
Rocky Enterprise Linux 9.2 Manual Pages on command 'zsh.1'

$ man zsh.1

ZSH(1) General Commands Manual ZSH(1)

NAME

 zsh - the Z shell

OVERVIEW

 Because zsh contains many features, the zsh manual has been split into

 a number of sections:

 zsh Zsh overview (this section)

 zshroadmap Informal introduction to the manual

 zshmisc Anything not fitting into the other sections

 zshexpn Zsh command and parameter expansion

 zshparam Zsh parameters

 zshoptions Zsh options

 zshbuiltins Zsh built-in functions

 zshzle Zsh command line editing

 zshcompwid Zsh completion widgets

 zshcompsys Zsh completion system

 zshcompctl Zsh completion control

 zshmodules Zsh loadable modules Page 1/10

 zshcalsys Zsh built-in calendar functions

 zshtcpsys Zsh built-in TCP functions

 zshzftpsys Zsh built-in FTP client

 zshcontrib Additional zsh functions and utilities

 zshall Meta-man page containing all of the above

DESCRIPTION

 Zsh is a UNIX command interpreter (shell) usable as an interactive lo?

 gin shell and as a shell script command processor. Of the standard

 shells, zsh most closely resembles ksh but includes many enhancements.

 It does not provide compatibility with POSIX or other shells in its de?

 fault operating mode: see the section Compatibility below.

 Zsh has command line editing, builtin spelling correction, programmable

 command completion, shell functions (with autoloading), a history mech?

 anism, and a host of other features.

AUTHOR

 Zsh was originally written by Paul Falstad <pf@zsh.org>. Zsh is now

 maintained by the members of the zsh-workers mailing list <zsh-work?

 ers@zsh.org>. The development is currently coordinated by Peter

 Stephenson <pws@zsh.org>. The coordinator can be contacted at <coordi?

 nator@zsh.org>, but matters relating to the code should generally go to

 the mailing list.

AVAILABILITY

 Zsh is available from the following HTTP and anonymous FTP site.

 ftp://ftp.zsh.org/pub/

 https://www.zsh.org/pub/

)

 The up-to-date source code is available via Git from Sourceforge. See

 https://sourceforge.net/projects/zsh/ for details. A summary of in?

 structions for the archive can be found at http://zsh.sourceforge.net/.

MAILING LISTS

 Zsh has 3 mailing lists:

 <zsh-announce@zsh.org>

 Announcements about releases, major changes in the shell and the Page 2/10

 monthly posting of the Zsh FAQ. (moderated)

 <zsh-users@zsh.org>

 User discussions.

 <zsh-workers@zsh.org>

 Hacking, development, bug reports and patches.

 To subscribe or unsubscribe, send mail to the associated administrative

 address for the mailing list.

 <zsh-announce-subscribe@zsh.org>

 <zsh-users-subscribe@zsh.org>

 <zsh-workers-subscribe@zsh.org>

 <zsh-announce-unsubscribe@zsh.org>

 <zsh-users-unsubscribe@zsh.org>

 <zsh-workers-unsubscribe@zsh.org>

 YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED. All

 submissions to zsh-announce are automatically forwarded to zsh-users.

 All submissions to zsh-users are automatically forwarded to zsh-work?

 ers.

 If you have problems subscribing/unsubscribing to any of the mailing

 lists, send mail to <listmaster@zsh.org>. The mailing lists are main?

 tained by Karsten Thygesen <karthy@kom.auc.dk>.

 The mailing lists are archived; the archives can be accessed via the

 administrative addresses listed above. There is also a hypertext ar?

 chive, maintained by Geoff Wing <gcw@zsh.org>, available at

 https://www.zsh.org/mla/.

THE ZSH FAQ

 Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter

 Stephenson <pws@zsh.org>. It is regularly posted to the newsgroup

 comp.unix.shell and the zsh-announce mailing list. The latest version

 can be found at any of the Zsh FTP sites, or at

 http://www.zsh.org/FAQ/. The contact address for FAQ-related matters

 is <faqmaster@zsh.org>.

THE ZSH WEB PAGE

 Zsh has a web page which is located at https://www.zsh.org/. This is Page 3/10

 maintained by Karsten Thygesen <karthy@zsh.org>, of SunSITE Denmark.

