
Rocky Enterprise Linux 9.2 Manual Pages on command 'xfs_db.8'

$ man xfs_db.8

xfs_db(8) System Manager's Manual xfs_db(8)

NAME

 xfs_db - debug an XFS filesystem

SYNOPSIS

 xfs_db [-c cmd] ... [-i|r|x|F] [-f] [-l logdev] [-p progname]

 device

 xfs_db -V

DESCRIPTION

 xfs_db is used to examine an XFS filesystem. Under rare circumstances

 it can also be used to modify an XFS filesystem, but that task is nor?

 mally left to xfs_repair(8) or to scripts such as xfs_admin(8) that run

 xfs_db.

OPTIONS

 -c cmd xfs_db commands may be run interactively (the default) or as ar?

 guments on the command line. Multiple -c arguments may be given.

 The commands are run in the sequence given, then the program ex?

 its.

 -f Specifies that the filesystem image to be processed is stored in Page 1/36

 a regular file at device (see the mkfs.xfs(8) -d file option).

 This might happen if an image copy of a filesystem has been made

 into an ordinary file with xfs_copy(8).

 -F Specifies that we want to continue even if the superblock magic

 is not correct. For use in xfs_metadump.

 -i Allows execution on a mounted filesystem, provided it is mounted

 read-only. Useful for shell scripts which must only operate on

 filesystems in a guaranteed consistent state (either unmounted

 or mounted read-only). These semantics are slightly different to

 that of the -r option.

 -l logdev

 Specifies the device where the filesystems external log resides.

 Only for those filesystems which use an external log. See the

 mkfs.xfs(8) -l option, and refer to xfs(5) for a detailed de?

 scription of the XFS log.

 -p progname

 Set the program name to progname for prompts and some error mes?

 sages, the default value is xfs_db.

 -r Open device or filename read-only. This option is required if

 the filesystem is mounted. It is only necessary to omit this

 flag if a command that changes data (write, blocktrash, crc) is

 to be used.

 -x Specifies expert mode. This enables the (write, blocktrash, crc

 invalidate/revalidate) commands.

 -V Prints the version number and exits.

CONCEPTS

 xfs_db commands can be broken up into two classes. Most commands are

 for the navigation and display of data structures in the filesystem.

 Other commands are for scanning the filesystem in some way.

 Commands which are used to navigate the filesystem structure take argu?

 ments which reflect the names of filesystem structure fields. There

 can be multiple field names separated by dots when the underlying

 structures are nested, as in C. The field names can be indexed (as an Page 2/36

 array index) if the underlying field is an array. The array indices

 can be specified as a range, two numbers separated by a dash.

 xfs_db maintains a current address in the filesystem. The granularity

 of the address is a filesystem structure. This can be a filesystem

 block, an inode or quota (smaller than a filesystem block), or a direc?

 tory block (could be larger than a filesystem block). There are a va?

 riety of commands to set the current address. Associated with the cur?

 rent address is the current data type, which is the structural type of

 this data. Commands which follow the structure of the filesystem al?

 ways set the type as well as the address. Commands which examine

 pieces of an individual file (inode) need the current inode to be set,

 this is done with the inode command.

 The current address/type information is actually maintained in a stack

 that can be explicitly manipulated with the push, pop, and stack com?

 mands. This allows for easy examination of a nested filesystem struc?

 ture. Also, the last several locations visited are stored in a ring

 buffer which can be manipulated with the forward, back, and ring com?

 mands.

 XFS filesystems are divided into a small number of allocation groups.

 xfs_db maintains a notion of the current allocation group which is ma?

 nipulated by some commands. The initial allocation group is 0.

COMMANDS

 Many commands have extensive online help. Use the help command for more

 details on any command.

 a See the addr command.

 ablock filoff

 Set current address to the offset filoff (a filesystem block

 number) in the attribute area of the current inode.

 addr [field-expression]

 Set current address to the value of the field-expression. This

 is used to "follow" a reference in one structure to the object

 being referred to. If no argument is given, the current address

 is printed. Page 3/36

 agf [agno]

 Set current address to the AGF block for allocation group agno.

 If no argument is given, use the current allocation group.

 agfl [agno]

 Set current address to the AGFL block for allocation group agno.

 If no argument is given, use the current allocation group.

 agi [agno]

 Set current address to the AGI block for allocation group agno.

 If no argument is given, use the current allocation group.

 agresv [agno]

 Displays the length, free block count, per-AG reservation size,

 and per-AG reservation usage for a given AG. If no argument is

 given, display information for all AGs.

 attr_remove [-r|-u|-s] [-n] name

 Remove the specified extended attribute from the current file.

 -r Sets the attribute in the root namespace. Only one name?

 space option can be specified.

 -u Sets the attribute in the user namespace. Only one name?

 space option can be specified.

 -s Sets the attribute in the secure namespace. Only one

 namespace option can be specified.

 -n Do not enable 'noattr2' mode on V4 filesystems.

 attr_set [-r|-u|-s] [-n] [-R|-C] [-v namelen] name

 Sets an extended attribute on the current file with the given

 name.

 -r Sets the attribute in the root namespace. Only one name?

 space option can be specified.

 -u Sets the attribute in the user namespace. Only one name?

 space option can be specified.

 -s Sets the attribute in the secure namespace. Only one

 namespace option can be specified.

 -n Do not enable 'noattr2' mode on V4 filesystems.

 -R Replace the attribute. The command will fail if the at? Page 4/36

 tribute does not already exist.

 -C Create the attribute. The command will fail if the at?

 tribute already exists.

 -v Set the attribute value to a string of this length con?

 taining the letter 'v'.

 b See the back command.

 back Move to the previous location in the position ring.

 blockfree

 Free block usage information collected by the last execution of

 the blockget command. This must be done before another blockget

 command can be given, presumably with different arguments than

 the previous one.

 blockget [-npvs] [-b bno] ... [-i ino] ...

 Get block usage and check filesystem consistency. The informa?

 tion is saved for use by a subsequent blockuse, ncheck, or

 blocktrash command.

