in a menu completion, i.e. with?

 out automatically appending a space.

 Both menu and automenu may also specify the number of the

 match to insert, given after a colon. For example,

 `menu:2' says to start menu completion, beginning with

 the second match.

 Note that a value containing the substring `tab' makes

 the matches generated be ignored and only the TAB be in?

 serted.

 Finally, it may also be set to all, which makes all

 matches generated be inserted into the line.

 insert_positions

 When the completion system inserts an unambiguous string

 into the line, there may be multiple places where charac?

 ters are missing or where the character inserted differs Page 6/29

 from at least one match. The value of this key contains

 a colon separated list of all these positions, as indexes

 into the command line.

 last_prompt

 If this is set to a non-empty string for every match

 added, the completion code will move the cursor back to

 the previous prompt after the list of completions has

 been displayed. Initially this is set or unset according

 to the ALWAYS_LAST_PROMPT option.

 list This controls whether or how the list of matches will be

 displayed. If it is unset or empty they will never be

 listed; if its value begins with list, they will always

 be listed; if it begins with autolist or ambiguous, they

 will be listed when the AUTO_LIST or LIST_AMBIGUOUS op?

 tions respectively would normally cause them to be.

 If the substring force appears in the value, this makes

 the list be shown even if there is only one match. Nor?

 mally, the list would be shown only if there are at least

 two matches.

 The value contains the substring packed if the

 LIST_PACKED option is set. If this substring is given for

 all matches added to a group, this group will show the

 LIST_PACKED behavior. The same is done for the

 LIST_ROWS_FIRST option with the substring rows.

 Finally, if the value contains the string explanations,

 only the explanation strings, if any, will be listed and

 if it contains messages, only the messages (added with

 the -x option of compadd) will be listed. If it contains

 both explanations and messages both kinds of explanation

 strings will be listed. It will be set appropriately on

 entry to a completion widget and may be changed there.

 list_lines

 This gives the number of lines that are needed to display Page 7/29

 the full list of completions. Note that to calculate the

 total number of lines to display you need to add the num?

 ber of lines needed for the command line to this value,

 this is available as the value of the BUFFERLINES special

 parameter.

 list_max

 Initially this is set to the value of the LISTMAX parame?

 ter. It may be set to any other value; when the widget

 exits this value will be used in the same way as the

 value of LISTMAX.

 nmatches

 The number of matches generated and accepted by the com?

 pletion code so far.

 old_insert

 On entry to the widget this will be set to the number of

 the match of an old list of completions that is currently

 inserted into the command line. If no match has been in?

 serted, this is unset.

 As with old_list, the value of this key will only be used

 if it is the string keep. If it was set to this value by

 the widget and there was an old match inserted into the

 command line, this match will be kept and if the value of

 the insert key specifies that another match should be in?

 serted, this will be inserted after the old one.

 old_list

 This is set to yes if there is still a valid list of com?

 pletions from a previous completion at the time the wid?

 get is invoked. This will usually be the case if and

 only if the previous editing operation was a completion

 widget or one of the builtin completion functions. If

 there is a valid list and it is also currently shown on

 the screen, the value of this key is shown.

 After the widget has exited the value of this key is only Page 8/29

 used if it was set to keep. In this case the completion

 code will continue to use this old list. If the widget

 generated new matches, they will not be used.

 parameter

 The name of the parameter when completing in a subscript

 or in the value of a parameter assignment.

 pattern_insert

 Normally this is set to menu, which specifies that menu

 completion will be used whenever a set of matches was

 generated using pattern matching. If it is set to any

 other non-empty string by the user and menu completion is

 not selected by other option settings, the code will in?

 stead insert any common prefix for the generated matches

 as with normal completion.

 pattern_match

 Locally controls the behaviour given by the GLOB_COMPLETE

 option. Initially it is set to `*' if and only if the

 option is set. The completion widget may set it to this

 value, to an empty string (which has the same effect as

 unsetting it), or to any other non-empty string. If it

 is non-empty, unquoted metacharacters on the command line

 will be treated as patterns; if it is `*', then addition?

 ally a wildcard `*' is assumed at the cursor position; if

 it is empty or unset, metacharacters will be treated lit?

 erally.