 The contact address for web-related matters is <webmaster@zsh.org>.

THE ZSH USERGUIDE

 A userguide is currently in preparation. It is intended to complement

 the manual, with explanations and hints on issues where the manual can

 be cabbalistic, hierographic, or downright mystifying (for example, the

 word `hierographic' does not exist). It can be viewed in its current

 state at http://zsh.sourceforge.net/Guide/. At the time of writing,

 chapters dealing with startup files and their contents and the new com?

 pletion system were essentially complete.

INVOCATION

 The following flags are interpreted by the shell when invoked to deter?

 mine where the shell will read commands from:

 -c Take the first argument as a command to execute, rather than

 reading commands from a script or standard input. If any fur?

 ther arguments are given, the first one is assigned to $0,

 rather than being used as a positional parameter.

 -i Force shell to be interactive. It is still possible to specify

 a script to execute.

 -s Force shell to read commands from the standard input. If the -s

 flag is not present and an argument is given, the first argument

 is taken to be the pathname of a script to execute.

 If there are any remaining arguments after option processing, and nei?

 ther of the options -c or -s was supplied, the first argument is taken

 as the file name of a script containing shell commands to be executed.

 If the option PATH_SCRIPT is set, and the file name does not contain a

 directory path (i.e. there is no `/' in the name), first the current

 directory and then the command path given by the variable PATH are

 searched for the script. If the option is not set or the file name

 contains a `/' it is used directly.

 After the first one or two arguments have been appropriated as de?

 scribed above, the remaining arguments are assigned to the positional

 parameters. Page 4/10

 For further options, which are common to invocation and the set

 builtin, see zshoptions(1).

 The long option `--emulate' followed (in a separate word) by an emula?

 tion mode may be passed to the shell. The emulation modes are those

 described for the emulate builtin, see zshbuiltins(1). The `--emulate'

 option must precede any other options (which might otherwise be over?

 ridden), but following options are honoured, so may be used to modify

 the requested emulation mode. Note that certain extra steps are taken

 to ensure a smooth emulation when this option is used compared with the

 emulate command within the shell: for example, variables that conflict

 with POSIX usage such as path are not defined within the shell.

 Options may be specified by name using the -o option. -o acts like a

 single-letter option, but takes a following string as the option name.

 For example,

 zsh -x -o shwordsplit scr

 runs the script scr, setting the XTRACE option by the corresponding

 letter `-x' and the SH_WORD_SPLIT option by name. Options may be

 turned off by name by using +o instead of -o. -o can be stacked up

 with preceding single-letter options, so for example `-xo shwordsplit'

 or `-xoshwordsplit' is equivalent to `-x -o shwordsplit'.

 Options may also be specified by name in GNU long option style, `--op?

 tion-name'. When this is done, `-' characters in the option name are

 permitted: they are translated into `_', and thus ignored. So, for ex?

 ample, `zsh --sh-word-split' invokes zsh with the SH_WORD_SPLIT option

 turned on. Like other option syntaxes, options can be turned off by

 replacing the initial `-' with a `+'; thus `+-sh-word-split' is equiva?

 lent to `--no-sh-word-split'. Unlike other option syntaxes, GNU-style

 long options cannot be stacked with any other options, so for example

 `-x-shwordsplit' is an error, rather than being treated like `-x

 --shwordsplit'.

 The special GNU-style option `--version' is handled; it sends to stan?

 dard output the shell's version information, then exits successfully.

 `--help' is also handled; it sends to standard output a list of options Page 5/10

 that can be used when invoking the shell, then exits successfully.

 Option processing may be finished, allowing following arguments that

 start with `-' or `+' to be treated as normal arguments, in two ways.

 Firstly, a lone `-' (or `+') as an argument by itself ends option pro?

 cessing. Secondly, a special option `--' (or `+-'), which may be spec?

 ified on its own (which is the standard POSIX usage) or may be stacked

 with preceding options (so `-x-' is equivalent to `-x --'). Options

 are not permitted to be stacked after `--' (so `-x-f' is an error), but

 note the GNU-style option form discussed above, where `--shwordsplit'

 is permitted and does not end option processing.

