
Rocky Enterprise Linux 9.2 Manual Pages on command 'zip.1'

$ man zip.1

ZIP(1L)                                                                ZIP(1L)

NAME

       zip - package and compress (archive) files

SYNOPSIS

       zip  [-aABcdDeEfFghjklLmoqrRSTuvVwXyz!@$] [--longoption ...]  [-b path]

       [-n suffixes] [-t date] [-tt date] [zipfile [file ...]]  [-xi list]

       zipcloak (see separate man page)

       zipnote (see separate man page)

       zipsplit (see separate man page)

       Note:  Command line processing in zip has been changed to support  long

       options  and  handle all options and arguments more consistently.  Some

       old command lines that depend on command line  inconsistencies  may  no

       longer work.

DESCRIPTION

       zip  is  a compression and file packaging utility for Unix, VMS, MSDOS,

       OS/2, Windows 9x/NT/XP, Minix, Atari, Macintosh, Amiga, and Acorn  RISC

       OS.   It  is analogous to a combination of the Unix commands tar(1) and

       compress(1) and is compatible with PKZIP (Phil  Katz's  ZIP  for  MSDOS Page 1/49



       systems).

       A  companion program (unzip(1L)) unpacks zip archives.  The zip and un?

       zip(1L) programs can work with archives produced by  PKZIP  (supporting

       most PKZIP features up to PKZIP version 4.6), and PKZIP and PKUNZIP can

       work with archives produced  by  zip  (with  some  exceptions,  notably

       streamed  archives, but recent changes in the zip file standard may fa?

       cilitate better compatibility).  zip version  3.0  is  compatible  with

       PKZIP  2.04  and  also supports the Zip64 extensions of PKZIP 4.5 which

       allow archives as well as files to exceed the previous 2 GB limit (4 GB

       in  some  cases).  zip also now supports bzip2 compression if the bzip2

       library is included when zip is compiled.  Note that PKUNZIP 1.10  can?

       not extract files produced by PKZIP 2.04 or zip 3.0. You must use PKUN?

       ZIP 2.04g or unzip 5.0p1 (or later versions) to extract them.

       See the EXAMPLES section at the bottom of this  page  for  examples  of

       some typical uses of zip.

       Large Archives and Zip64.   zip automatically uses the Zip64 extensions

       when files larger than 4 GB are added to an archive,  an  archive  con?

       taining  Zip64 entries is updated (if the resulting archive still needs

       Zip64), the size of the archive will exceed 4 GB, or when the number of

       entries  in  the archive will exceed about 64K.  Zip64 is also used for

       archives streamed from standard input as the size of such archives  are

       not  known  in advance, but the option -fz- can be used to force zip to

       create PKZIP 2 compatible archives (as long as Zip64 extensions are not

       needed).   You must use a PKZIP 4.5 compatible unzip, such as unzip 6.0

       or later, to extract files using the Zip64 extensions.

       In addition, streamed archives, entries encrypted with standard encryp?

       tion,  or  split archives created with the pause option may not be com?

       patible with PKZIP as data descriptors are used and PKZIP at  the  time

       of  this  writing does not support data descriptors (but recent changes

       in the PKWare published zip standard now include some support  for  the

       data descriptor format zip uses).

       Mac  OS  X.   Though  previous Mac versions had their own zip port, zip

       supports Mac OS X as part of the Unix port and most Unix  features  ap? Page 2/49



       ply.   References  to  "MacOS"  below generally refer to MacOS versions

       older than OS X.  Support for some Mac OS features in the Unix Mac OS X

       port, such as resource forks, is expected in the next zip release.

       For  a brief help on zip and unzip, run each without specifying any pa?

       rameters on the command line.

USE

       The program is useful for packaging a set of  files  for  distribution;

       for archiving files; and for saving disk space by temporarily compress?

       ing unused files or directories.

       The zip program puts one or more compressed files into a single zip ar?

       chive,  along  with information about the files (name, path, date, time

       of last modification, protection, and check information to verify  file

       integrity).  An entire directory structure can be packed into a zip ar?

       chive with a single command.  Compression ratios of 2:1 to 3:1 are com?

       mon for text files.  zip has one compression method (deflation) and can

       also store files without compression.  (If bzip2 support is added,  zip

       can  also  compress using bzip2 compression, but such entries require a

       reasonably modern unzip to decompress.  When bzip2 compression  is  se?

       lected,  it  replaces  deflation as the default method.)  zip automati?

       cally chooses the better of the two (deflation or store or, if bzip2 is

       selected, bzip2 or store) for each file to be compressed.

       Command format.  The basic command format is

              zip options archive inpath inpath ...

       where  archive  is a new or existing zip archive and inpath is a direc?

       tory or file path optionally including wildcards.  When given the  name

       of  an existing zip archive, zip will replace identically named entries

       in the zip archive (matching the relative names as stored  in  the  ar?

       chive)  or  add  entries for new names.  For example, if foo.zip exists

       and contains foo/file1 and foo/file2, and the  directory  foo  contains

       the files foo/file1 and foo/file3, then:

              zip -r foo.zip foo

       or more concisely

              zip -r foo foo Page 3/49



       will  replace foo/file1 in foo.zip and add foo/file3 to foo.zip.  After

       this,  foo.zip  contains  foo/file1,  foo/file2,  and  foo/file3,  with

       foo/file2 unchanged from before.

       So if before the zip command is executed foo.zip has:

               foo/file1 foo/file2

       and directory foo has:

               file1 file3

       then foo.zip will have:

               foo/file1 foo/file2 foo/file3

       where foo/file1 is replaced and foo/file3 is new.

       -@ file lists.   If  a file list is specified as -@ [Not on MacOS], zip

       takes the list of input files from standard input instead of  from  the

       command line.  For example,

              zip -@ foo

       will store the files listed one per line on stdin in foo.zip.

       Under  Unix,  this option can be used to powerful effect in conjunction

       with the find (1) command.  For example, to archive all  the  C  source

       files in the current directory and its subdirectories:

              find . -name "*.[ch]" -print | zip source -@

       (note  that the pattern must be quoted to keep the shell from expanding

       it).

       Streaming input and output.  zip will also accept a single  dash  ("-")

       as the zip file name, in which case it will write the zip file to stan?

       dard output, allowing the output to be piped to  another  program.  For

       example:

              zip -r - . | dd of=/dev/nrst0 obs=16k

       would  write the zip output directly to a tape with the specified block

       size for the purpose of backing up the current directory.

       zip also accepts a single dash ("-") as the name of a file to  be  com?

       pressed,  in  which case it will read the file from standard input, al?

       lowing zip to take input from another program. For example:

              tar cf - . | zip backup -

       would compress the output of the tar command for the purpose of backing Page 4/49



       up  the  current  directory. This generally produces better compression

       than the previous example using the -r option because zip can take  ad?

       vantage  of  redundancy between files. The backup can be restored using

       the command

              unzip -p backup | tar xf -

       When no zip file name is given and stdout is not a terminal,  zip  acts

       as  a filter, compressing standard input to standard output.  For exam?

       ple,

              tar cf - . | zip | dd of=/dev/nrst0 obs=16k

       is equivalent to

              tar cf - . | zip - - | dd of=/dev/nrst0 obs=16k

       zip archives created in this manner can be extracted with  the  program

       funzip  which  is  provided in the unzip package, or by gunzip which is

       provided in the gzip package (but some gunzip may not support  this  if

       zip used the Zip64 extensions). For example:

              dd if=/dev/nrst0  ibs=16k | funzip | tar xvf -

       The stream can also be saved to a file and unzip used.

       If  Zip64  support  for  large files and archives is enabled and zip is

       used as a filter, zip creates a Zip64 archive that requires a PKZIP 4.5

       or  later compatible unzip to read it.  This is to avoid amgibuities in

       the zip file structure as defined in the current zip  standard  (PKWARE

       AppNote)  where  the decision to use Zip64 needs to be made before data

       is written for the entry, but for a stream the size of the data is  not

       known at that point.  If the data is known to be smaller than 4 GB, the

       option -fz- can be used to prevent use of Zip64, but zip will exit with

       an  error if Zip64 was in fact needed.  zip 3 and unzip 6 and later can

       read archives with Zip64 entries.  Also, zip removes the  Zip64  exten?

       sions  if  not  needed  when  archive  entries  are  copied (see the -U

       (--copy) option).

       When directing the output to another file, note that all options should

       be before the redirection including -x.  For example:

              zip archive "*.h" "*.c" -x donotinclude.h orthis.h > tofile

       Zip files.   When  changing  an  existing zip archive, zip will write a Page 5/49



       temporary file with the new contents, and only replace the old one when

       the  process of creating the new version has been completed without er?

       ror.

       If the name of the zip archive does not contain an extension,  the  ex?

       tension  .zip is added. If the name already contains an extension other

       than .zip, the existing extension is kept  unchanged.   However,  split

       archives  (archives  split over multiple files) require the .zip exten?

       sion on the last split.