 Note that the matcher specifications given to the compadd

 builtin command are not used if this is set to a

 non-empty string.

 quote When completing inside quotes, this contains the quota?

 tion character (i.e. either a single quote, a double

 quote, or a backtick). Otherwise it is unset.

 quoting

 When completing inside single quotes, this is set to the Page 9/29

 string single; inside double quotes, the string double;

 inside backticks, the string backtick. Otherwise it is

 unset.

 redirect

 The redirection operator when completing in a redirection

 position, i.e. one of <, >, etc.

 restore

 This is set to auto before a function is entered, which

 forces the special parameters mentioned above (words,

 CURRENT, PREFIX, IPREFIX, SUFFIX, and ISUFFIX) to be re?

 stored to their previous values when the function exits.

 If a function unsets it or sets it to any other string,

 they will not be restored.

 to_end Specifies the occasions on which the cursor is moved to

 the end of a string when a match is inserted. On entry

 to a widget function, it may be single if this will hap?

 pen when a single unambiguous match was inserted or match

 if it will happen any time a match is inserted (for exam?

 ple, by menu completion; this is likely to be the effect

 of the ALWAYS_TO_END option).

 On exit, it may be set to single as above. It may also

 be set to always, or to the empty string or unset; in

 those cases the cursor will be moved to the end of the

 string always or never respectively. Any other string is

 treated as match.

 unambiguous

 This key is read-only and will always be set to the com?

 mon (unambiguous) prefix the completion code has gener?

 ated for all matches added so far.

 unambiguous_cursor

 This gives the position the cursor would be placed at if

 the common prefix in the unambiguous key were inserted,

 relative to the value of that key. The cursor would be Page 10/29

 placed before the character whose index is given by this

 key.

 unambiguous_positions

 This contains all positions where characters in the unam?

 biguous string are missing or where the character in?

 serted differs from at least one of the matches. The po?

 sitions are given as indexes into the string given by the

 value of the unambiguous key.

 vared If completion is called while editing a line using the

 vared builtin, the value of this key is set to the name

 of the parameter given as an argument to vared. This key

 is only set while a vared command is active.

 words This array contains the words present on the command line cur?

 rently being edited.

COMPLETION BUILTIN COMMANDS

 compadd [-akqQfenUl12C] [-F array]

 [-P prefix] [-S suffix]

 [-p hidden-prefix] [-s hidden-suffix]

 [-i ignored-prefix] [-I ignored-suffix]

 [-W file-prefix] [-d array]

 [-J group-name] [-X explanation] [-x message]

 [-V group-name] [-o [order]]

 [-r remove-chars] [-R remove-func]

 [-D array] [-O array] [-A array]

 [-E number]

 [-M match-spec] [--] [words ...]

 This builtin command can be used to add matches directly and

 control all the information the completion code stores with each

 possible match. The return status is zero if at least one match

 was added and non-zero if no matches were added.

 The completion code breaks the string to complete into seven

 fields in the order:

 <ipre><apre><hpre><word><hsuf><asuf><isuf> Page 11/29

 The first field is an ignored prefix taken from the command

 line, the contents of the IPREFIX parameter plus the string

 given with the -i option. With the -U option, only the string

 from the -i option is used. The field <apre> is an optional pre?

 fix string given with the -P option. The <hpre> field is a

 string that is considered part of the match but that should not

 be shown when listing completions, given with the -p option; for

 example, functions that do filename generation might specify a

 common path prefix this way. <word> is the part of the match

 that should appear in the list of completions, i.e. one of the

 words given at the end of the compadd command line. The suffixes

 <hsuf>, <asuf> and <isuf> correspond to the prefixes <hpre>,

 <apre> and <ipre> and are given by the options -s, -S and -I,

 respectively.

 The supported flags are:

 -P prefix

 This gives a string to be inserted before the given

 words. The string given is not considered as part of the

 match and any shell metacharacters in it will not be

 quoted when the string is inserted.

 -S suffix

 Like -P, but gives a string to be inserted after the

 match.