 -b is used to specify filesystem block numbers about which

 verbose information should be printed.

 -i is used to specify inode numbers about which verbose in?

 formation should be printed.

 -n is used to save pathnames for inodes visited, this is

 used to support the xfs_ncheck(8) command. It also means

 that pathnames will be printed for inodes that have prob?

 lems. This option uses a lot of memory so is not enabled

 by default.

 -p causes error messages to be prefixed with the filesystem

 name being processed. This is useful if several copies of

 xfs_db are run in parallel.

 -s restricts output to severe errors only. This is useful if

 the output is too long otherwise.

 -v enables verbose output. Messages will be printed for ev?

 ery block and inode processed.

 blocktrash [-z] [-o offset] [-n count] [-x min] [-y max] [-s seed] Page 5/36

 [-0|1|2|3] [-t type] ...

 Trash randomly selected filesystem metadata blocks. Trashing

 occurs to randomly selected bits in the chosen blocks. This

 command is available only in debugging versions of xfs_db. It

 is useful for testing xfs_repair(8).

 -0 | -1 | -2 | -3

 These are used to set the operating mode for blocktrash.

 Only one can be used: -0 changed bits are cleared; -1

 changed bits are set; -2 changed bits are inverted; -3

 changed bits are randomized.

 -n supplies the count of block-trashings to perform (default

 1).

 -o supplies the bit offset at which to start trashing the

 block. If the value is preceded by a '+', the trashing

 will start at a randomly chosen offset that is larger

 than the value supplied. The default is to randomly

 choose an offset anywhere in the block.

 -s supplies a seed to the random processing.

 -t gives a type of blocks to be selected for trashing. Mul?

 tiple -t options may be given. If no -t options are given

 then all metadata types can be trashed.

 -x sets the minimum size of bit range to be trashed. The de?

 fault value is 1.

 -y sets the maximum size of bit range to be trashed. The de?

 fault value is 1024.

 -z trashes the block at the top of the stack. It is not

 necessary to run blockget if this option is supplied.

 blockuse [-n] [-c count]

 Print usage for current filesystem block(s). For each block,

 the type and (if any) inode are printed.

 -c specifies a count of blocks to process. The default value

 is 1 (the current block only).

 -n specifies that file names should be printed. The prior Page 6/36

 blockget command must have also specified the -n option.

 bmap [-a] [-d] [block [len]]

 Show the block map for the current inode. The map display can

 be restricted to an area of the file with the block and len ar?

 guments. If block is given and len is omitted then 1 is assumed

 for len.

 The -a and -d options are used to select the attribute or data

 area of the inode, if neither option is given then both areas

 are shown.

 btdump [-a] [-i]

 If the cursor points to a btree node, dump the btree from that

 block downward. If instead the cursor points to an inode, dump

 the data fork block mapping btree if there is one. If the cur?

 sor points to a directory or extended attribute btree node, dump

 that. By default, only records stored in the btree are dumped.

 -a If the cursor points at an inode, dump the extended at?

 tribute block mapping btree, if present.

 -i Dump all keys and pointers in intermediate btree nodes,

 and all records in leaf btree nodes.

 btheight [-b blksz] [-n recs] [-w max|-w min] btree types...

 For a given number of btree records and a btree type, report the

 number of records and blocks for each level of the btree, and

 the total number of blocks. The btree type must be given after

 the options.

 A raw btree geometry can be provided in the format

 "record_bytes:key_bytes:ptr_bytes:header_type", where

 header_type is one of "short", "long", "shortcrc", or "longcrc".

 The supported btree types are: bnobt, cntbt, inobt, finobt,

 bmapbt, refcountbt, and rmapbt.

 Options are as follows:

 -b is used to override the btree block size. The default is

 the filesystem block size.

 -n is used to specify the number of records to store. This Page 7/36

 argument is required.

 -w max

 shows only the best case scenario, which is when the

 btree blocks are maximally loaded.

 -w min

 shows only the worst case scenario, which is when the

 btree blocks are half full.

 check See the blockget command.

 convert type number [type number] ... type

 Convert from one address form to another. The known types, with

 alternate names, are:

 agblock or agbno (filesystem block within an allocation

 group)

 agino or aginode (inode number within an allocation group)

 agnumber or agno (allocation group number)

 bboff or daddroff (byte offset in a daddr)

 blkoff or fsboff or agboff (byte offset in a agblock or fs?

 block)

 byte or fsbyte (byte address in filesystem)

 daddr or bb (disk address, 512-byte blocks)

 fsblock or fsb or fsbno (filesystem block, see the fsblock

 command)

 ino or inode (inode number)

 inoidx or offset (index of inode in filesystem block)

 inooff or inodeoff (byte offset in inode)

 Only conversions that "make sense" are allowed. The compound

 form (with more than three arguments) is useful for conversions

 such as convert agno ag agbno agb fsblock.

 crc [-i|-r|-v]

 Invalidates, revalidates, or validates the CRC (checksum) field

 of the current structure, if it has one. This command is avail?

 able only on CRC-enabled filesystems. With no argument, valida?

 tion is performed. Each command will display the resulting CRC Page 8/36

 value and state.

 -i Invalidate the structure's CRC value (incrementing it by

 one), and write it to disk.

 -r Recalculate the current structure's correct CRC value,

 and write it to disk.

 -v Validate and display the current value and state of the

 structure's CRC.

 daddr [d]

 Set current address to the daddr (512 byte block) given by d.

 If no value for d is given, the current address is printed, ex?

 pressed as a daddr. The type is set to data (uninterpreted).

 dblock filoff

 Set current address to the offset filoff (a filesystem block

 number) in the data area of the current inode.

 debug [flagbits]

 Set debug option bits. These are used for debugging xfs_db. If

 no value is given for flagbits, print the current debug option

 bits. These are for the use of the implementor.

 dquot [-g|-p|-u] id

 Set current address to a group, project or user quota block for

 the given ID. Defaults to user quota.

 echo [arg] ...