       Scanning and reading files.  When zip starts, it  scans  for  files  to

       process  (if  needed).  If this scan takes longer than about 5 seconds,

       zip will display  a  "Scanning  files"  message  and  start  displaying

       progress  dots  every  2  seconds  or  every so many entries processed,

       whichever takes longer.  If there is more than 2 seconds  between  dots

       it  could indicate that finding each file is taking time and could mean

       a slow network connection for example.  (Actually the initial file scan

       is  a  two-step  process where the directory scan is followed by a sort

       and these two steps are separated with a space in the dots.  If  updat?

       ing an existing archive, a space also appears between the existing file

       scan and the new file scan.)  The scanning  files  dots  are  not  con?

       trolled  by the -ds dot size option, but the dots are turned off by the

       -q quiet option.  The -sf show files option can be  used  to  scan  for

       files  and  get  the  list of files scanned without actually processing

       them.

       If zip is not able to read a file, it issues a warning  but  continues.

       See  the -MM option below for more on how zip handles patterns that are

       not matched and files that  are  not  readable.   If  some  files  were

       skipped, a warning is issued at the end of the zip operation noting how

       many files were read and how many skipped.

       Command modes.  zip now supports two distinct types of  command  modes,

       external  and  internal.  The external modes (add, update, and freshen)

       read files from the file system (as well as from an  existing  archive)

       while  the  internal modes (delete and copy) operate exclusively on en?

       tries in an existing archive. Page 6/49



       add

              Update existing entries and add new files.  If the archive  does

              not exist create it.  This is the default mode.

       update (-u)

              Update  existing entries if newer on the file system and add new

              files.  If the archive does not exist issue warning then  create

              a new archive.

       freshen (-f)

              Update  existing entries of an archive if newer on the file sys?

              tem.  Does not add new files to the archive.

       delete (-d)

              Select entries in an existing archive and delete them.

       copy (-U)

              Select entries in an existing archive and copy them to a new ar?

              chive.  This new mode is similar to update but command line pat?

              terns select entries in the existing archive rather  than  files

              from  the  file system and it uses the --out option to write the

              resulting archive to a new file rather than update the  existing

              archive, leaving the original archive unchanged.

       The new File Sync option (-FS) is also considered a new mode, though it

       is similar to update.  This mode  synchronizes  the  archive  with  the

       files  on  the OS, only replacing files in the archive if the file time

       or size of the OS file is different, adding new files, and deleting en?

       tries  from  the archive where there is no matching file.  As this mode

       can delete entries from the archive, consider making a backup  copy  of

       the archive.

       Also see -DF for creating difference archives.

       See  each option description below for details and the EXAMPLES section

       below for examples.

       Split archives.  zip version 3.0 and later can create  split  archives.

       A  split  archive  is a standard zip archive split over multiple files.

       (Note that split archives are not just archives split in to pieces,  as

       the  offsets of entries are now based on the start of each split.  Con? Page 7/49



       catenating the pieces together will invalidate these offsets, but unzip

       can  usually  deal  with it.  zip will usually refuse to process such a

       spliced archive unless the -FF fix option is used to fix the offsets.)

       One use of split archives is storing a large archive on multiple remov?

       able media.  For a split archive with 20 split files the files are typ?

       ically named (replace ARCHIVE  with  the  name  of  your  archive)  AR?

       CHIVE.z01,  ARCHIVE.z02,  ..., ARCHIVE.z19, ARCHIVE.zip.  Note that the

       last file is the .zip file.  In  contrast,  spanned  archives  are  the

       original  multi-disk archive generally requiring floppy disks and using

       volume labels to store disk numbers.  zip supports split  archives  but

       not  spanned  archives,  though a procedure exists for converting split

       archives of the right size to spanned archives.  The  reverse  is  also

       true,  where  each  file of a spanned archive can be copied in order to

       files with the above names to create a split archive.

       Use -s to set the split size and create a split archive.  The  size  is

       given as a number followed optionally by one of k (kB), m (MB), g (GB),

       or t (TB) (the default is m).  The -sp option can be used to pause  zip

       between splits to allow changing removable media, for example, but read

       the descriptions and warnings for both -s and -sp below.

       Though zip does not update split archives, zip provides the new  option

       -O  (--output-file  or --out) to allow split archives to be updated and

       saved in a new archive.  For example,

              zip inarchive.zip foo.c bar.c --out outarchive.zip

       reads archive inarchive.zip, even if split, adds the  files  foo.c  and

       bar.c,  and  writes  the resulting archive to outarchive.zip.  If inar?

       chive.zip is split then outarchive.zip defaults to the same split size.

       Be  aware  that  if outarchive.zip and any split files that are created

       with it already exist, these are always overwritten as  needed  without

       warning.  This may be changed in the future.

       Unicode.   Though the zip standard requires storing paths in an archive

       using a specific character set, in practice zips have stored  paths  in

       archives in whatever the local character set is.  This creates problems

       when an archive is created or updated on a system using  one  character Page 8/49



       set  and  then  extracted on another system using a different character

       set.  When compiled with Unicode support enabled on platforms that sup?

       port wide characters, zip now stores, in addition to the standard local

       path for backward compatibility, the UTF-8  translation  of  the  path.

       This  provides  a common universal character set for storing paths that

       allows these paths to be fully extracted on other systems that  support

       Unicode and to match as close as possible on systems that don't.

       On  Win32 systems where paths are internally stored as Unicode but rep?

       resented in the local character set, it's possible that some paths will

       be  skipped during a local character set directory scan.  zip with Uni?

       code support now can read and store these paths.  Note that Win 9x sys?

       tems and FAT file systems don't fully support Unicode.

       Be aware that console windows on Win32 and Unix, for example, sometimes

       don't accurately show all characters due to how each  operating  system

       switches  in character sets for display.  However, directory navigation

       tools should show the correct paths if the needed fonts are loaded.

       Command line format.  This version of zip has updated command line pro?

       cessing and support for long options.

       Short options take the form

              -s[-][s[-]...][value][=value][ value]

       where  s  is  a one or two character short option.  A short option that

       takes a value is last in an argument and anything after it is taken  as

       the  value.   If  the option can be negated and "-" immediately follows

       the option, the option is negated.  Short options can also be given  as

       separate arguments

              -s[-][value][=value][ value] -s[-][value][=value][ value] ...

       Short  options  in general take values either as part of the same argu?

       ment or as the following argument.  An optional =  is  also  supported.

       So

              -ttmmddyyyy

       and

              -tt=mmddyyyy

       and Page 9/49



              -tt mmddyyyy

       all  work.   The  -x  and  -i  options accept lists of values and use a

       slightly different format described below.  See the -x and -i options.

       Long options take the form

              --longoption[-][=value][ value]

       where the option starts with --, has a multicharacter name, can include

       a  trailing  dash to negate the option (if the option supports it), and

       can have a value (option argument) specified by preceeding  it  with  =

       (no spaces).  Values can also follow the argument.  So

              --before-date=mmddyyyy

       and

              --before-date mmddyyyy

       both work.

       Long option names can be shortened to the shortest unique abbreviation.

       See the option descriptions below for which support long  options.   To

       avoid confusion, avoid abbreviating a negatable option with an embedded

       dash ("-") at the dash if you plan to negate it (the parser would  con?

       sider  a  trailing  dash,  such  as  for the option --some-option using

       --some- as the option, as part of  the  name  rather  than  a  negating

       dash).   This  may  be  changed to force the last dash in --some- to be

       negating in the future.

OPTIONS

       -a

       --ascii

              [Systems using EBCDIC] Translate file to ASCII format.

       -A

       --adjust-sfx

              Adjust self-extracting executable  archive.   A  self-extracting

              executable  archive  is created by prepending the SFX stub to an

              existing archive. The -A option tells zip to  adjust  the  entry

              offsets  stored in the archive to take into account this "pream?

              ble" data.

       Note: self-extracting archives for the Amiga are a  special  case.   At Page 10/49



       present, only the Amiga port of zip is capable of adjusting or updating

       these without corrupting them. -J can be used to remove the SFX stub if

       other updates need to be made.

       -AC

       --archive-clear

              [WIN32]   Once  archive  is  created  (and tested if -T is used,

              which is recommended), clear the  archive  bits  of  files  pro?

              cessed.   WARNING:  Once  the bits are cleared they are cleared.

              You may want to use the -sf show files option to store the  list

              of  files  processed  in  case the archive operation must be re?

              peated.  Also consider using the -MM must match option.  Be sure

              to  check  out  -DF  as  a possibly better way to do incremental

              backups.

       -AS

       --archive-set

              [WIN32]  Only include files that have the archive bit set.   Di?

              rectories are not stored when -AS is used, though by default the

              paths of entries, including directories, are stored as usual and

              can be used by most unzips to recreate directories.

              The  archive  bit  is set by the operating system when a file is

              modified and, if used with -AC, -AS can provide  an  incremental

              backup  capability.   However, other applications can modify the

              archive bit and it may not be  a  reliable  indicator  of  which

              files  have  changed since the last archive operation.  Alterna?

              tive ways to create incremental backups are using -t to use file

              dates,  though  this won't catch old files copied to directories

              being archived, and -DF to create a differential archive.

       -B

       --binary

              [VM/CMS and MVS] force file to be read binary (default is text).