 -p hidden-prefix

 This gives a string that should be inserted into the com?

 mand line before the match but that should not appear in

 the list of matches. Unless the -U option is given, this

 string must be matched as part of the string on the com?

 mand line.

 -s hidden-suffix

 Like `-p', but gives a string to insert after the match.

 -i ignored-prefix

 This gives a string to insert into the command line just Page 12/29

 before any string given with the `-P' option. Without

 `-P' the string is inserted before the string given with

 `-p' or directly before the match.

 -I ignored-suffix

 Like -i, but gives an ignored suffix.

 -a With this flag the words are taken as names of arrays and

 the possible matches are their values. If only some ele?

 ments of the arrays are needed, the words may also con?

 tain subscripts, as in `foo[2,-1]'.

 -k With this flag the words are taken as names of associa?

 tive arrays and the possible matches are their keys. As

 for -a, the words may also contain subscripts, as in

 `foo[(R)*bar*]'.

 -d array

 This adds per-match display strings. The array should

 contain one element per word given. The completion code

 will then display the first element instead of the first

 word, and so on. The array may be given as the name of an

 array parameter or directly as a space-separated list of

 words in parentheses.

 If there are fewer display strings than words, the left?

 over words will be displayed unchanged and if there are

 more display strings than words, the leftover display

 strings will be silently ignored.

 -l This option only has an effect if used together with the

 -d option. If it is given, the display strings are listed

 one per line, not arrayed in columns.

 -o [order]

 This controls the order in which matches are sorted. or?

 der is a comma-separated list comprising the following

 possible values. These values can be abbreviated to

 their initial two or three characters. Note that the or?

 der forms part of the group name space so matches with Page 13/29

 different orderings will not be in the same group.

 match If given, the order of the output is determined by

 the match strings; otherwise it is determined by

 the display strings (i.e. the strings given by the

 -d option). This is the default if `-o' is speci?

 fied but the order argument is omitted.

 nosort This specifies that the matches are pre-sorted and

 their order should be preserved. This value only

 makes sense alone and cannot be combined with any

 others.

 numeric

 If the matches include numbers, sort them numeri?

 cally rather than lexicographically.

 reverse

 Arrange the matches backwards by reversing the

 sort ordering.

 -J group-name

 Gives the name of the group of matches the words should

 be stored in.

 -V group-name

 Like -J but naming an unsorted group. This option is

 identical to the combination of -J and -o nosort.

 -1 If given together with the -V option, makes only consecu?

 tive duplicates in the group be removed. If combined with

 the -J option, this has no visible effect. Note that

 groups with and without this flag are in different name

 spaces.

 -2 If given together with the -J or -V option, makes all du?

 plicates be kept. Again, groups with and without this

 flag are in different name spaces.

 -X explanation

 The explanation string will be printed with the list of

 matches, above the group currently selected. Page 14/29

 Within the explanation, the following sequences may be

 used to specify output attributes as described in the

 section EXPANSION OF PROMPT SEQUENCES in zshmisc(1):

 `%B', `%S', `%U', `%F', `%K' and their lower case coun?

 terparts, as well as `%{...%}'. `%F', `%K' and `%{...%}'

 take arguments in the same form as prompt expansion.

 (Note that the sequence `%G' is not available; an argu?

 ment to `%{' should be used instead.) The sequence `%%'

 produces a literal `%'.

 These sequences are most often employed by users when

 customising the format style (see zshcompsys(1)), but

 they must also be taken into account when writing comple?

 tion functions, as passing descriptions with unescaped

 `%' characters to utility functions such as _arguments

 and _message may produce unexpected results. If arbitrary

 text is to be passed in a description, it can be escaped

 using e.g. ${my_str//\%/%%}.

 -x message

 Like -X, but the message will be printed even if there

 are no matches in the group.

 -q The suffix given with -S will be automatically removed if

 the next character typed is a blank or does not insert

 anything, or if the suffix consists of only one character

 and the next character typed is the same character.