 Echo the arguments to the output.

 f See the forward command.

 forward

 Move forward to the next entry in the position ring.

 frag [-adflqRrv]

 Get file fragmentation data. This prints information about frag?

 mentation of file data in the filesystem (as opposed to fragmen?

 tation of freespace, for which see the freesp command). Every

 file in the filesystem is examined to see how far from ideal its

 extent mappings are. A summary is printed giving the totals.

 -v sets verbosity, every inode has information printed for Page 9/36

 it. The remaining options select which inodes and ex?

 tents are examined. If no options are given then all are

 assumed set, otherwise just those given are enabled.

 -a enables processing of attribute data.

 -d enables processing of directory data.

 -f enables processing of regular file data.

 -l enables processing of symbolic link data.

 -q enables processing of quota file data.

 -R enables processing of realtime control file data.

 -r enables processing of realtime file data.

 freesp [-bcds] [-A alignment] [-a ag] ... [-e i] [-h h1] ... [-m m]

 Summarize free space for the filesystem. The free blocks are ex?

 amined and totalled, and displayed in the form of a histogram,

 with a count of extents in each range of free extent sizes.

 -A reports only free extents with starting blocks aligned to

 alignment blocks.

 -a adds ag to the list of allocation groups to be processed.

 If no -a options are given then all allocation groups are

 processed.

 -b specifies that the histogram buckets are binary-sized,

 with the starting sizes being the powers of 2.

 -c specifies that freesp will search the by-size (cnt) space

 Btree instead of the default by-block (bno) space Btree.

 -d specifies that every free extent will be displayed.

 -e specifies that the histogram buckets are equal-sized,

 with the size specified as i.

 -h specifies a starting block number for a histogram bucket

 as h1. Multiple -h's are given to specify the complete

 set of buckets.

 -m specifies that the histogram starting block numbers are

 powers of m. This is the general case of -b.

 -s specifies that a final summary of total free extents,

 free blocks, and the average free extent size is printed. Page 10/36

 fsb See the fsblock command.

 fsblock [fsb]

 Set current address to the fsblock value given by fsb. If no

 value for fsb is given the current address is printed, expressed

 as an fsb. The type is set to data (uninterpreted). XFS

 filesystem block numbers are computed ((agno << agshift) | ag?

 block) where agshift depends on the size of an allocation group.

 Use the convert command to convert to and from this form. Block

 numbers given for file blocks (for instance from the bmap com?

 mand) are in this form.

 fsmap [start] [end]

 Prints the mapping of disk blocks used by an XFS filesystem.

 The map lists each extent used by files, allocation group meta?

 data, journalling logs, and static filesystem metadata, as well

 as any regions that are unused. All blocks, offsets, and

 lengths are specified in units of 512-byte blocks, no matter

 what the filesystem's block size is. The optional start and end

 arguments can be used to constrain the output to a particular

 range of disk blocks.

 fuzz [-c] [-d] field action

 Write garbage into a specific structure field on disk. Expert

 mode must be enabled to use this command. The operation happens

 immediately; there is no buffering.

 The fuzz command can take the following actions against a field:

 zeroes

 Clears all bits in the field.

 ones

 Sets all bits in the field.

 firstbit

 Flips the first bit in the field. For a scalar value,

 this is the highest bit.

 middlebit

 Flips the middle bit in the field. Page 11/36

 lastbit

 Flips the last bit in the field. For a scalar value,

 this is the lowest bit.

 add Adds a small value to a scalar field.

 sub Subtracts a small value from a scalar field.

 random

 Randomizes the contents of the field.

 The following switches affect the write behavior:

 -c Skip write verifiers and CRC recalculation; allows in?

 valid data to be written to disk.

 -d Skip write verifiers but perform CRC recalculation; al?

 lows invalid data to be written to disk to test detection

 of invalid data.

 hash string

 Prints the hash value of string using the hash function of the

 XFS directory and attribute implementation.

 help [command]

 Print help for one or all commands.

 info Displays selected geometry information about the filesystem.

 The output will have the same format that mkfs.xfs(8) prints

 when creating a filesystem or xfs_info(8) prints when querying a

 filesystem.

 inode [inode#]

 Set the current inode number. If no inode# is given, print the

 current inode number.

 label [label]

 Set the filesystem label. The filesystem label can be used by

 mount(8) instead of using a device special file. The maximum

 length of an XFS label is 12 characters - use of a longer label

 will result in truncation and a warning will be issued. If no

 label is given, the current filesystem label is printed.

 log [stop | start filename]

 Start logging output to filename, stop logging, or print the Page 12/36

 current logging status.

 logformat [-c cycle] [-s sunit]

 Reformats the log to the specified log cycle and log stripe

 unit. This has the effect of clearing the log destructively.

 If the log cycle is not specified, the log is reformatted to the

 current cycle. If the log stripe unit is not specified, the

 stripe unit from the filesystem superblock is used.

 logres Print transaction reservation size information for each transac?

 tion type. This makes it easier to find discrepancies in the

 reservation calculations between xfsprogs and the kernel, which

 will help when diagnosing minimum log size calculation errors.

 ls [-i] [paths]...

 List the contents of a directory. If a path resolves to a di?

 rectory, the directory will be listed. If no paths are supplied

 and the IO cursor points at a directory inode, the contents of

 that directory will be listed.

 The output format is: directory cookie, inode number, file type,

 hash, name length, name.

 -i Resolve each of the given paths to an inode number and

 print that number. If no paths are given and the IO cur?

 sor points to an inode, print the inode number.

 metadump [-egow] filename

 Dumps metadata to a file. See xfs_metadump(8) for more informa?

 tion.

 ncheck [-s] [-i ino] ...

 Print name-inode pairs. A blockget -n command must be run first

 to gather the information.

 -i specifies an inode number to be printed. If no -i options

 are given then all inodes are printed.

 -s specifies that only setuid and setgid files are printed.

 p See the print command.

 path dir_path

 Walk the directory tree to an inode using the supplied path. Page 13/36

 Absolute and relative paths are supported.

 pop Pop location from the stack.

 print [field-expression] ...