       -Bn    [TANDEM] set Edit/Enscribe formatting options with n defined as

              bit  0: Don't add delimiter (Edit/Enscribe)

              bit  1: Use LF rather than CR/LF as delimiter (Edit/Enscribe) Page 11/49



              bit  2: Space fill record to maximum record length (Enscribe)

              bit  3: Trim trailing space (Enscribe)

              bit  8: Force 30K (Expand) large read for unstructured files

       -b path

       --temp-path path

              Use the specified path for the temporary zip archive. For  exam?

              ple:

                     zip -b /tmp stuff *

              will  put the temporary zip archive in the directory /tmp, copy?

              ing over stuff.zip to the current directory when done. This  op?

              tion  is  useful  when updating an existing archive and the file

              system containing this old archive does not have enough space to

              hold both old and new archives at the same time.  It may also be

              useful when streaming in some cases to avoid the need  for  data

              descriptors.   Note  that using this option may require zip take

              additional time to copy the archive file when done to the desti?

              nation file system.

       -c

       --entry-comments

              Add  one-line  comments for each file.  File operations (adding,

              updating) are done first, and the user is then  prompted  for  a

              one-line  comment  for each file.  Enter the comment followed by

              return, or just return for no comment.

       -C

       --preserve-case

              [VMS]  Preserve case all on VMS.   Negating  this  option  (-C-)

              downcases.

       -C2

       --preserve-case-2

              [VMS]   Preserve  case ODS2 on VMS.  Negating this option (-C2-)

              downcases.

       -C5

       --preserve-case-5 Page 12/49



              [VMS]  Preserve case ODS5 on VMS.  Negating this  option  (-C5-)

              downcases.

       -d

       --delete

              Remove (delete) entries from a zip archive.  For example:

                     zip -d foo foo/tom/junk foo/harry/\* \*.o

              will  remove the entry foo/tom/junk, all of the files that start

              with foo/harry/, and all of the files that end with .o  (in  any

              path).   Note  that  shell pathname expansion has been inhibited

              with backslashes, so that zip can see  the  asterisks,  enabling

              zip  to  match on the contents of the zip archive instead of the

              contents of the current directory.   (The  backslashes  are  not

              used  on  MSDOS-based platforms.)  Can also use quotes to escape

              the asterisks as in

                     zip -d foo foo/tom/junk "foo/harry/*" "*.o"

              Not escaping the asterisks on a system where the  shell  expands

              wildcards  could  result  in  the asterisks being converted to a

              list of files in the current directory and  that  list  used  to

              delete entries from the archive.

              Under  MSDOS,  -d is case sensitive when it matches names in the

              zip archive.  This requires that file names be entered in  upper

              case  if they were zipped by PKZIP on an MSDOS system.  (We con?

              sidered making this case insensitive on systems where paths were

              case  insensitive,  but  it  is possible the archive came from a

              system where case does matter and the archive could include both

              Bar  and bar as separate files in the archive.)  But see the new

              option -ic to ignore case in the archive.

       -db

       --display-bytes

              Display running byte counts showing the  bytes  zipped  and  the

              bytes to go.

       -dc

       --display-counts Page 13/49



              Display running count of entries zipped and entries to go.

       -dd

       --display-dots

              Display  dots  while  each entry is zipped (except on ports that

              have their own progress indicator).  See -ds below  for  setting

              dot  size.   The default is a dot every 10 MB of input file pro?

              cessed.  The -v option also displays dots (previously at a  much

              higher  rate  than  this  but now -v also defaults to 10 MB) and

              this rate is also controlled by -ds.

       -df

       --datafork

              [MacOS] Include only data-fork of files zipped into the archive.

              Good  for  exporting  files  to  foreign operating-systems.  Re?

              source-forks will be ignored at all.

       -dg

       --display-globaldots

              Display progress dots for the archive instead of for each  file.

              The command

                         zip -qdgds 10m

              will turn off most output except dots every 10 MB.

       -ds size

       --dot-size size

              Set  amount of input file processed for each dot displayed.  See

              -dd to enable displaying dots.  Setting this option implies -dd.

              Size  is  in the format nm where n is a number and m is a multi?

              plier.  Currently m can be k (KB), m (MB), g (GB), or t (TB), so

              if n is 100 and m is k, size would be 100k which is 100 KB.  The

              default is 10 MB.

              The -v option also displays dots and now defaults to 10 MB also.

              This  rate is also controlled by this option.  A size of 0 turns

              dots off.

              This option does not control the dots from the "Scanning  files"

              message  as zip scans for input files.  The dot size for that is Page 14/49



              fixed at 2 seconds or a fixed number of  entries,  whichever  is

              longer.

       -du

       --display-usize

              Display the uncompressed size of each entry.

       -dv

       --display-volume

              Display  the volume (disk) number each entry is being read from,

              if reading an existing archive, and being written to.

       -D

       --no-dir-entries

              Do not create entries in the zip archive for  directories.   Di?

              rectory  entries are created by default so that their attributes

              can be saved in  the  zip  archive.   The  environment  variable

              ZIPOPT  can  be  used to change the default options. For example

              under Unix with sh:

                     ZIPOPT="-D"; export ZIPOPT

              (The variable ZIPOPT can be used for any  option,  including  -i

              and -x using a new option format detailed below, and can include

              several options.) The option -D is a shorthand for -x  "*/"  but

              the  latter previously could not be set as default in the ZIPOPT

              environment variable as the contents  of  ZIPOPT  gets  inserted

              near  the beginning of the command line and the file list had to

              end at the end of the line.

              This version of zip does allow -x and -i options  in  ZIPOPT  if

              the form

               -x file file ... @

              is used, where the @ (an argument that is just @) terminates the

              list.

       -DF

       --difference-archive

              Create an archive that contains all new and changed files  since

              the  original  archive was created.  For this to work, the input Page 15/49



              file list and current directory must be the same as  during  the

              original zip operation.

              For example, if the existing archive was created using

                     zip -r foofull .

              from the bar directory, then the command

                     zip -r foofull . -DF --out foonew

              also from the bar directory creates the archive foonew with just

              the files not in foofull and the files where the  size  or  file

              time of the files do not match those in foofull.

              Note that the timezone environment variable TZ should be set ac?

              cording to the local timezone in order for this option  to  work

              correctly.   A change in timezone since the original archive was

              created could result in no times matching and  all  files  being

              included.

              A possible approach to backing up a directory might be to create

              a normal archive of the contents of  the  directory  as  a  full

              backup, then use this option to create incremental backups.

       -e

       --encrypt

              Encrypt  the  contents of the zip archive using a password which

              is entered on the terminal in response to a  prompt  (this  will

              not  be  echoed;  if  standard error is not a tty, zip will exit

              with an error).  The password prompt is  repeated  to  save  the

              user from typing errors.

       -E

       --longnames

              [OS/2]  Use the .LONGNAME Extended Attribute (if found) as file?

              name.

       -f

       --freshen

              Replace (freshen) an existing entry in the zip archive  only  if

              it  has  been modified more recently than the version already in

              the zip archive; unlike the update option (-u) this will not add Page 16/49



              files that are not already in the zip archive.  For example:

                     zip -f foo

              This  command  should  be run from the same directory from which

              the original zip command was run, since paths stored in zip  ar?

              chives are always relative.

              Note that the timezone environment variable TZ should be set ac?

              cording to the local timezone in order for the -f, -u and -o op?

              tions to work correctly.

              The  reasons behind this are somewhat subtle but have to do with

              the differences between the Unix-format file  times  (always  in

              GMT) and most of the other operating systems (always local time)

              and the necessity to compare the two.  A  typical  TZ  value  is

              ``MET-1MEST''  (Middle  European  time with automatic adjustment

              for ``summertime'' or Daylight Savings Time).

              The format is TTThhDDD, where TTT is the time zone such as  MET,

              hh  is  the  difference  between  GMT  and local time such as -1

              above, and DDD is the time zone when daylight savings time is in

              effect.  Leave off the DDD if there is no daylight savings time.

              For the US Eastern time zone EST5EDT.

       -F

       --fix

       -FF

       --fixfix

              Fix the zip archive. The -F option can be used if some  portions

              of  the  archive  are  missing, but requires a reasonably intact

              central directory.  The input archive is scanned as  usual,  but

              zip  will ignore some problems.  The resulting archive should be

              valid, but any inconsistent entries will be left out.

              When doubled as in -FF, the archive is scanned from  the  begin?

              ning and zip scans for special signatures to identify the limits

              between the archive members. The single -F is more  reliable  if

              the archive is not too much damaged, so try this option first.

              If the archive is too damaged or the end has been truncated, you Page 17/49



              must use -FF.  This is a change from zip 2.32, where the -F  op?

              tion  is  able  to  read a truncated archive.  The -F option now

              more reliably fixes archives with minor damage and the  -FF  op?

              tion  is  needed to fix archives where -F might have been suffi?

              cient before.

              Neither option will recover archives that have been  incorrectly

              transferred  in  ascii mode instead of binary. After the repair,

              the -t option of unzip may show that some files have a bad  CRC.

              Such files cannot be recovered; you can remove them from the ar?

              chive using the -d option of zip.

              Note that -FF may have trouble fixing archives that  include  an

              embedded  zip  archive  that was stored (without compression) in

              the archive and, depending on the damage, it may  find  the  en?

              tries  in  the  embedded archive rather than the archive itself.

              Try -F first as it does not have this problem.

              The format of the fix commands have changed.   For  example,  to

              fix the damaged archive foo.zip,

                     zip -F foo --out foofix

              tries  to read the entries normally, copying good entries to the

              new archive foofix.zip.  If this doesn't work, as when  the  ar?

              chive  is  truncated, or if some entries you know are in the ar?

              chive are missed, then try

                     zip -FF foo --out foofixfix

              and compare the resulting archive to the archive created by  -F.