 -r remove-chars

 This is a more versatile form of the -q option. The suf?

 fix given with -S or the slash automatically added after

 completing directories will be automatically removed if

 the next character typed inserts one of the characters

 given in the remove-chars. This string is parsed as a

 characters class and understands the backslash sequences

 used by the print command. For example, `-r "a-z\t"' re?

 moves the suffix if the next character typed inserts a Page 15/29

 lower case character or a TAB, and `-r "^0-9"' removes

 the suffix if the next character typed inserts anything

 but a digit. One extra backslash sequence is understood

 in this string: `\-' stands for all characters that in?

 sert nothing. Thus `-S "=" -q' is the same as `-S "=" -r

 "= \t\n\-"'.

 This option may also be used without the -S option; then

 any automatically added space will be removed when one of

 the characters in the list is typed.

 -R remove-func

 This is another form of the -r option. When a suffix has

 been inserted and the completion accepted, the function

 remove-func will be called after the next character

 typed. It is passed the length of the suffix as an argu?

 ment and can use the special parameters available in or?

 dinary (non-completion) zle widgets (see zshzle(1)) to

 analyse and modify the command line.

 -f If this flag is given, all of the matches built from

 words are marked as being the names of files. They are

 not required to be actual filenames, but if they are, and

 the option LIST_TYPES is set, the characters describing

 the types of the files in the completion lists will be

 shown. This also forces a slash to be added when the name

 of a directory is completed.

 -e This flag can be used to tell the completion code that

 the matches added are parameter names for a parameter ex?

 pansion. This will make the AUTO_PARAM_SLASH and

 AUTO_PARAM_KEYS options be used for the matches.

 -W file-prefix

 This string is a pathname that will be prepended to each

 of the matches formed by the given words together with

 any prefix specified by the -p option to form a complete

 filename for testing. Hence it is only useful if com? Page 16/29

 bined with the -f flag, as the tests will not otherwise

 be performed.

 -F array

 Specifies an array containing patterns. Words matching

 one of these patterns are ignored, i.e. not considered to

 be possible matches.

 The array may be the name of an array parameter or a list

 of literal patterns enclosed in parentheses and quoted,

 as in `-F "(*?.o *?.h)"'. If the name of an array is

 given, the elements of the array are taken as the pat?

 terns.

 -Q This flag instructs the completion code not to quote any

 metacharacters in the words when inserting them into the

 command line.

 -M match-spec

 This gives local match specifications as described below

 in the section `Completion Matching Control'. This option

 may be given more than once. In this case all

 match-specs given are concatenated with spaces between

 them to form the specification string to use. Note that

 they will only be used if the -U option is not given.

 -n Specifies that the words added are to be used as possible

 matches, but are not to appear in the completion listing.

 -U If this flag is given, all words given will be accepted

 and no matching will be done by the completion code. Nor?

 mally this is used in functions that do the matching

 themselves.

 -O array

 If this option is given, the words are not added to the

 set of possible completions. Instead, matching is done

 as usual and all of the words given as arguments that

 match the string on the command line will be stored in

 the array parameter whose name is given as array. Page 17/29

 -A array

 As the -O option, except that instead of those of the

 words which match being stored in array, the strings gen?

 erated internally by the completion code are stored. For

 example, with a matching specification of `-M "L:|no="',

 the string `nof' on the command line and the string `foo'

 as one of the words, this option stores the string `no?

 foo' in the array, whereas the -O option stores the `foo'

 originally given.

 -D array

 As with -O, the words are not added to the set of possi?

 ble completions. Instead, the completion code tests

 whether each word in turn matches what is on the line.

 If the nth word does not match, the nth element of the

 array is removed. Elements for which the corresponding

 word is matched are retained.

 -C This option adds a special match which expands to all

 other matches when inserted into the line, even those

 that are added after this option is used. Together with

 the -d option it is possible to specify a string that

 should be displayed in the list for this special match.

 If no string is given, it will be shown as a string con?

 taining the strings that would be inserted for the other

 matches, truncated to the width of the screen.