 Print field values. If no argument is given, print all fields

 in the current structure.

 push [command]

 Push location to the stack. If command is supplied, set the cur?

 rent location to the results of command after pushing the old

 location.

 q See the quit command.

 quit Exit xfs_db.

 ring [index]

 Show position ring (if no index argument is given), or move to a

 specific entry in the position ring given by index.

 sb [agno]

 Set current address to SB header in allocation group agno. If

 no agno is given, use the current allocation group number.

 source source-file

 Process commands from source-file. source commands can be

 nested.

 stack View the location stack.

 type [type]

 Set the current data type to type. If no argument is given,

 show the current data type. The possible data types are: agf,

 agfl, agi, attr, bmapbta, bmapbtd, bnobt, cntbt, data, dir,

 dir2, dqblk, inobt, inode, log, refcntbt, rmapbt, rtbitmap, rt?

 summary, sb, symlink and text. See the TYPES section below for

 more information on these data types.

 timelimit [OPTIONS]

 Print the minimum and maximum supported values for inode time?

 stamps, quota expiration timers, and quota grace periods sup?

 ported by this filesystem. Options include:

 --bigtime Page 14/36

 Print the time limits of an XFS filesystem with the big?

 time feature enabled.

 --classic

 Print the time limits of a classic XFS filesystem.

 --compact

 Print all limits as raw values on a single line.

 --pretty

 Print the timestamps in the current locale's date and

 time format instead of raw seconds since the Unix epoch.

 uuid [uuid | generate | rewrite | restore]

 Set the filesystem universally unique identifier (UUID). The

 filesystem UUID can be used by mount(8) instead of using a de?

 vice special file. The uuid can be set directly to the desired

 UUID, or it can be automatically generated using the generate

 option. These options will both write the UUID into every copy

 of the superblock in the filesystem. On a CRC-enabled filesys?

 tem, this will set an incompatible superblock flag, and the

 filesystem will not be mountable with older kernels. This can

 be reverted with the restore option, which will copy the origi?

 nal UUID back into place and clear the incompatible flag as

 needed. rewrite copies the current UUID from the primary su?

 perblock to all secondary copies of the superblock. If no argu?

 ment is given, the current filesystem UUID is printed.

 version [feature | versionnum features2]

 Enable selected features for a filesystem (certain features can

 be enabled on an unmounted filesystem, after mkfs.xfs(8) has

 created the filesystem). Support for unwritten extents can be

 enabled using the extflg option. Support for version 2 log for?

 mat can be enabled using the log2 option. Support for extended

 attributes can be enabled using the attr1 or attr2 option. Once

 enabled, extended attributes cannot be disabled, but the user

 may toggle between attr1 and attr2 at will (older kernels may

 not support the newer version). Page 15/36

 If no argument is given, the current version and feature bits

 are printed. With one argument, this command will write the up?

 dated version number into every copy of the superblock in the

 filesystem. If two arguments are given, they will be used as

 numeric values for the versionnum and features2 bits respec?

 tively, and their string equivalent reported (but no modifica?

 tions are made).

 write [-c|-d] [field value] ...

 Write a value to disk. Specific fields can be set in structures

 (struct mode), or a block can be set to data values (data mode),

 or a block can be set to string values (string mode, for symlink

 blocks). The operation happens immediately: there is no buffer?

 ing.

 Struct mode is in effect when the current type is structural,

 i.e. not data. For struct mode, the syntax is "write field

 value".

 Data mode is in effect when the current type is data. In this

 case the contents of the block can be shifted or rotated left or

 right, or filled with a sequence, a constant value, or a random

 value. In this mode write with no arguments gives more informa?

 tion on the allowed commands.

 -c Skip write verifiers and CRC recalculation; allows in?

 valid data to be written to disk.

 -d Skip write verifiers but perform CRC recalculation. This

 allows invalid data to be written to disk to test detec?

 tion of invalid data. (This is not possible for some

 types.)

TYPES

 This section gives the fields in each structure type and their mean?

 ings. Note that some types of block cover multiple actual structures,

 for instance directory blocks.

 agf The AGF block is the header for block allocation information;

 it is in the second 512-byte block of each allocation group. Page 16/36

 The following fields are defined:

 magicnum AGF block magic number, 0x58414746 ('XAGF').

 versionnum version number, currently 1.

 seqno sequence number starting from 0.

 length size in filesystem blocks of the allocation

 group. All allocation groups except the last

 one of the filesystem have the superblock's

 agblocks value here.

 bnoroot block number of the root of the Btree holding

 free space information sorted by block num?

 ber.

 cntroot block number of the root of the Btree holding

 free space information sorted by block count.

 bnolevel number of levels in the by-block-number

 Btree.

 cntlevel number of levels in the by-block-count Btree.

 flfirst index into the AGFL block of the first active

 entry.

 fllast index into the AGFL block of the last active

 entry.

 flcount count of active entries in the AGFL block.

 freeblks count of blocks represented in the freespace

 Btrees.

 longest longest free space represented in the

 freespace Btrees.

 btreeblks number of blocks held in the AGF Btrees.

 agfl The AGFL block contains block numbers for use of the block

 allocator; it is in the fourth 512-byte block of each alloca?

 tion group. Each entry in the active list is a block number

 within the allocation group that can be used for any purpose

 if space runs low. The AGF block fields flfirst, fllast, and

 flcount designate which entries are currently active. Entry

 space is allocated in a circular manner within the AGFL Page 17/36

 block. Fields defined:

 bno array of all block numbers. Even those which

 are not active are printed.

 agi The AGI block is the header for inode allocation information;

 it is in the third 512-byte block of each allocation group.