              The -FF option may create an inconsistent archive.  Depending on

              what is damaged, you can then use the -F option to fix that  ar?

              chive.

              A  split  archive with missing split files can be fixed using -F

              if you have the last split of the archive (the .zip  file).   If

              this file is missing, you must use -FF to fix the archive, which

              will prompt you for the splits you have.

              Currently the fix options can't recover entries that have a  bad

              checksum or are otherwise damaged. Page 18/49



       -FI

       --fifo [Unix]   Normally  zip skips reading any FIFOs (named pipes) en?

              countered, as zip can hang if the FIFO is not being  fed.   This

              option tells zip to read the contents of any FIFO it finds.

       -FS

       --filesync

              Synchronize the contents of an archive with the files on the OS.

              Normally when an archive is updated, new  files  are  added  and

              changed  files are updated but files that no longer exist on the

              OS are not deleted from the archive.  This option enables a  new

              mode that checks entries in the archive against the file system.

              If the file time and file size of the entry matches that of  the

              OS file, the entry is copied from the old archive instead of be?

              ing read from the file system and compressed.  If  the  OS  file

              has  changed, the entry is read and compressed as usual.  If the

              entry in the archive does not match a file on the OS, the  entry

              is  deleted.   Enabling  this option should create archives that

              are the same as new archives, but  since  existing  entries  are

              copied  instead of compressed, updating an existing archive with

              -FS can be much faster than creating a new archive.   Also  con?

              sider using -u for updating an archive.

              For  this option to work, the archive should be updated from the

              same directory it was created in so the  relative  paths  match.

              If  few  files  are being copied from the old archive, it may be

              faster to create a new archive instead.

              Note that the timezone environment variable TZ should be set ac?

              cording  to  the local timezone in order for this option to work

              correctly.  A change in timezone since the original archive  was

              created  could  result in no times matching and recompression of

              all files.

              This option deletes files from the archive.  If you need to pre?

              serve  the original archive, make a copy of the archive first or

              use the --out option to output the  updated  archive  to  a  new Page 19/49



              file.  Even though it may be slower, creating a new archive with

              a new archive name is safer, avoids mismatches  between  archive

              and OS paths, and is preferred.

       -g

       --grow

              Grow  (append to) the specified zip archive, instead of creating

              a new one. If this operation fails, zip attempts to restore  the

              archive to its original state. If the restoration fails, the ar?

              chive might  become  corrupted.  This  option  is  ignored  when

              there's  no existing archive or when at least one archive member

              must be updated or deleted.

       -h

       -?

       --help

              Display the zip help information (this also appears  if  zip  is

              run with no arguments).

       -h2

       --more-help

              Display  extended  help  including  more on command line format,

              pattern matching, and more obscure options.

       -i files

       --include files

              Include only the specified files, as in:

                     zip -r foo . -i \*.c

              which will include only the files that end in .c in the  current

              directory  and  its  subdirectories.  (Note for PKZIP users: the

              equivalent command is

                     pkzip -rP foo *.c

              PKZIP does not allow recursion in  directories  other  than  the

              current one.)  The backslash avoids the shell filename substitu?

              tion, so that the name matching is performed by zip at  all  di?

              rectory  levels.   [This  is  for Unix and other systems where \

              escapes the next character.  For other systems where  the  shell Page 20/49



              does not process * do not use \ and the above is

                     zip -r foo . -i *.c

              Examples  are  for  Unix unless otherwise specified.]  So to in?

              clude dir, a directory directly under the current directory, use

                     zip -r foo . -i dir/\*

              or

                     zip -r foo . -i "dir/*"

              to match paths such as dir/a and dir/b/file.c [on ports  without

              wildcard expansion in the shell such as MSDOS and Windows

                     zip -r foo . -i dir/*

              is  used.]  Note that currently the trailing / is needed for di?

              rectories (as in

                     zip -r foo . -i dir/

              to include directory dir).

              The long option form of the first example is

                     zip -r foo . --include \*.c

              and does the same thing as the short option form.

              Though the command syntax used to require -i at the end  of  the

              command  line,  this  version  actually allows -i (or --include)

              anywhere.  The list of files terminates  at  the  next  argument

              starting with -, the end of the command line, or the list termi?

              nator @ (an argument that is just @).  So the above can be given

              as

                     zip -i \*.c @ -r foo .

              for  example.   There must be a space between the option and the

              first file of a list.  For just one file you can use the  single

              value form

                     zip -i\*.c -r foo .

              (no space between option and value) or

                     zip --include=\*.c -r foo .

              as  additional  examples.  The single value forms are not recom?

              mended because they can be confusing  and,  in  particular,  the

              -ifile  format  can  cause  problems if the first letter of file Page 21/49



              combines with i to form a two-letter  option  starting  with  i.

              Use -sc to see how your command line will be parsed.

              Also possible:

                     zip -r foo  . -i@include.lst

              which  will  only include the files in the current directory and

              its subdirectories that match  the  patterns  in  the  file  in?

              clude.lst.

              Files to -i and -x are patterns matching internal archive paths.

              See -R for more on patterns.

       -I

       --no-image

              [Acorn RISC OS] Don't scan through Image files.  When used,  zip

              will  not  consider Image files (eg. DOS partitions or Spark ar?

              chives when SparkFS is loaded) as  directories  but  will  store

              them as single files.

              For example, if you have SparkFS loaded, zipping a Spark archive

              will result in a zipfile containing a directory  (and  its  con?

              tent)  while  using the 'I' option will result in a zipfile con?

              taining a Spark archive. Obviously this second case will also be

              obtained (without the 'I' option) if SparkFS isn't loaded.

       -ic

       --ignore-case

              [VMS,  WIN32]  Ignore  case when matching archive entries.  This

              option is only available on systems where the case of  files  is

              ignored.  On systems with case-insensitive file systems, case is

              normally ignored when matching files on the file system  but  is

              not  ignored for -f (freshen), -d (delete), -U (copy), and simi?

              lar modes when matching against archive  entries  (currently  -f

              ignores case on VMS) because archive entries can be from systems

              where case does matter and names that are the  same  except  for

              case can exist in an archive.  The -ic option makes all matching

              case insensitive.  This can result in multiple  archive  entries

              matching a command line pattern. Page 22/49



       -j

       --junk-paths

              Store  just the name of a saved file (junk the path), and do not

              store directory names. By default, zip will store the full  path

              (relative to the current directory).

       -jj

       --absolute-path

              [MacOS] record Fullpath (+ Volname). The complete path including

              volume will be stored. By default  the  relative  path  will  be

              stored.

       -J

       --junk-sfx

              Strip any prepended data (e.g. a SFX stub) from the archive.

       -k

       --DOS-names

              Attempt  to  convert  the  names  and paths to conform to MSDOS,

              store only the MSDOS attribute (just the  user  write  attribute

              from  Unix), and mark the entry as made under MSDOS (even though

              it was not); for compatibility with PKUNZIP  under  MSDOS  which

              cannot handle certain names such as those with two dots.

       -l

       --to-crlf

              Translate  the Unix end-of-line character LF into the MSDOS con?

              vention CR LF. This option should not be used on  binary  files.

              This  option can be used on Unix if the zip file is intended for

              PKUNZIP under MSDOS. If the input files already contain  CR  LF,

              this option adds an extra CR. This is to ensure that unzip -a on

              Unix will get back an exact copy of the original file,  to  undo

              the effect of zip -l.  See -ll for how binary files are handled.

       -la

       --log-append

              Append to existing logfile.  Default is to overwrite.

       -lf logfilepath Page 23/49



       --logfile-path logfilepath

              Open  a logfile at the given path.  By default any existing file

              at that location is overwritten, but the -la option will  result

              in an existing file being opened and the new log information ap?

              pended to any existing information.  Only  warnings  and  errors

              are written to the log unless the -li option is also given, then

              all information messages are also written to the log.

       -li

       --log-info

              Include information messages, such as file names  being  zipped,

              in  the  log.   The default is to only include the command line,

              any warnings and errors, and the final status.

       -ll

       --from-crlf

              Translate the MSDOS end-of-line CR LF into Unix LF.  This option

              should  not be used on binary files.  This option can be used on

              MSDOS if the zip file is intended for unzip under Unix.  If  the

              file  is converted and the file is later determined to be binary

              a warning is issued and the file is probably corrupted.  In this

              release  if  -ll  detects binary in the first buffer read from a

              file, zip now issues a warning and skips line end conversion  on

              the  file.   This  check seems to catch all binary files tested,

              but the original check remains and if a converted file is  later

              determined to be binary that warning is still issued.  A new al?

              gorithm is now being used for binary detection that should allow

              line  end  conversion  of text files in UTF-8 and similar encod?

              ings.

       -L

       --license

              Display the zip license.

       -m

       --move

              Move the specified files into the zip  archive;  actually,  this Page 24/49



              deletes  the target directories/files after making the specified

              zip archive. If a directory becomes empty after removal  of  the

              files,  the directory is also removed. No deletions are done un?

              til zip has created the archive without error.  This  is  useful

              for conserving disk space, but is potentially dangerous so it is

              recommended to use it in combination with -T to test the archive

              before removing all input files.