 -E number

 This option adds number empty matches after the words

 have been added. An empty match takes up space in com?

 pletion listings but will never be inserted in the line

 and can't be selected with menu completion or menu selec?

 tion. This makes empty matches only useful to format

 completion lists and to make explanatory string be shown

 in completion lists (since empty matches can be given

 display strings with the -d option). And because all but Page 18/29

 one empty string would otherwise be removed, this option

 implies the -V and -2 options (even if an explicit -J op?

 tion is given). This can be important to note as it af?

 fects the name space into which matches are added.

 -

 -- This flag ends the list of flags and options. All argu?

 ments after it will be taken as the words to use as

 matches even if they begin with hyphens.

 Except for the -M flag, if any of these flags is given more than

 once, the first one (and its argument) will be used.

 compset -p number

 compset -P [number] pattern

 compset -s number

 compset -S [number] pattern

 compset -n begin [end]

 compset -N beg-pat [end-pat]

 compset -q

 This command simplifies modification of the special parameters,

 while its return status allows tests on them to be carried out.

 The options are:

 -p number

 If the value of the PREFIX parameter is at least number

 characters long, the first number characters are removed

 from it and appended to the contents of the IPREFIX pa?

 rameter.

 -P [number] pattern

 If the value of the PREFIX parameter begins with anything

 that matches the pattern, the matched portion is removed

 from PREFIX and appended to IPREFIX.

 Without the optional number, the longest match is taken,

 but if number is given, anything up to the numberth match

 is moved. If the number is negative, the numberth long?

 est match is moved. For example, if PREFIX contains the Page 19/29

 string `a=b=c', then compset -P '*\=' will move the

 string `a=b=' into the IPREFIX parameter, but compset -P

 1 '*\=' will move only the string `a='.

 -s number

 As -p, but transfer the last number characters from the

 value of SUFFIX to the front of the value of ISUFFIX.

 -S [number] pattern

 As -P, but match the last portion of SUFFIX and transfer

 the matched portion to the front of the value of ISUFFIX.

 -n begin [end]

 If the current word position as specified by the parame?

 ter CURRENT is greater than or equal to begin, anything

 up to the beginth word is removed from the words array

 and the value of the parameter CURRENT is decremented by

 begin.

 If the optional end is given, the modification is done

 only if the current word position is also less than or

 equal to end. In this case, the words from position end

 onwards are also removed from the words array.

 Both begin and end may be negative to count backwards

 from the last element of the words array.

 -N beg-pat [end-pat]

 If one of the elements of the words array before the one

 at the index given by the value of the parameter CURRENT

 matches the pattern beg-pat, all elements up to and in?

 cluding the matching one are removed from the words array

 and the value of CURRENT is changed to point to the same

 word in the changed array.

 If the optional pattern end-pat is also given, and there

 is an element in the words array matching this pattern,

 the parameters are modified only if the index of this

 word is higher than the one given by the CURRENT parame?

 ter (so that the matching word has to be after the cur? Page 20/29

 sor). In this case, the words starting with the one

 matching end-pat are also removed from the words array.

 If words contains no word matching end-pat, the testing

 and modification is performed as if it were not given.

 -q The word currently being completed is split on spaces

 into separate words, respecting the usual shell quoting

 conventions. The resulting words are stored in the words

 array, and CURRENT, PREFIX, SUFFIX, QIPREFIX, and QISUF?

 FIX are modified to reflect the word part that is com?

 pleted.

 In all the above cases the return status is zero if the test

 succeeded and the parameters were modified and non-zero other?

 wise. This allows one to use this builtin in tests such as:

 if compset -P '*\='; then ...

 This forces anything up to and including the last equal sign to

 be ignored by the completion code.

 compcall [-TD]

 This allows the use of completions defined with the compctl

 builtin from within completion widgets. The list of matches

 will be generated as if one of the non-widget completion func?

 tions (complete-word, etc.) had been called, except that only

 compctls given for specific commands are used. To force the code

 to try completions defined with the -T option of compctl and/or

 the default completion (whether defined by compctl -D or the

 builtin default) in the appropriate places, the -T and/or -D

 flags can be passed to compcall.

 The return status can be used to test if a matching compctl def?

 inition was found. It is non-zero if a compctl was found and

 zero otherwise.

 Note that this builtin is defined by the zsh/compctl module.