 Fields defined:

 magicnum AGI block magic number, 0x58414749 ('XAGI').

 versionnum version number, currently 1.

 seqno sequence number starting from 0.

 length size in filesystem blocks of the allocation

 group.

 count count of inodes allocated.

 root block number of the root of the Btree holding

 inode allocation information.

 level number of levels in the inode allocation

 Btree.

 freecount count of allocated inodes that are not in

 use.

 newino last inode number allocated.

 dirino unused.

 unlinked an array of inode numbers within the alloca?

 tion group. The entries in the AGI block are

 the heads of lists which run through the in?

 ode next_unlinked field. These inodes are to

 be unlinked the next time the filesystem is

 mounted.

 attr An attribute fork is organized as a Btree with the actual

 data embedded in the leaf blocks. The root of the Btree is

 found in block 0 of the fork. The index (sort order) of the

 Btree is the hash value of the attribute name. All the

 blocks contain a blkinfo structure at the beginning, see type

 dir for a description. Nonleaf blocks are identical in format

 to those for version 1 and version 2 directories, see type Page 18/36

 dir for a description. Leaf blocks can refer to "local" or

 "remote" attribute values. Local values are stored directly

 in the leaf block. Leaf blocks contain the following fields:

 hdr header containing a blkinfo structure info

 (magic number 0xfbee), a count of active en?

 tries, usedbytes total bytes of names and

 values, the firstused byte in the name area,

 holes set if the block needs compaction, and

 array freemap as for dir leaf blocks.

 entries array of structures containing a hashval,

 nameidx (index into the block of the name),

 and flags incomplete, root, and local.

 nvlist array of structures describing the attribute

 names and values. Fields always present: val?

 uelen (length of value in bytes), namelen,

 and name. Fields present for local values:

 value (value string). Fields present for re?

 mote values: valueblk (fork block number of

 containing the value).

 Remote values are stored in an independent block in the at?

 tribute fork. Prior to v5, value blocks had no structure,

 but in v5 they acquired a header structure with the following

 fields:

 magic attr3 remote block magic number, 0x5841524d

 ('XARM').

 offset Byte offset of this data block within the

 overall attribute value.

 bytes Number of bytes stored in this block.

 crc Checksum of the attribute block contents.

 uuid Filesystem UUID.

 owner Inode that owns this attribute value.

 bno Block offset of this block within the inode's

 attribute fork. Page 19/36

 lsn Log serial number of the last time this block

 was logged.

 data The attribute value data.

 bmapbt Files with many extents in their data or attribute fork will

 have the extents described by the contents of a Btree for

 that fork, instead of being stored directly in the inode.

 Each bmap Btree starts with a root block contained within the

 inode. The other levels of the Btree are stored in filesys?

 tem blocks. The blocks are linked to sibling left and right

 blocks at each level, as well as by pointers from parent to

 child blocks. Each block contains the following fields:

 magic bmap Btree block magic number, 0x424d4150

 ('BMAP').

 level level of this block above the leaf level.

 numrecs number of records or keys in the block.

 leftsib left (logically lower) sibling block, 0 if

 none.

 rightsib right (logically higher) sibling block, 0 if

 none.

 recs [leaf blocks only] array of extent records.

 Each record contains startoff, startblock,

 blockcount, and extentflag (1 if the extent

 is unwritten).

 keys [non-leaf blocks only] array of key records.

 These are the first key value of each block

 in the level below this one. Each record con?

 tains startoff.

 ptrs [non-leaf blocks only] array of child block

 pointers. Each pointer is a filesystem block

 number to the next level in the Btree.

 bnobt There is one set of filesystem blocks forming the by-block-

 number allocation Btree for each allocation group. The root

 block of this Btree is designated by the bnoroot field in the Page 20/36

 corresponding AGF block. The blocks are linked to sibling

 left and right blocks at each level, as well as by pointers

 from parent to child blocks. Each block has the following

 fields:

 magic BNOBT block magic number, 0x41425442

 ('ABTB').

 level level number of this block, 0 is a leaf.

 numrecs number of data entries in the block.

 leftsib left (logically lower) sibling block, 0 if

 none.

 rightsib right (logically higher) sibling block, 0 if

 none.

 recs [leaf blocks only] array of freespace

 records. Each record contains startblock and

 blockcount.

 keys [non-leaf blocks only] array of key records.

 These are the first value of each block in

 the level below this one. Each record con?

 tains startblock and blockcount.

 ptrs [non-leaf blocks only] array of child block

 pointers. Each pointer is a block number

 within the allocation group to the next level

 in the Btree.

 cntbt There is one set of filesystem blocks forming the by-block-

 count allocation Btree for each allocation group. The root

 block of this Btree is designated by the cntroot field in the

 corresponding AGF block. The blocks are linked to sibling

 left and right blocks at each level, as well as by pointers

 from parent to child blocks. Each block has the following

 fields:

 magic CNTBT block magic number, 0x41425443

 ('ABTC').

 level level number of this block, 0 is a leaf. Page 21/36

 numrecs number of data entries in the block.

 leftsib left (logically lower) sibling block, 0 if

 none.

 rightsib right (logically higher) sibling block, 0 if

 none.

 recs [leaf blocks only] array of freespace

 records. Each record contains startblock and

 blockcount.

 keys [non-leaf blocks only] array of key records.

 These are the first value of each block in

 the level below this one. Each record con?

 tains blockcount and startblock.

 ptrs [non-leaf blocks only] array of child block

 pointers. Each pointer is a block number

 within the allocation group to the next level

 in the Btree.

 data User file blocks, and other blocks whose type is unknown,

 have this type for display purposes in xfs_db. The block

 data is displayed in hexadecimal format.

 dir A version 1 directory is organized as a Btree with the direc?

 tory data embedded in the leaf blocks. The root of the Btree

 is found in block 0 of the file. The index (sort order) of

 the Btree is the hash value of the entry name. All the blocks

 contain a blkinfo structure at the beginning with the follow?

 ing fields:

 forw next sibling block.

 back previous sibling block.

 magic magic number for this block type.

 The non-leaf (node) blocks have the following fields:

 hdr header containing a blkinfo structure info

 (magic number 0xfebe), the count of active

 entries, and the level of this block above

 the leaves. Page 22/36

 btree array of entries containing hashval and be?

 fore fields. The before value is a block num?

 ber within the directory file to the child

 block, the hashval is the last hash value in

 that block.