       -MM

       --must-match

              All  input  patterns  must match at least one file and all input

              files found must be readable.  Normally when  an  input  pattern

              does  not  match a file the "name not matched" warning is issued

              and when an input file has been found but later  is  missing  or

              not  readable  a  missing or not readable warning is issued.  In

              either case zip continues creating the archive, with missing  or

              unreadable  new files being skipped and files already in the ar?

              chive remaining unchanged.  After the archive is created, if any

              files  were  not readable zip returns the OPEN error code (18 on

              most systems) instead of the normal success return  (0  on  most

              systems).   With  -MM set, zip exits as soon as an input pattern

              is not matched (whenever the "name not matched" warning would be

              issued)  or  when an input file is not readable.  In either case

              zip exits with an OPEN error and no archive is created.

              This option is useful when a known list of files is to be zipped

              so  any missing or unreadable files will result in an error.  It

              is less useful when used with wildcards, but zip will still exit

              with  an  error  if any input pattern doesn't match at least one

              file and if any matched files are unreadable.  If  you  want  to

              create  the  archive  anyway and only need to know if files were

              skipped, don't use -MM and just check the return code.  Also -lf

              could be useful.

       -n suffixes

       --suffixes suffixes Page 25/49



              Do  not attempt to compress files named with the given suffixes.

              Such files are simply stored (0% compression) in the output  zip

              file,  so  that  zip  doesn't  waste its time trying to compress

              them.  The suffixes are separated  by  either  colons  or  semi?

              colons.  For example:

                     zip -rn .Z:.zip:.tiff:.gif:.snd  foo foo

              will  copy  everything from foo into foo.zip, but will store any

              files that end in .Z, .zip, .tiff, .gif, or .snd without  trying

              to  compress  them  (image  and sound files often have their own

              specialized compression methods).  By default, zip does not com?

              press      files     with     extensions     in     the     list

              .Z:.zip:.zoo:.arc:.lzh:.arj.  Such files are stored directly  in

              the output archive.  The environment variable ZIPOPT can be used

              to change the default options. For example under Unix with csh:

                     setenv ZIPOPT "-n .gif:.zip"

              To attempt compression on all files, use:

                     zip -n : foo

              The maximum compression option -9 also attempts  compression  on

              all files regardless of extension.

              On  Acorn RISC OS systems the suffixes are actually filetypes (3

              hex digit format). By default, zip does not compress files  with

              filetypes  in the list DDC:D96:68E (i.e. Archives, CFS files and

              PackDir files).

       -nw

       --no-wild

              Do not perform internal wildcard processing (shell processing of

              wildcards  is  still  done by the shell unless the arguments are

              escaped).  Useful if a list of paths is being read and no  wild?

              card substitution is desired.

       -N

       --notes

              [Amiga,  MacOS]  Save  Amiga  or MacOS filenotes as zipfile com?

              ments. They can be restored by using the -N option of unzip.  If Page 26/49



              -c  is  used  also, you are prompted for comments only for those

              files that do not have filenotes.

       -o

       --latest-time

              Set the "last modified" time of the zip archive  to  the  latest

              (oldest) "last modified" time found among the entries in the zip

              archive.  This can be used without any other operations, if  de?

              sired.  For example:

              zip -o foo

              will change the last modified time of foo.zip to the latest time

              of the entries in foo.zip.

       -O output-file

       --output-file output-file

              Process the archive changes as usual, but  instead  of  updating

              the  existing  archive,  output  the new archive to output-file.

              Useful for updating an archive without changing the existing ar?

              chive  and  the  input archive must be a different file than the

              output archive.

              This option can be used to create updated  split  archives.   It

              can  also  be  used with -U to copy entries from an existing ar?

              chive to a new archive.  See the EXAMPLES section below.

              Another use is converting zip files from one split size  to  an?

              other.   For  instance,  to  convert  an  archive with 700 MB CD

              splits to one with 2 GB DVD splits, can use:

                     zip -s 2g cd-split.zip --out dvd-split.zip

              which uses copy mode.  See -U below.  Also:

                     zip -s 0 split.zip --out unsplit.zip

              will convert a split archive to a single-file archive.

              Copy mode will convert stream entries  (using  data  descriptors

              and  which  should be compatible with most unzips) to normal en?

              tries (which should be compatible with all  unzips),  except  if

              standard  encryption  was used.  For archives with encrypted en?

              tries, zipcloak will decrypt the entries  and  convert  them  to Page 27/49



              normal entries.

       -p

       --paths

              Include relative file paths as part of the names of files stored

              in the archive.  This is the default.  The -j option  junks  the

              paths and just stores the names of the files.

       -P password

       --password password

              Use password to encrypt zipfile entries (if any).  THIS IS INSE?

              CURE!  Many multi-user operating systems provide  ways  for  any

              user  to see the current command line of any other user; even on

              stand-alone systems there is  always  the  threat  of  over-the-

              shoulder  peeking.   Storing the plaintext password as part of a

              command line in an automated script  is  even  worse.   Whenever

              possible, use the non-echoing, interactive prompt to enter pass?

              words.  (And where security is truly important, use  strong  en?

              cryption  such  as Pretty Good Privacy instead of the relatively

              weak standard encryption provided by zipfile utilities.)

       -q

       --quiet

              Quiet  mode;  eliminate  informational  messages   and   comment

              prompts.   (Useful, for example, in shell scripts and background

              tasks).

       -Qn

       --Q-flag n

              [QDOS] store information about the file in the file header  with

              n defined as

              bit  0: Don't add headers for any file

              bit  1: Add headers for all files

              bit  2: Don't wait for interactive key press on exit

       -r

       --recurse-paths

              Travel the directory structure recursively; for example: Page 28/49



                     zip -r foo.zip foo

              or more concisely

                     zip -r foo foo

              In  this case, all the files and directories in foo are saved in

              a zip archive named foo.zip, including files with names starting

              with ".", since the recursion does not use the shell's file-name

              substitution mechanism.  If you wish to include only a  specific

              subset of the files in directory foo and its subdirectories, use

              the -i option to specify the pattern of files  to  be  included.

              You  should  not  use  -r with the name ".*", since that matches

              ".."  which will attempt to zip up the parent directory  (proba?

              bly not what was intended).

              Multiple source directories are allowed as in

                     zip -r foo foo1 foo2

              which  first  zips up foo1 and then foo2, going down each direc?

              tory.

              Note that while wildcards to -r are typically resolved while re?

              cursing  down directories in the file system, any -R, -x, and -i

              wildcards are applied to internal archive pathnames once the di?

              rectories are scanned.  To have wildcards apply to files in sub?

              directories when recursing on Unix and similar systems where the

              shell does wildcard substitution, either escape all wildcards or

              put all arguments with wildcards in quotes.  This lets  zip  see

              the wildcards and match files in subdirectories using them as it

              recurses.

       -R

       --recurse-patterns

              Travel the directory structure recursively starting at the  cur?

              rent directory; for example:

                     zip -R foo "*.c"

              In this case, all the files matching *.c in the tree starting at

              the current directory  are  stored  into  a  zip  archive  named

              foo.zip.   Note that *.c will match file.c, a/file.c and a/b/.c. Page 29/49



              More than one pattern can be listed as separate arguments.  Note

              for PKZIP users: the equivalent command is

                     pkzip -rP foo *.c

              Patterns  are relative file paths as they appear in the archive,

              or will after zipping, and can have optional wildcards in  them.

              For example, given the current directory is foo and under it are

              directories foo1 and foo2 and in foo1 is the file bar.c,

                     zip -R foo/*

              will zip up foo, foo/foo1, foo/foo1/bar.c, and foo/foo2.

                     zip -R */bar.c

              will zip up foo/foo1/bar.c.  See the note  for  -r  on  escaping

              wildcards.

       -RE

       --regex

              [WIN32]   Before  zip  3.0, regular expression list matching was

              enabled by default on Windows platforms.  Because  of  confusion

              resulting  from  the  need to escape "[" and "]" in names, it is

              now off by default for Windows so "[" and "]"  are  just  normal

              characters in names.  This option enables [] matching again.

       -s splitsize

       --split-size splitsize

              Enable creating a split archive and set the split size.  A split

              archive is an archive that could be split over many  files.   As

              the  archive  is created, if the size of the archive reaches the

              specified split size, that split is closed and  the  next  split

              opened.   In  general  all splits but the last will be the split

              size and the last will be whatever is left.  If the  entire  ar?

              chive  is  smaller  than the split size a single-file archive is

              created.

              Split archives are stored in numbered files.   For  example,  if

              the  output  archive  is  named archive and three splits are re?

              quired, the resulting archive will be in  the  three  files  ar?

              chive.z01, archive.z02, and archive.zip.  Do not change the num? Page 30/49



              bering of these files or the archive will  not  be  readable  as

              these are used to determine the order the splits are read.

              Split  size  is  a  number  optionally followed by a multiplier.

              Currently the number must be an  integer.   The  multiplier  can

              currently be one of k (kilobytes), m (megabytes), g (gigabytes),

              or t (terabytes).  As 64k is the  minimum  split  size,  numbers

              without  multipliers default to megabytes.  For example, to cre?

              ate a split archive called foo with the contents of the bar  di?

              rectory  with  splits of 670 MB that might be useful for burning

              on CDs, the command:

                     zip -s 670m -r foo bar

              could be used.