COMPLETION CONDITION CODES

 The following additional condition codes for use within the [[...]]

 construct are available in completion widgets. These work on the spe? Page 21/29

 cial parameters. All of these tests can also be performed by the

 compset builtin, but in the case of the condition codes the contents of

 the special parameters are not modified.

 -prefix [number] pattern

 true if the test for the -P option of compset would succeed.

 -suffix [number] pattern

 true if the test for the -S option of compset would succeed.

 -after beg-pat

 true if the test of the -N option with only the beg-pat given

 would succeed.

 -between beg-pat end-pat

 true if the test for the -N option with both patterns would suc?

 ceed.

COMPLETION MATCHING CONTROL

 It is possible by use of the -M option of the compadd builtin command

 to specify how the characters in the string to be completed (referred

 to here as the command line) map onto the characters in the list of

 matches produced by the completion code (referred to here as the trial

 completions). Note that this is not used if the command line contains a

 glob pattern and the GLOB_COMPLETE option is set or the pattern_match

 of the compstate special association is set to a non-empty string.

 The match-spec given as the argument to the -M option (see `Completion

 Builtin Commands' above) consists of one or more matching descriptions

 separated by whitespace. Each description consists of a letter fol?

 lowed by a colon and then the patterns describing which character se?

 quences on the line match which character sequences in the trial com?

 pletion. Any sequence of characters not handled in this fashion must

 match exactly, as usual.

 The forms of match-spec understood are as follows. In each case, the

 form with an upper case initial character retains the string already

 typed on the command line as the final result of completion, while with

 a lower case initial character the string on the command line is

 changed into the corresponding part of the trial completion. Page 22/29

 m:lpat=tpat

 M:lpat=tpat

 Here, lpat is a pattern that matches on the command line, corre?

 sponding to tpat which matches in the trial completion.

 l:lanchor|lpat=tpat

 L:lanchor|lpat=tpat

 l:lanchor||ranchor=tpat

 L:lanchor||ranchor=tpat

 b:lpat=tpat

 B:lpat=tpat

 These letters are for patterns that are anchored by another pat?

 tern on the left side. Matching for lpat and tpat is as for m

 and M, but the pattern lpat matched on the command line must be

 preceded by the pattern lanchor. The lanchor can be blank to

 anchor the match to the start of the command line string; other?

 wise the anchor can occur anywhere, but must match in both the

 command line and trial completion strings.

 If no lpat is given but a ranchor is, this matches the gap be?

 tween substrings matched by lanchor and ranchor. Unlike lanchor,

 the ranchor only needs to match the trial completion string.

 The b and B forms are similar to l and L with an empty anchor,

 but need to match only the beginning of the word on the command

 line or trial completion, respectively.

 r:lpat|ranchor=tpat

 R:lpat|ranchor=tpat

 r:lanchor||ranchor=tpat

 R:lanchor||ranchor=tpat

 e:lpat=tpat

 E:lpat=tpat

 As l, L, b and B, with the difference that the command line and

 trial completion patterns are anchored on the right side. Here

 an empty ranchor and the e and E forms force the match to the

 end of the command line or trial completion string. Page 23/29

 x: This form is used to mark the end of matching specifications:

 subsequent specifications are ignored. In a single standalone

 list of specifications this has no use but where matching speci?

 fications are accumulated, such as from nested function calls,

 it can allow one function to override another.

 Each lpat, tpat or anchor is either an empty string or consists of a

 sequence of literal characters (which may be quoted with a backslash),

 question marks, character classes, and correspondence classes; ordinary

 shell patterns are not used. Literal characters match only themselves,

 question marks match any character, and character classes are formed as

 for globbing and match any character in the given set.

 Correspondence classes are defined like character classes, but with two

 differences: they are delimited by a pair of braces, and negated

 classes are not allowed, so the characters ! and ^ have no special

 meaning directly after the opening brace. They indicate that a range

 of characters on the line match a range of characters in the trial com?

 pletion, but (unlike ordinary character classes) paired according to

 the corresponding position in the sequence. For example, to make any

 ASCII lower case letter on the line match the corresponding upper case

 letter in the trial completion, you can use `m:{a-z}={A-Z}' (however,

 see below for the recommended form for this). More than one pair of

 classes can occur, in which case the first class before the = corre?

 sponds to the first after it, and so on. If one side has more such

 classes than the other side, the superfluous classes behave like normal

 character classes. In anchor patterns correspondence classes also be?

 have like normal character classes.