 The leaf blocks have the following fields:

 hdr header containing a blkinfo structure info

 (magic number 0xfeeb), the count of active

 entries, namebytes (total name string bytes),

 holes flag (block needs compaction), and

 freemap (array of base, size entries for free

 regions).

 entries array of structures containing hashval,

 nameidx (byte index into the block of the

 name string), and namelen.

 namelist array of structures containing inumber and

 name.

 dir2 A version 2 directory has four kinds of blocks. Data blocks

 start at offset 0 in the file. There are two kinds of data

 blocks: single-block directories have the leaf information

 embedded at the end of the block, data blocks in multi-block

 directories do not. Node and leaf blocks start at offset

 32GiB (with either a single leaf block or the root node

 block). Freespace blocks start at offset 64GiB. The node

 and leaf blocks form a Btree, with references to the data in

 the data blocks. The freespace blocks form an index of long?

 est free spaces within the data blocks.

 A single-block directory block contains the following fields:

 bhdr header containing magic number 0x58443242

 ('XD2B') and an array bestfree of the longest

 3 free spaces in the block (offset, length).

 bu array of union structures. Each element is

 either an entry or a freespace. For entries, Page 23/36

 there are the following fields: inumber,

 namelen, name, and tag. For freespace, there

 are the following fields: freetag (0xffff),

 length, and tag. The tag value is the byte

 offset in the block of the start of the entry

 it is contained in.

 bleaf array of leaf entries containing hashval and

 address. The address is a 64-bit word offset

 into the file.

 btail tail structure containing the total count of

 leaf entries and stale count of unused leaf

 entries.

 A data block contains the following fields:

 dhdr header containing magic number 0x58443244

 ('XD2D') and an array bestfree of the longest

 3 free spaces in the block (offset, length).

 du array of union structures as for bu.

 Leaf blocks have two possible forms. If the Btree consists of

 a single leaf then the freespace information is in the leaf

 block, otherwise it is in separate blocks and the root of the

 Btree is a node block. A leaf block contains the following

 fields:

 lhdr header containing a blkinfo structure info

 (magic number 0xd2f1 for the single leaf

 case, 0xd2ff for the true Btree case), the

 total count of leaf entries, and stale count

 of unused leaf entries.

 lents leaf entries, as for bleaf.

 lbests [single leaf only] array of values which rep?

 resent the longest freespace in each data

 block in the directory.

 ltail [single leaf only] tail structure containing

 bestcount count of lbests. Page 24/36

 A node block is identical to that for types attr and dir.

 A freespace block contains the following fields:

 fhdr header containing magic number 0x58443246

 ('XD2F'), firstdb first data block number

 covered by this freespace block, nvalid num?

 ber of valid entries, and nused number of en?

 tries representing real data blocks.

 fbests array of values as for lbests.

 dqblk The quota information is stored in files referred to by the

 superblock uquotino and pquotino fields. Each filesystem

 block in a quota file contains a constant number of quota en?

 tries. The quota entry size is currently 136 bytes, so with a

 4KiB filesystem block size there are 30 quota entries per

 block. The dquot command is used to locate these entries in

 the filesystem. The file entries are indexed by the user or

 project identifier to determine the block and offset. Each

 quota entry has the following fields:

 magic magic number, 0x4451 ('DQ').

 version version number, currently 1.

 flags flags, values include 0x01 for user quota,

 0x02 for project quota.

 id user or project identifier.

 blk_hardlimit absolute limit on blocks in use.

 blk_softlimit preferred limit on blocks in use.

 ino_hardlimit absolute limit on inodes in use.

 ino_softlimit preferred limit on inodes in use.

 bcount blocks actually in use.

 icount inodes actually in use.

 itimer time when service will be refused if soft

 limit is violated for inodes.

 btimer time when service will be refused if soft

 limit is violated for blocks.

 iwarns number of warnings issued about inode Page 25/36

 limit violations.

 bwarns number of warnings issued about block

 limit violations.

 rtb_hardlimit absolute limit on realtime blocks in use.

 rtb_softlimit preferred limit on realtime blocks in use.

 rtbcount realtime blocks actually in use.

 rtbtimer time when service will be refused if soft

 limit is violated for realtime blocks.

 rtbwarns number of warnings issued about realtime

 block limit violations.

 inobt There is one set of filesystem blocks forming the inode allo?

 cation Btree for each allocation group. The root block of

 this Btree is designated by the root field in the correspond?

 ing AGI block. The blocks are linked to sibling left and

 right blocks at each level, as well as by pointers from par?

 ent to child blocks. Each block has the following fields:

 magic INOBT block magic number, 0x49414254

 ('IABT').

 level level number of this block, 0 is a leaf.

 numrecs number of data entries in the block.

 leftsib left (logically lower) sibling block, 0 if

 none.

 rightsib right (logically higher) sibling block, 0 if

 none.

 recs [leaf blocks only] array of inode records.

 Each record contains startino allocation-

 group relative inode number, freecount count

 of free inodes in this chunk, and free bit?

 map, LSB corresponds to inode 0.

 keys [non-leaf blocks only] array of key records.

 These are the first value of each block in

 the level below this one. Each record con?

 tains startino. Page 26/36

 ptrs [non-leaf blocks only] array of child block

 pointers. Each pointer is a block number

 within the allocation group to the next level

 in the Btree.

 inode Inodes are allocated in "chunks" of 64 inodes each. Usually a

 chunk is multiple filesystem blocks, although there are cases

 with large filesystem blocks where a chunk is less than one

 block. The inode Btree (see inobt above) refers to the inode

 numbers per allocation group. The inode numbers directly re?

 flect the location of the inode block on disk. Use the inode

 command to point xfs_db to a specific inode. Each inode con?

 tains four regions: core, next_unlinked, u, and a. core con?

 tains the fixed information. next_unlinked is separated from

 the core due to journaling considerations, see type agi field

 unlinked. u is a union structure that is different in size

 and format depending on the type and representation of the

 file data ("data fork"). a is an optional union structure to

 describe attribute data, that is different in size, format,

 and location depending on the presence and representation of

 attribute data, and the size of the u data ("attribute

 fork"). xfs_db automatically selects the proper union mem?

 bers based on information in the inode.