              Currently the old splits of a split  archive  are  not  excluded

              from  a  new archive, but they can be specifically excluded.  If

              possible, keep the input and output archives out of the path be?

              ing zipped when creating split archives.

              Using  -s  without -sp as above creates all the splits where foo

              is being written, in this  case  the  current  directory.   This

              split  mode  updates the splits as the archive is being created,

              requiring all splits to remain writable, but creates  split  ar?

              chives  that  are  readable by any unzip that supports split ar?

              chives.  See -sp below for enabling split pause mode  which  al?

              lows splits to be written directly to removable media.

              The  option -sv can be used to enable verbose splitting and pro?

              vide details of how the splitting is being done.  The -sb option

              can  be used to ring the bell when zip pauses for the next split

              destination.

              Split archives cannot be updated, but see the -O (--out)  option

              for  how a split archive can be updated as it is copied to a new

              archive.  A split archive can also be converted into  a  single-

              file archive using a split size of 0 or negating the -s option:

                     zip -s 0 split.zip --out single.zip

              Also see -U (--copy) for more on using copy mode. Page 31/49



       -sb

       --split-bell

              If  splitting and using split pause mode, ring the bell when zip

              pauses for each split destination.

       -sc

       --show-command

              Show the command line starting zip as processed and  exit.   The

              new  command  parser permutes the arguments, putting all options

              and any values associated with them before any non-option  argu?

              ments.   This allows an option to appear anywhere in the command

              line as long as any values that go with the option go  with  it.

              This  option displays the command line as zip sees it, including

              any arguments from the environment such as from the ZIPOPT vari?

              able.   Where  allowed,  options  later  in the command line can

              override options earlier in the command line.

       -sf

       --show-files

              Show the files that would be operated on, then  exit.   For  in?

              stance, if creating a new archive, this will list the files that

              would be added.  If the option is negated, -sf-, output only  to

              an  open  log file.  Screen display is not recommended for large

              lists.

       -so

       --show-options

              Show all available options supported by zip as compiled  on  the

              current  system.   As  this  command  reads the option table, it

              should include all options.  Each line includes the short option

              (if  defined),  the  long option (if defined), the format of any

              value that goes with the option, if the option can  be  negated,

              and  a small description.  The value format can be no value, re?

              quired value, optional value,  single  character  value,  number

              value,  or  a  list of values.  The output of this option is not

              intended to show how to use any option but only  show  what  op? Page 32/49



              tions are available.

       -sp

       --split-pause

              If  splitting is enabled with -s, enable split pause mode.  This

              creates split archives as -s does, but stream writing is used so

              each  split  can be closed as soon as it is written and zip will

              pause between each split to allow changing split destination  or

              media.

              Though  this split mode allows writing splits directly to remov?

              able media, it uses stream archive format that may not be  read?

              able by some unzips.  Before relying on splits created with -sp,

              test a split archive with the unzip you will be using.

              To convert a stream split archive (created with -sp) to a  stan?

              dard archive see the --out option.

       -su

       --show-unicode

              As -sf, but also show Unicode version of the path if exists.

       -sU

       --show-just-unicode

              As  -sf,  but  only  show Unicode version of the path if exists,

              otherwise show the standard version of the path.

       -sv

       --split-verbose

              Enable various verbose messages while splitting, showing how the

              splitting is being done.

       -S

       --system-hidden

              [MSDOS, OS/2, WIN32 and ATARI] Include system and hidden files.

              [MacOS]  Includes finder invisible files, which are ignored oth?

              erwise.

       -t mmddyyyy

       --from-date mmddyyyy

              Do not operate on files modified prior to  the  specified  date, Page 33/49



              where  mm  is  the  month  (00-12),  dd  is the day of the month

              (01-31), and  yyyy  is  the  year.   The  ISO 8601  date  format

              yyyy-mm-dd is also accepted.  For example:

                     zip -rt 12071991 infamy foo

                     zip -rt 1991-12-07 infamy foo

              will  add  all the files in foo and its subdirectories that were

              last modified on or after 7 December 1991, to  the  zip  archive

              infamy.zip.

       -tt mmddyyyy

       --before-date mmddyyyy

              Do not operate on files modified after or at the specified date,

              where mm is the month (00-12),  dd  is  the  day  of  the  month

              (01-31),  and  yyyy  is  the  year.   The  ISO 8601  date format

              yyyy-mm-dd is also accepted.  For example:

                     zip -rtt 11301995 infamy foo

                     zip -rtt 1995-11-30 infamy foo

              will add all the files in foo and its subdirectories  that  were

              last  modified  before  30 November 1995, to the zip archive in?

              famy.zip.

       -T

       --test

              Test the integrity of the new zip file. If the check fails,  the

              old  zip  file  is  unchanged  and (with the -m option) no input

              files are removed.

       -TT cmd

       --unzip-command cmd

              Use command cmd instead of 'unzip -tqq' to test an archive  when

              the  -T  option is used.  On Unix, to use a copy of unzip in the

              current directory instead of the standard  system  unzip,  could

              use:

               zip archive file1 file2 -T -TT "./unzip -tqq"

              In  cmd,  {}  is  replaced by the name of the temporary archive,

              otherwise the name of the archive is appended to the end of  the Page 34/49



              command.  The return code is checked for success (0 on Unix).

       -u

       --update

              Replace (update) an existing entry in the zip archive only if it

              has been modified more recently than the version already in  the

              zip archive.  For example:

                     zip -u stuff *

              will  add any new files in the current directory, and update any

              files which have been modified since the zip  archive  stuff.zip

              was  last  created/modified  (note that zip will not try to pack

              stuff.zip into itself when you do this).

              Note that the -u option with no input file arguments  acts  like

              the -f (freshen) option.

       -U

       --copy-entries

              Copy  entries  from  one archive to another.  Requires the --out

              option to specify a different output file  than  the  input  ar?

              chive.   Copy  mode is the reverse of -d delete.  When delete is

              being used with --out, the selected entries are deleted from the

              archive  and  all  other  entries are copied to the new archive,

              while copy mode selects the files to include in the new archive.

              Unlike -u update, input patterns on the command line are matched

              against archive entries only and not the file system files.  For

              instance,

                     zip inarchive "*.c" --copy --out outarchive

              copies  entries  with  names ending in .c from inarchive to out?

              archive.  The wildcard must be escaped on some systems  to  pre?

              vent  the  shell  from substituting names of files from the file

              system which may have no relevance to the  entries  in  the  ar?

              chive.

              If  no input files appear on the command line and --out is used,

              copy mode is assumed:

                     zip inarchive --out outarchive Page 35/49



              This is useful for changing split size for instance.  Encrypting

              and  decrypting  entries  is  not yet supported using copy mode.

              Use zipcloak for that.

       -UN v

       --unicode v

              Determine what zip should do with Unicode file names.   zip 3.0,

              in  addition  to  the standard file path, now includes the UTF-8

              translation of the path if the entry path is not entirely  7-bit

              ASCII.   When  an entry is missing the Unicode path, zip reverts

              back to the standard file path.   The  problem  with  using  the

              standard  path is this path is in the local character set of the

              zip that created the entry, which may  contain  characters  that

              are  not  valid  in  the  character set being used by the unzip.

              When zip is reading an archive, if an entry also has  a  Unicode

              path, zip now defaults to using the Unicode path to recreate the

              standard path using the current local character set.

              This option can be used to determine what  zip  should  do  with

              this  path  if  there  is a mismatch between the stored standard

              path and the stored UTF-8 path (which can happen if the standard

              path  was  updated).  In all cases, if there is a mismatch it is

              assumed that the standard path is  more  current  and  zip  uses

              that.  Values for v are

                     q - quit if paths do not match

                     w - warn, continue with standard path

                     i - ignore, continue with standard path

                     n - no Unicode, do not use Unicode paths

              The default is to warn and continue.

              Characters  that  are not valid in the current character set are

              escaped as #Uxxxx and #Lxxxxxx, where x is  an  ASCII  character

              for a hex digit.  The first is used if a 16-bit character number

              is sufficient to represent the Unicode character and the  second

              if  the character needs more than 16 bits to represent it's Uni?

              code character code.  Setting -UN to Page 36/49



                     e - escape

              as in

                     zip archive -sU -UN=e

              forces zip to escape all characters that are not printable 7-bit

              ASCII.

              Normally zip stores UTF-8 directly in the standard path field on

              systems where UTF-8 is the current character set and stores  the

              UTF-8 in the new extra fields otherwise.  The option

                     u - UTF-8

              as in

                     zip archive dir -r -UN=UTF8

              forces  zip  to store UTF-8 as native in the archive.  Note that

              storing UTF-8 directly is the default on Unix systems that  sup?

              port  it.   This option could be useful on Windows systems where

              the escaped path is too large to be a valid path and  the  UTF-8

              version of the path is smaller, but native UTF-8 is not backward

              compatible on Windows systems.

       -v

       --verbose

              Verbose mode or print diagnostic version info.

              Normally, when applied to real operations, this  option  enables

              the  display of a progress indicator during compression (see -dd

              for more on dots) and requests  verbose  diagnostic  info  about

              zipfile structure oddities.