 The standard `[:name:]' forms described for standard shell patterns

 (see the section FILENAME GENERATION in zshexpn(1)) may appear in cor?

 respondence classes as well as normal character classes. The only spe?

 cial behaviour in correspondence classes is if the form on the left and

 the form on the right are each one of [:upper:], [:lower:]. In these

 cases the character in the word and the character on the line must be

 the same up to a difference in case. Hence to make any lower case Page 24/29

 character on the line match the corresponding upper case character in

 the trial completion you can use `m:{[:lower:]}={[:upper:]}'. Although

 the matching system does not yet handle multibyte characters, this is

 likely to be a future extension, at which point this syntax will handle

 arbitrary alphabets; hence this form, rather than the use of explicit

 ranges, is the recommended form. In other cases `[:name:]' forms are

 allowed. If the two forms on the left and right are the same, the

 characters must match exactly. In remaining cases, the corresponding

 tests are applied to both characters, but they are not otherwise con?

 strained; any matching character in one set goes with any matching

 character in the other set: this is equivalent to the behaviour of or?

 dinary character classes.

 The pattern tpat may also be one or two stars, `*' or `**'. This means

 that the pattern on the command line can match any number of characters

 in the trial completion. In this case the pattern must be anchored (on

 either side); in the case of a single star, the anchor then determines

 how much of the trial completion is to be included -- only the charac?

 ters up to the next appearance of the anchor will be matched. With two

 stars, substrings matched by the anchor can be matched, too.

 Examples:

 The keys of the options association defined by the parameter module are

 the option names in all-lower-case form, without underscores, and with?

 out the optional no at the beginning even though the builtins setopt

 and unsetopt understand option names with upper case letters, under?

 scores, and the optional no. The following alters the matching rules

 so that the prefix no and any underscore are ignored when trying to

 match the trial completions generated and upper case letters on the

 line match the corresponding lower case letters in the words:

 compadd -M 'L:|[nN][oO]= M:_= M:{[:upper:]}={[:lower:]}' - \

 ${(k)options}

 The first part says that the pattern `[nN][oO]' at the beginning (the

 empty anchor before the pipe symbol) of the string on the line matches

 the empty string in the list of words generated by completion, so it Page 25/29

 will be ignored if present. The second part does the same for an under?

 score anywhere in the command line string, and the third part uses cor?

 respondence classes so that any upper case letter on the line matches

 the corresponding lower case letter in the word. The use of the upper

 case forms of the specification characters (L and M) guarantees that

 what has already been typed on the command line (in particular the pre?

 fix no) will not be deleted.

 Note that the use of L in the first part means that it matches only

 when at the beginning of both the command line string and the trial

 completion. I.e., the string `_NO_f' would not be completed to

 `_NO_foo', nor would `NONO_f' be completed to `NONO_foo' because of the

 leading underscore or the second `NO' on the line which makes the pat?

 tern fail even though they are otherwise ignored. To fix this, one

 would use `B:[nN][oO]=' instead of the first part. As described above,

 this matches at the beginning of the trial completion, independent of

 other characters or substrings at the beginning of the command line

 word which are ignored by the same or other match-specs.

 The second example makes completion case insensitive. This is just the

 same as in the option example, except here we wish to retain the char?

 acters in the list of completions:

 compadd -M 'm:{[:lower:]}={[:upper:]}' ...

 This makes lower case letters match their upper case counterparts. To

 make upper case letters match the lower case forms as well:

 compadd -M 'm:{[:lower:][:upper:]}={[:upper:][:lower:]}' ...

 A nice example for the use of * patterns is partial word completion.