 The following are fields in the inode core:

 magic inode magic number, 0x494e ('IN').

 mode mode and type of file, as described in

 chmod(2), mknod(2), and stat(2).

 version inode version, 1 or 2.

 format format of u union data (0: xfs_dev_t, 1: lo?

 cal file - in-inode directory or symlink, 2:

 extent list, 3: Btree root, 4: unique id [un?

 used]).

 nlinkv1 number of links to the file in a version 1

 inode. Page 27/36

 nlinkv2 number of links to the file in a version 2

 inode.

 projid_lo owner's project id (low word; version 2 inode

 only). projid_hi owner's project id (high

 word; version 2 inode only).

 uid owner's user id.

 gid owner's group id.

 atime time last accessed (seconds and nanoseconds).

 mtime time last modified.

 ctime time created or inode last modified.

 size number of bytes in the file.

 nblocks total number of blocks in the file including

 indirect and attribute.

 extsize basic/minimum extent size for the file.

 nextents number of extents in the data fork.

 naextents number of extents in the attribute fork.

 forkoff attribute fork offset in the inode, in 64-bit

 words from the start of u.

 aformat format of a data (1: local attribute data, 2:

 extent list, 3: Btree root).

 dmevmask DMAPI event mask.

 dmstate DMAPI state information.

 newrtbm file is the realtime bitmap and is "new" for?

 mat.

 prealloc file has preallocated data space after EOF.

 realtime file data is in the realtime subvolume.

 gen inode generation number.

 The following fields are in the u data fork union:

 bmbt bmap Btree root. This looks like a bmapbtd

 block with redundant information removed.

 bmx array of extent descriptors.

 dev dev_t for the block or character device.

 sfdir shortform (in-inode) version 1 directory. Page 28/36

 This consists of a hdr containing the parent

 inode number and a count of active entries in

 the directory, followed by an array list of

 hdr.count entries. Each such entry contains

 inumber, namelen, and name string.

 sfdir2 shortform (in-inode) version 2 directory.

 This consists of a hdr containing a count of

 active entries in the directory, an i8count

 of entries with inumbers that don't fit in a

 32-bit value, and the parent inode number,

 followed by an array list of hdr.count en?

 tries. Each such entry contains namelen, a

 saved offset used when the directory is con?

 verted to a larger form, a name string, and

 the inumber.

 symlink symbolic link string value.

 The following fields are in the a attribute fork union if it

 exists:

 bmbt bmap Btree root, as above.

 bmx array of extent descriptors.

 sfattr shortform (in-inode) attribute values. This

 consists of a hdr containing a totsize (total

 size in bytes) and a count of active entries,

 followed by an array list of hdr.count en?

 tries. Each such entry contains namelen, val?

 uelen, root flag, name, and value.

 log Log blocks contain the journal entries for XFS. It's not

 useful to examine these with xfs_db, use xfs_logprint(8) in?

 stead.

 refcntbt There is one set of filesystem blocks forming the reference

 count Btree for each allocation group. The root block of this

 Btree is designated by the refcntroot field in the corre?

 sponding AGF block. The blocks are linked to sibling left Page 29/36

 and right blocks at each level, as well as by pointers from

 parent to child blocks. Each block has the following fields:

 magic REFC block magic number, 0x52334643 ('R3FC').

 level level number of this block, 0 is a leaf.

 numrecs number of data entries in the block.

 leftsib left (logically lower) sibling block, 0 if

 none.

 rightsib right (logically higher) sibling block, 0 if

 none.

 recs [leaf blocks only] array of reference count

 records. Each record contains startblock,

 blockcount, and refcount.

 keys [non-leaf blocks only] array of key records.

 These are the first value of each block in

 the level below this one. Each record con?

 tains startblock.

 ptrs [non-leaf blocks only] array of child block

 pointers. Each pointer is a block number

 within the allocation group to the next level

 in the Btree.

 rmapbt There is one set of filesystem blocks forming the reverse

 mapping Btree for each allocation group. The root block of

 this Btree is designated by the rmaproot field in the corre?

 sponding AGF block. The blocks are linked to sibling left

 and right blocks at each level, as well as by pointers from

 parent to child blocks. Each block has the following fields:

 magic RMAP block magic number, 0x524d4233 ('RMB3').

 level level number of this block, 0 is a leaf.

 numrecs number of data entries in the block.

 leftsib left (logically lower) sibling block, 0 if

 none.

 rightsib right (logically higher) sibling block, 0 if

 none. Page 30/36

 recs [leaf blocks only] array of reference count

 records. Each record contains startblock,

 blockcount, owner, offset, attr_fork,

 bmbt_block, and unwritten.

 keys [non-leaf blocks only] array of double-key

 records. The first ("low") key contains the

 first value of each block in the level below

 this one. The second ("high") key contains

 the largest key that can be used to identify

 any record in the subtree. Each record con?

 tains startblock, owner, offset, attr_fork,

 and bmbt_block.

 ptrs [non-leaf blocks only] array of child block

 pointers. Each pointer is a block number

 within the allocation group to the next level

 in the Btree.

 rtbitmap If the filesystem has a realtime subvolume, then the rbmino

 field in the superblock refers to a file that contains the

 realtime bitmap. Each bit in the bitmap file controls the

 allocation of a single realtime extent (set == free). The

 bitmap is processed in 32-bit words, the LSB of a word is

 used for the first extent controlled by that bitmap word. The

 atime field of the realtime bitmap inode contains a counter

 that is used to control where the next new realtime file will

 start.

 rtsummary If the filesystem has a realtime subvolume, then the rsumino

 field in the superblock refers to a file that contains the

 realtime summary data. The summary file contains a two-dimen?

 sional array of 16-bit values. Each value counts the number

 of free extent runs (consecutive free realtime extents) of a

 given range of sizes that starts in a given bitmap block.