              However,  when -v is the only command line argument a diagnostic

              screen is printed instead.  This should now work even if  stdout

              is redirected to a file, allowing easy saving of the information

              for sending with bug reports to Info-ZIP.   The  version  screen

              provides  the help screen header with program name, version, and

              release date, some pointers to the Info-ZIP home  and  distribu?

              tion  sites,  and shows information about the target environment

              (compiler type and version, OS version, compilation date and the

              enabled optional features used to create the zip executable). Page 37/49



       -V

       --VMS-portable

              [VMS]  Save VMS file attributes.  (Files are  truncated at EOF.)

              When a -V archive is unpacked on a non-VMS  system,   some  file

              types  (notably  Stream_LF  text  files   and  pure binary files

              like fixed-512) should be extracted intact.  Indexed  files  and

              file  types  with embedded record sizes (notably variable-length

              record types) will probably be seen as corrupt elsewhere.

       -VV

       --VMS-specific

              [VMS] Save VMS file attributes, and  all allocated blocks  in  a

              file,   including  any  data beyond EOF.  Useful for moving ill-

              formed files  among  VMS systems.   When a -VV  archive  is  un?

              packed  on  a  non-VMS system, almost all files will appear cor?

              rupt.

       -w

       --VMS-versions

              [VMS] Append the version number of the files to  the  name,  in?

              cluding  multiple versions of files.  Default is to use only the

              most recent version of a specified file.

       -ww

       --VMS-dot-versions

              [VMS] Append the version number of the files to  the  name,  in?

              cluding  multiple versions of files, using the .nnn format.  De?

              fault is to use only the most  recent  version  of  a  specified

              file.

       -ws

       --wild-stop-dirs

              Wildcards match only at a directory level.  Normally zip handles

              paths as strings and given the paths

                     /foo/bar/dir/file1.c

                     /foo/bar/file2.c

              an input pattern such as Page 38/49



                     /foo/bar/*

              normally would match both paths, the * matching dir/file1.c  and

              file2.c.   Note  that in the first case a directory boundary (/)

              was crossed in the match.  With -ws no directory bounds will  be

              included  in the match, making wildcards local to a specific di?

              rectory level.  So, with -ws enabled, only the second path would

              be matched.

              When using -ws, use ** to match across directory boundaries as *

              does normally.

       -x files

       --exclude files

              Explicitly exclude the specified files, as in:

                     zip -r foo foo -x \*.o

              which will include the contents of foo in foo.zip while  exclud?

              ing  all  the  files  that  end in .o.  The backslash avoids the

              shell filename substitution, so that the name matching  is  per?

              formed by zip at all directory levels.

              Also possible:

                     zip -r foo foo -x@exclude.lst

              which  will include the contents of foo in foo.zip while exclud?

              ing all the files that  match  the  patterns  in  the  file  ex?

              clude.lst.

              The long option forms of the above are

                     zip -r foo foo --exclude \*.o

              and

                     zip -r foo foo --exclude @exclude.lst

              Multiple patterns can be specified, as in:

                     zip -r foo foo -x \*.o \*.c

              If  there is no space between -x and the pattern, just one value

              is assumed (no list):

                     zip -r foo foo -x\*.o

              See -i for more on include and exclude.

       -X Page 39/49



       --no-extra

              Do not save extra file attributes (Extended Attributes on  OS/2,

              uid/gid  and  file  times  on  Unix).  The zip format uses extra

              fields to include additional information for each  entry.   Some

              extra fields are specific to particular systems while others are

              applicable to all systems.  Normally when zip reads entries from

              an  existing archive, it reads the extra fields it knows, strips

              the rest, and adds the extra fields applicable to  that  system.

              With -X, zip strips all old fields and only includes the Unicode

              and Zip64 extra fields (currently these two extra fields  cannot

              be disabled).

              Negating  this  option,  -X-,  includes  all  the  default extra

              fields, but also copies over any unrecognized extra fields.

       -y

       --symlinks

              For UNIX and VMS (V8.3 and later), store symbolic links as  such

              in  the zip archive, instead of compressing and storing the file

              referred to by the link.  This  can  avoid  multiple  copies  of

              files  being  included in the archive as zip recurses the direc?

              tory trees and accesses files directly and by links.

       -z

       --archive-comment

              Prompt for a multi-line comment for the entire zip archive.  The

              comment  is  ended by a line containing just a period, or an end

              of file condition (^D on Unix, ^Z on MSDOS, OS/2, and VMS).  The

              comment can be taken from a file:

                     zip -z foo < foowhat

       -Z cm

       --compression-method cm

              Set  the default compression method.  Currently the main methods

              supported by zip are store and deflate.  Compression method  can

              be set to:

              store  -  Setting  the compression method to store forces zip to Page 40/49



              store entries with no compression.   This  is  generally  faster

              than compressing entries, but results in no space savings.  This

              is the same as using -0 (compression level zero).

              deflate - This is the default method for zip.  If zip determines

              that  storing is better than deflation, the entry will be stored

              instead.

              bzip2 - If bzip2 support is compiled in, this compression method

              also  becomes available.  Only some modern unzips currently sup?

              port the bzip2 compression method, so test the unzip you will be

              using  before relying on archives using this method (compression

              method 12).

              For example, to add bar.c to archive foo  using  bzip2  compres?

              sion:

                     zip -Z bzip2 foo bar.c

              The compression method can be abbreviated:

                     zip -Zb foo bar.c

       -#

       (-0, -1, -2, -3, -4, -5, -6, -7, -8, -9)

              Regulate  the  speed of compression using the specified digit #,

              where -0 indicates no compression (store all  files),  -1  indi?

              cates  the  fastest  compression speed (less compression) and -9

              indicates the slowest compression  speed  (optimal  compression,

              ignores the suffix list). The default compression level is -6.

              Though  still  being  worked, the intention is this setting will

              control compression speed for  all  compression  methods.   Cur?

              rently only deflation is controlled.

       -!

       --use-privileges

              [WIN32]  Use  priviliges  (if  granted) to obtain all aspects of

              WinNT security.

       -@

       --names-stdin

              Take the list of input files from standard input. Only one file? Page 41/49



              name per line.

       -$

       --volume-label

              [MSDOS,  OS/2,  WIN32]  Include  the  volume label for the drive

              holding the first file to be compressed.  If you want to include

              only  the  volume  label  or  to force a specific drive, use the

              drive name as first file name, as in:

                     zip -$ foo a: c:bar

EXAMPLES

       The simplest example:

              zip stuff *

       creates the archive stuff.zip (assuming it does not exist) and puts all

       the  files in the current directory in it, in compressed form (the .zip

       suffix is added automatically, unless the archive name contains  a  dot

       already; this allows the explicit specification of other suffixes).

       Because  of the way the shell on Unix does filename substitution, files

       starting with "." are not included; to include these as well:

              zip stuff .* *

       Even this will not include any subdirectories from the  current  direc?

       tory.

       To zip up an entire directory, the command:

              zip -r foo foo

       creates  the  archive foo.zip, containing all the files and directories

       in the directory foo that is contained within the current directory.

       You may want to make a zip archive that  contains  the  files  in  foo,

       without  recording  the directory name, foo.  You can use the -j option

       to leave off the paths, as in:

              zip -j foo foo/*

       If you are short on disk space, you might not have enough room to  hold

       both  the  original  directory and the corresponding compressed zip ar?

       chive.  In this case, you can create the archive in steps using the  -m

       option.   If  foo contains the subdirectories tom, dick, and harry, you

       can: Page 42/49



              zip -rm foo foo/tom

              zip -rm foo foo/dick

              zip -rm foo foo/harry

       where the first command creates foo.zip, and the next two  add  to  it.

       At  the  completion  of  each  zip command, the last created archive is

       deleted, making room for the next zip command to function.

       Use -s to set the split size and create a split archive.  The  size  is

       given as a number followed optionally by one of k (kB), m (MB), g (GB),

       or t (TB).  The command

              zip -s 2g -r split.zip foo

       creates a split archive of the directory foo with splits no bigger than

       2 GB  each.   If  foo  contained 5 GB of contents and the contents were

       stored in the split archive without compression (to make  this  example

       simple),  this  would create three splits, split.z01 at 2 GB, split.z02

       at 2 GB, and split.zip at a little over 1 GB.

       The -sp option can be used to pause zip between splits to allow  chang?

       ing  removable  media, for example, but read the descriptions and warn?

       ings for both -s and -sp below.

       Though zip does not update split archives, zip provides the new  option

       -O (--output-file) to allow split archives to be updated and saved in a

       new archive.  For example,

              zip inarchive.zip foo.c bar.c --out outarchive.zip

       reads archive inarchive.zip, even if split, adds the  files  foo.c  and

       bar.c,  and  writes  the resulting archive to outarchive.zip.  If inar?

       chive.zip is split then outarchive.zip defaults to the same split size.

       Be  aware that outarchive.zip and any split files that are created with

       it are always overwritten without warning.  This may be changed in  the

       future.

PATTERN MATCHING

       This section applies only to Unix.  Watch this space for details on MS?

       DOS and VMS operation.  However, the special wildcard characters *  and

       [] below apply to at least MSDOS also.