 Sometimes you would like to make strings like `c.s.u' complete to

 strings like `comp.source.unix', i.e. the word on the command line con?

 sists of multiple parts, separated by a dot in this example, where each

 part should be completed separately -- note, however, that the case

 where each part of the word, i.e. `comp', `source' and `unix' in this

 example, is to be completed from separate sets of matches is a differ?

 ent problem to be solved by the implementation of the completion wid?

 get. The example can be handled by: Page 26/29

 compadd -M 'r:|.=* r:|=*' \

 - comp.sources.unix comp.sources.misc ...

 The first specification says that lpat is the empty string, while an?

 chor is a dot; tpat is *, so this can match anything except for the `.'

 from the anchor in the trial completion word. So in `c.s.u', the

 matcher sees `c', followed by the empty string, followed by the anchor

 `.', and likewise for the second dot, and replaces the empty strings

 before the anchors, giving `c[omp].s[ources].u[nix]', where the last

 part of the completion is just as normal.

 With the pattern shown above, the string `c.u' could not be completed

 to `comp.sources.unix' because the single star means that no dot

 (matched by the anchor) can be skipped. By using two stars as in

 `r:|.=**', however, `c.u' could be completed to `comp.sources.unix'.

 This also shows that in some cases, especially if the anchor is a real

 pattern, like a character class, the form with two stars may result in

 more matches than one would like.

 The second specification is needed to make this work when the cursor is

 in the middle of the string on the command line and the option COM?

 PLETE_IN_WORD is set. In this case the completion code would normally

 try to match trial completions that end with the string as typed so

 far, i.e. it will only insert new characters at the cursor position

 rather than at the end. However in our example we would like the code

 to recognise matches which contain extra characters after the string on

 the line (the `nix' in the example). Hence we say that the empty

 string at the end of the string on the line matches any characters at

 the end of the trial completion.

 More generally, the specification

 compadd -M 'r:|[.,_-]=* r:|=*' ...

 allows one to complete words with abbreviations before any of the char?

 acters in the square brackets. For example, to complete veryverylong?

 file.c rather than veryverylongheader.h with the above in effect, you

 can just type very.c before attempting completion.

 The specifications with both a left and a right anchor are useful to Page 27/29

 complete partial words whose parts are not separated by some special

 character. For example, in some places strings have to be completed

 that are formed `LikeThis' (i.e. the separate parts are determined by a

 leading upper case letter) or maybe one has to complete strings with

 trailing numbers. Here one could use the simple form with only one an?

 chor as in:

 compadd -M 'r:|[[:upper:]0-9]=* r:|=*' LikeTHIS FooHoo 5foo123 5bar234

 But with this, the string `H' would neither complete to `FooHoo' nor to

 `LikeTHIS' because in each case there is an upper case letter before

 the `H' and that is matched by the anchor. Likewise, a `2' would not be

 completed. In both cases this could be changed by using `r:|[[:up?

 per:]0-9]=**', but then `H' completes to both `LikeTHIS' and `FooHoo'

 and a `2' matches the other strings because characters can be inserted

 before every upper case letter and digit. To avoid this one would use:

 compadd -M 'r:[^[:upper:]0-9]||[[:upper:]0-9]=** r:|=*' \

 LikeTHIS FooHoo foo123 bar234

 By using these two anchors, a `H' matches only upper case `H's that are

 immediately preceded by something matching the left anchor `[^[:up?

 per:]0-9]'. The effect is, of course, that `H' matches only the string

 `FooHoo', a `2' matches only `bar234' and so on.

 When using the completion system (see zshcompsys(1)), users can define

 match specifications that are to be used for specific contexts by using

 the matcher and matcher-list styles. The values for the latter will be

 used everywhere.

COMPLETION WIDGET EXAMPLE

 The first step is to define the widget:

 zle -C complete complete-word complete-files

 Then the widget can be bound to a key using the bindkey builtin com?

 mand:

 bindkey '^X\t' complete

 After that the shell function complete-files will be invoked after typ?

 ing control-X and TAB. The function should then generate the matches,

 e.g.: Page 28/29

 complete-files () { compadd - * }

 This function will complete files in the current directory matching the

 current word.

zsh 5.8 February 14, 2020 ZSHCOMPWID(1)

Page 29/29