 Except when the sh/ksh emulation single-letter options are in effect,

 the option `-b' (or `+b') ends option processing. `-b' is like `--',

 except that further single-letter options can be stacked after the `-b'

 and will take effect as normal.

COMPATIBILITY

 Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respec?

 tively; more precisely, it looks at the first letter of the name by

 which it was invoked, excluding any initial `r' (assumed to stand for

 `restricted'), and if that is `b', `s' or `k' it will emulate sh or

 ksh. Furthermore, if invoked as su (which happens on certain systems

 when the shell is executed by the su command), the shell will try to

 find an alternative name from the SHELL environment variable and per?

 form emulation based on that.

 In sh and ksh compatibility modes the following parameters are not spe?

 cial and not initialized by the shell: ARGC, argv, cdpath, fignore,

 fpath, HISTCHARS, mailpath, MANPATH, manpath, path, prompt, PROMPT,

 PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.

 The usual zsh startup/shutdown scripts are not executed. Login shells

 source /etc/profile followed by $HOME/.profile. If the ENV environment

 variable is set on invocation, $ENV is sourced after the profile

 scripts. The value of ENV is subjected to parameter expansion, command

 substitution, and arithmetic expansion before being interpreted as a

 pathname. Note that the PRIVILEGED option also affects the execution Page 6/10

 of startup files.

 The following options are set if the shell is invoked as sh or ksh:

 NO_BAD_PATTERN, NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNC?

 TION_ARGZERO, GLOB_SUBST, NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COM?

 MENTS, KSH_ARRAYS, NO_MULTIOS, NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS,

 NO_PROMPT_PERCENT, RM_STAR_SILENT, SH_FILE_EXPANSION, SH_GLOB, SH_OP?

 TION_LETTERS, SH_WORD_SPLIT. Additionally the BSD_ECHO and IG?

 NORE_BRACES options are set if zsh is invoked as sh. Also, the KSH_OP?

 TION_PRINT, LOCAL_OPTIONS, PROMPT_BANG, PROMPT_SUBST and SIN?

 GLE_LINE_ZLE options are set if zsh is invoked as ksh.

RESTRICTED SHELL

 When the basename of the command used to invoke zsh starts with the

 letter `r' or the `-r' command line option is supplied at invocation,

 the shell becomes restricted. Emulation mode is determined after

 stripping the letter `r' from the invocation name. The following are

 disabled in restricted mode:

 ? changing directories with the cd builtin

 ? changing or unsetting the EGID, EUID, GID, HISTFILE, HISTSIZE,

 IFS, LD_AOUT_LIBRARY_PATH, LD_AOUT_PRELOAD, LD_LIBRARY_PATH,

 LD_PRELOAD, MODULE_PATH, module_path, PATH, path, SHELL, UID and

 USERNAME parameters

 ? specifying command names containing /

 ? specifying command pathnames using hash

 ? redirecting output to files

 ? using the exec builtin command to replace the shell with another

 command

 ? using jobs -Z to overwrite the shell process' argument and envi?

 ronment space

 ? using the ARGV0 parameter to override argv[0] for external com?

 mands

 ? turning off restricted mode with set +r or unsetopt RESTRICTED

 These restrictions are enforced after processing the startup files.

 The startup files should set up PATH to point to a directory of com? Page 7/10

 mands which can be safely invoked in the restricted environment. They

 may also add further restrictions by disabling selected builtins.

 Restricted mode can also be activated any time by setting the RE?

 STRICTED option. This immediately enables all the restrictions de?

 scribed above even if the shell still has not processed all startup

 files.

 A shell Restricted Mode is an outdated way to restrict what users may

 do: modern systems have better, safer and more reliable ways to con?

 fine user actions, such as chroot jails, containers and zones.

 A restricted shell is very difficult to implement safely. The feature

 may be removed in a future version of zsh.

 It is important to realise that the restrictions only apply to the

 shell, not to the commands it runs (except for some shell builtins).

 While a restricted shell can only run the restricted list of commands

 accessible via the predefined `PATH' variable, it does not prevent

 those commands from running any other command.

 As an example, if `env' is among the list of allowed commands, then it

 allows the user to run any command as `env' is not a shell builtin com?

 mand and can run arbitrary executables.