       The  Unix  shells (sh, csh, bash, and others) normally do filename sub? Page 43/49



       stitution (also called "globbing") on command arguments.  Generally the

       special characters are:

       ?      match any single character

       *      match any number of characters (including none)

       []     match  any  character in the range indicated within the brackets

              (example: [a-f], [0-9]).  This form of wildcard matching  allows

              a  user  to specify a list of characters between square brackets

              and if any of the characters match the expression matches.   For

              example:

                     zip archive "*.[hc]"

              would  archive all files in the current directory that end in .h

              or .c.

              Ranges of characters are supported:

                     zip archive "[a-f]*"

              would add to the archive all files  starting  with  "a"  through

              "f".

              Negation is also supported, where any character in that position

              not in the list matches.  Negation is supported by adding ! or ^

              to the beginning of the list:

                     zip archive "*.[!o]"

              matches files that don't end in ".o".

              On  WIN32, [] matching needs to be turned on with the -RE option

              to avoid the confusion that names with [ or ] have caused.

       When these characters are encountered (without  being  escaped  with  a

       backslash  or  quotes),  the  shell will look for files relative to the

       current path that match the pattern, and replace the  argument  with  a

       list of the names that matched.

       The  zip  program can do the same matching on names that are in the zip

       archive being modified or, in the case of the -x (exclude) or  -i  (in?

       clude)  options, on the list of files to be operated on, by using back?

       slashes or quotes to tell the shell not to do the name  expansion.   In

       general,  when  zip  encounters  a  name in the list of files to do, it

       first looks for the name in the file system.  If it finds it,  it  then Page 44/49



       adds  it  to the list of files to do.  If it does not find it, it looks

       for the name in the zip archive being modified (if  it  exists),  using

       the  pattern matching characters described above, if present.  For each

       match, it will add that name to the list of files to be processed,  un?

       less  this name matches one given with the -x option, or does not match

       any name given with the -i option.

       The pattern matching includes the path, and so patterns like \*.o match

       names  that  end in ".o", no matter what the path prefix is.  Note that

       the backslash must precede every special character (i.e. ?*[]), or  the

       entire argument must be enclosed in double quotes ("").

       In  general, use backslashes or double quotes for paths that have wild?

       cards to make zip do the pattern matching for file  paths,  and  always

       for paths and strings that have spaces or wildcards for -i, -x, -R, -d,

       and -U and anywhere zip needs to process the wildcards.

ENVIRONMENT

       The following environment variables are read and used  by  zip  as  de?

       scribed.

       ZIPOPT

              contains  default  options  that  will be used when running zip.

              The contents of this environment variable will get added to  the

              command line just after the zip command.

       ZIP

              [Not on RISC OS and VMS] see ZIPOPT

       Zip$Options

              [RISC OS] see ZIPOPT

       Zip$Exts

              [RISC  OS]  contains extensions separated by a : that will cause

              native filenames with one of  the  specified  extensions  to  be

              added to the zip file with basename and extension swapped.

       ZIP_OPTS

              [VMS] see ZIPOPT

SEE ALSO

       compress(1), shar(1L), tar(1), unzip(1L), gzip(1L) Page 45/49



DIAGNOSTICS

       The exit status (or error level) approximates the exit codes defined by

       PKWARE and takes on the following values, except under VMS:

              0      normal; no errors or warnings detected.

              2      unexpected end of zip file.

              3      a generic error in the zipfile format was detected.  Pro?

                     cessing may have completed successfully anyway; some bro?

                     ken zipfiles created by other archivers have simple work-

                     arounds.

              4      zip was unable to allocate memory for one or more buffers

                     during program initialization.

              5      a severe error in the zipfile format was detected.   Pro?

                     cessing probably failed immediately.

              6      entry  too  large  to  be  processed (such as input files

                     larger than 2 GB when not using Zip64 or trying  to  read

                     an existing archive that is too large) or entry too large

                     to be split with zipsplit

              7      invalid comment format

              8      zip -T failed or out of memory

              9      the user aborted zip prematurely with control-C (or simi?

                     lar)

              10     zip encountered an error while using a temp file

              11     read or seek error

              12     zip has nothing to do

              13     missing or empty zip file

              14     error writing to a file

              15     zip was unable to create a file to write to

              16     bad command line parameters

              18     zip could not open a specified file to read

              19     zip  was compiled with options not supported on this sys?

                     tem

       VMS interprets standard Unix (or PC) return values as  other,  scarier-

       looking  things,  so zip instead maps them into VMS-style status codes. Page 46/49



       In general, zip sets VMS Facility = 1955 (0x07A3), Code = 2*  Unix_sta?

       tus,  and an appropriate Severity (as specified in ziperr.h).  More de?

       tails  are   included   in   the   VMS-specific   documentation.    See

       [.vms]NOTES.TXT and [.vms]vms_msg_gen.c.

BUGS

       zip 3.0 is not compatible with PKUNZIP 1.10. Use zip 1.1 to produce zip

       files which can be extracted by PKUNZIP 1.10.

       zip files produced by zip 3.0 must not be updated by zip 1.1  or  PKZIP

       1.10,  if  they contain encrypted members or if they have been produced

       in a pipe or on a non-seekable device. The old versions of zip or PKZIP

       would create an archive with an incorrect format.  The old versions can

       list the contents of the zip file but cannot extract it anyway (because

       of  the  new  compression algorithm).  If you do not use encryption and

       use regular disk files, you do not have to care about this problem.

       Under VMS, not all of the odd file formats are treated properly.   Only

       stream-LF  format  zip files are expected to work with zip.  Others can

       be converted using Rahul Dhesi's BILF program.   This  version  of  zip

       handles some of the conversion internally.  When using Kermit to trans?

       fer zip files from VMS to MSDOS, type "set file  type  block"  on  VMS.

       When  transfering from MSDOS to VMS, type "set file type fixed" on VMS.

       In both cases, type "set file type binary" on MSDOS.

       Under some older VMS versions, zip may  hang  for  file  specifications

       that use DECnet syntax foo::*.*.

       On OS/2, zip cannot match some names, such as those including an excla?

       mation mark or a hash sign.  This is a bug in OS/2 itself:  the  32-bit

       DosFindFirst/Next  don't  find  such names.  Other programs such as GNU

       tar are also affected by this bug.

       Under OS/2, the amount of Extended Attributes displayed by DIR is  (for

       compatibility)  the  amount returned by the 16-bit version of DosQuery?

       PathInfo(). Otherwise OS/2 1.3 and 2.0 would report different EA  sizes

       when  DIRing  a  file.   However,  the structure layout returned by the

       32-bit DosQueryPathInfo() is a bit different,  it  uses  extra  padding

       bytes  and  link  pointers  (it's  a linked list) to have all fields on Page 47/49



       4-byte boundaries for portability to future RISC OS/2 versions.  There?

       fore  the value reported by zip (which uses this 32-bit-mode size) dif?

       fers from that reported by DIR.   zip  stores  the  32-bit  format  for

       portability, even the 16-bit MS-C-compiled version running on OS/2 1.3,

       so even this one shows the 32-bit-mode size.

AUTHORS

       Copyright (C) 1997-2008 Info-ZIP.

       Currently distributed under the Info-ZIP license.

       Copyright (C) 1990-1997 Mark Adler, Richard B. Wales, Jean-loup Gailly,

       Onno  van  der Linden, Kai Uwe Rommel, Igor Mandrichenko, John Bush and

       Paul Kienitz.

       Original copyright:

       Permission is granted to any individual or institution to use, copy, or

       redistribute this software so long as all of the original files are in?

       cluded, that it is not sold for profit, and that this copyright  notice

       is retained.

       LIKE  ANYTHING  ELSE  THAT'S FREE, ZIP AND ITS ASSOCIATED UTILITIES ARE

       PROVIDED AS IS AND COME WITH NO WARRANTY OF ANY KIND, EITHER  EXPRESSED

       OR  IMPLIED.  IN  NO EVENT WILL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY

       DAMAGES RESULTING FROM THE USE OF THIS SOFTWARE.

       Please send bug reports and comments using the web page  at:  www.info-

       zip.org.   For  bug  reports,  please  include  the version of zip (see

       zip -h), the make options used to compile it (see zip -v), the  machine

       and operating system in use, and as much additional information as pos?

       sible.

ACKNOWLEDGEMENTS

       Thanks to R. P. Byrne for his Shrink.Pas program, which  inspired  this

       project,  and  from which the shrink algorithm was stolen; to Phil Katz

       for placing in the public domain the zip file format, compression  for?

       mat,  and  .ZIP  filename extension, and for accepting minor changes to

       the file format; to Steve Burg for clarifications on the  deflate  for?

       mat;  to Haruhiko Okumura and Leonid Broukhis for providing some useful

       ideas for the compression algorithm; to  Keith  Petersen,  Rich  Wales, Page 48/49



       Hunter Goatley and Mark Adler for providing a mailing list and ftp site

       for the Info-ZIP group to use; and most importantly,  to  the  Info-ZIP

       group  itself  (listed  in the file infozip.who) without whose tireless

       testing and bug-fixing efforts a portable zip would not have been  pos?

       sible.   Finally  we should thank (blame) the first Info-ZIP moderator,

       David Kirschbaum, for getting us into this mess  in  the  first  place.

       The  manual page was rewritten for Unix by R. P. C. Rodgers and updated

       by E. Gordon for zip 3.0.

Info-ZIP                      16 June 2008 (v3.0)                      ZIP(1L)

Page 49/49