 The size ranges are binary buckets (low size in the bucket is

 a power of 2). There are as many size ranges as are neces? Page 31/36

 sary given the size of the realtime subvolume. The first di?

 mension is the size range, the second dimension is the start?

 ing bitmap block number (adjacent entries are for the same

 size, adjacent bitmap blocks).

 sb There is one sb (superblock) structure per allocation group.

 It is the first disk block in the allocation group. Only the

 first one (block 0 of the filesystem) is actually used; the

 other blocks are redundant information for xfs_repair(8) to

 use if the first superblock is damaged. Fields defined:

 magicnum superblock magic number, 0x58465342 ('XFSB').

 blocksize filesystem block size in bytes.

 dblocks number of filesystem blocks present in the

 data subvolume.

 rblocks number of filesystem blocks present in the

 realtime subvolume.

 rextents number of realtime extents that rblocks con?

 tain.

 uuid unique identifier of the filesystem.

 logstart starting filesystem block number of the log

 (journal). If this value is 0 the log is

 "external".

 rootino root inode number.

 rbmino realtime bitmap inode number.

 rsumino realtime summary data inode number.

 rextsize realtime extent size in filesystem blocks.

 agblocks size of an allocation group in filesystem

 blocks.

 agcount number of allocation groups.

 rbmblocks number of realtime bitmap blocks.

 logblocks number of log blocks (filesystem blocks).

 versionnum filesystem version information. This value

 is currently 1, 2, 3, or 4 in the low 4 bits.

 If the low bits are 4 then the other bits Page 32/36

 have additional meanings. 1 is the original

 value. 2 means that attributes were used. 3

 means that version 2 inodes (large link

 counts) were used. 4 is the bitmask version

 of the version number. In this case, the

 other bits are used as flags (0x0010: at?

 tributes were used, 0x0020: version 2 inodes

 were used, 0x0040: quotas were used, 0x0080:

 inode cluster alignment is in force, 0x0100:

 data stripe alignment is in force, 0x0200:

 the shared_vn field is used, 0x1000: unwrit?

 ten extent tracking is on, 0x2000: version 2

 directories are in use).

 sectsize sector size in bytes, currently always 512.

 This is the size of the superblock and the

 other header blocks.

 inodesize inode size in bytes.

 inopblock number of inodes per filesystem block.

 fname obsolete, filesystem name.

 fpack obsolete, filesystem pack name.

 blocklog log2 of blocksize.

 sectlog log2 of sectsize.

 inodelog log2 of inodesize.

 inopblog log2 of inopblock.

 agblklog log2 of agblocks (rounded up).

 rextslog log2 of rextents.

 inprogress mkfs.xfs(8) or xfs_copy(8) aborted before

 completing this filesystem.

 imax_pct maximum percentage of filesystem space used

 for inode blocks.

 icount number of allocated inodes.

 ifree number of allocated inodes that are not in

 use. Page 33/36

 fdblocks number of free data blocks.

 frextents number of free realtime extents.

 uquotino user quota inode number.

 pquotino project quota inode number; this is currently

 unused.

 qflags quota status flags (0x01: user quota account?

 ing is on, 0x02: user quota limits are en?

 forced, 0x04: quotacheck has been run on user

 quotas, 0x08: project quota accounting is on,

 0x10: project quota limits are enforced,

 0x20: quotacheck has been run on project quo?

 tas).

 flags random flags. 0x01: only read-only mounts are

 allowed.

 shared_vn shared version number (shared readonly

 filesystems).

 inoalignmt inode chunk alignment in filesystem blocks.

 unit stripe or RAID unit.

 width stripe or RAID width.

 dirblklog log2 of directory block size (filesystem

 blocks).

 symlink Symbolic link blocks are used only when the symbolic link

 value does not fit inside the inode. The block content is

 just the string value. Bytes past the logical end of the

 symbolic link value have arbitrary values.

 text User file blocks, and other blocks whose type is unknown,

 have this type for display purposes in xfs_db. The block

 data is displayed in two columns: Hexadecimal format and

 printable ASCII chars.

DIAGNOSTICS

 Many messages can come from the check (blockget) command. If the

 filesystem is completely corrupt, a core dump might be produced instead

 of the message Page 34/36

 device is not a valid filesystem

 If the filesystem is very large (has many files) then check might run

 out of memory. In this case the message

 out of memory

 is printed.

 The following is a description of the most likely problems and the as?

 sociated messages. Most of the diagnostics produced are only meaning?

 ful with an understanding of the structure of the filesystem.

 agf_freeblks n, counted m in ag a

 The freeblocks count in the allocation group header for alloca?

 tion group a doesn't match the number of blocks counted free.

 agf_longest n, counted m in ag a

 The longest free extent in the allocation group header for allo?

 cation group a doesn't match the longest free extent found in

 the allocation group.

 agi_count n, counted m in ag a

 The allocated inode count in the allocation group header for al?

 location group a doesn't match the number of inodes counted in

 the allocation group.

 agi_freecount n, counted m in ag a

 The free inode count in the allocation group header for alloca?

 tion group a doesn't match the number of inodes counted free in

 the allocation group.

 block a/b expected inum 0 got i

 The block number is specified as a pair (allocation group num?

 ber, block in the allocation group). The block is used multiple

 times (shared), between multiple inodes. This message usually

 follows a message of the next type.

 block a/b expected type unknown got y

 The block is used multiple times (shared).

 block a/b type unknown not expected

SEE ALSO

 mkfs.xfs(8), xfs_admin(8), xfs_copy(8), xfs_logprint(8), xfs_metad? Page 35/36

 ump(8), xfs_ncheck(8), xfs_repair(8), mount(8), chmod(2), mknod(2),

 stat(2), xfs(5).

 xfs_db(8)

Page 36/36