 So when implementing a restricted shell framework it is important to be

 fully aware of what actions each of the allowed commands or features

 (which may be regarded as modules) can perform.

 Many commands can have their behaviour affected by environment vari?

 ables. Except for the few listed above, zsh does not restrict the set?

 ting of environment variables.

 If a `perl', `python', `bash', or other general purpose interpreted

 script it treated as a restricted command, the user can work around the

 restriction by setting specially crafted `PERL5LIB', `PYTHONPATH',

 `BASHENV' (etc.) environment variables. On GNU systems, any command can

 be made to run arbitrary code when performing character set conversion

 (including zsh itself) by setting a `GCONV_PATH' environment variable.

 Those are only a few examples.

 Bear in mind that, contrary to some other shells, `readonly' is not a Page 8/10

 security feature in zsh as it can be undone and so cannot be used to

 mitigate the above.

 A restricted shell only works if the allowed commands are few and care?

 fully written so as not to grant more access to users than intended.

 It is also important to restrict what zsh module the user may load as

 some of them, such as `zsh/system', `zsh/mapfile' and `zsh/files', al?

 low bypassing most of the restrictions.

STARTUP/SHUTDOWN FILES

 Commands are first read from /etc/zshenv; this cannot be overridden.

 Subsequent behaviour is modified by the RCS and GLOBAL_RCS options; the

 former affects all startup files, while the second only affects global

 startup files (those shown here with an path starting with a /). If

 one of the options is unset at any point, any subsequent startup

 file(s) of the corresponding type will not be read. It is also possi?

 ble for a file in $ZDOTDIR to re-enable GLOBAL_RCS. Both RCS and

 GLOBAL_RCS are set by default.

 Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login

 shell, commands are read from /etc/zprofile and then $ZDOTDIR/.zpro?

 file. Then, if the shell is interactive, commands are read from

 /etc/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a login

 shell, /etc/zlogin and $ZDOTDIR/.zlogin are read.

 When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zl?

 ogout are read. This happens with either an explicit exit via the exit

 or logout commands, or an implicit exit by reading end-of-file from the

 terminal. However, if the shell terminates due to exec'ing another

 process, the logout files are not read. These are also affected by the

 RCS and GLOBAL_RCS options. Note also that the RCS option affects the

 saving of history files, i.e. if RCS is unset when the shell exits, no

 history file will be saved.

 If ZDOTDIR is unset, HOME is used instead. Files listed above as being

 in /etc may be in another directory, depending on the installation.

 As /etc/zshenv is run for all instances of zsh, it is important that it

 be kept as small as possible. In particular, it is a good idea to put Page 9/10

 code that does not need to be run for every single shell behind a test

 of the form `if [[-o rcs]]; then ...' so that it will not be executed

 when zsh is invoked with the `-f' option.

 Any of these files may be pre-compiled with the zcompile builtin com?

 mand (see zshbuiltins(1)). If a compiled file exists (named for the

 original file plus the .zwc extension) and it is newer than the origi?

 nal file, the compiled file will be used instead.

FILES

 $ZDOTDIR/.zshenv

 $ZDOTDIR/.zprofile

 $ZDOTDIR/.zshrc

 $ZDOTDIR/.zlogin

 $ZDOTDIR/.zlogout

 ${TMPPREFIX}* (default is /tmp/zsh*)

 /etc/zshenv

 /etc/zprofile

 /etc/zshrc

 /etc/zlogin

 /etc/zlogout (installation-specific - /etc is the default)

SEE ALSO

 sh(1), csh(1), tcsh(1), rc(1), bash(1), ksh(1), zshall(1), zsh?

 builtins(1), zshcalsys(1), zshcompwid(1), zshcompsys(1), zshcompctl(1),

 zshcontrib(1), zshexpn(1), zshmisc(1), zshmodules(1), zshoptions(1),

 zshparam(1), zshroadmap(1), zshtcpsys(1), zshzftpsys(1), zshzle(1)

 IEEE Standard for information Technology - Portable Operating System

 Interface (POSIX) - Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN

 1-55937-255-9.

zsh 5.8 February 14, 2020 ZSH(1)

Page 10/10

