
Rocky Enterprise Linux 9.2 Manual Pages on command 'xfs.5'

$ man xfs.5

xfs(5) File Formats Manual xfs(5)

NAME

 xfs - layout, mount options, and supported file attributes for the XFS

 filesystem

DESCRIPTION

 An XFS filesystem can reside on a regular disk partition or on a logi?

 cal volume. An XFS filesystem has up to three parts: a data section, a

 log section, and a realtime section. Using the default mkfs.xfs(8) op?

 tions, the realtime section is absent, and the log area is contained

 within the data section. The log section can be either separate from

 the data section or contained within it. The filesystem sections are

 divided into a certain number of blocks, whose size is specified at

 mkfs.xfs(8) time with the -b option.

 The data section contains all the filesystem metadata (inodes, directo?

 ries, indirect blocks) as well as the user file data for ordinary (non-

 realtime) files and the log area if the log is internal to the data

 section. The data section is divided into a number of allocation

 groups. The number and size of the allocation groups are chosen by Page 1/9

 mkfs.xfs(8) so that there is normally a small number of equal-sized

 groups. The number of allocation groups controls the amount of paral?

 lelism available in file and block allocation. It should be increased

 from the default if there is sufficient memory and a lot of allocation

 activity. The number of allocation groups should not be set very high,

 since this can cause large amounts of CPU time to be used by the

 filesystem, especially when the filesystem is nearly full. More allo?

 cation groups are added (of the original size) when xfs_growfs(8) is

 run.

 The log section (or area, if it is internal to the data section) is

 used to store changes to filesystem metadata while the filesystem is

 running until those changes are made to the data section. It is writ?

 ten sequentially during normal operation and read only during mount.

 When mounting a filesystem after a crash, the log is read to complete

 operations that were in progress at the time of the crash.

 The realtime section is used to store the data of realtime files.

 These files had an attribute bit set through xfsctl(3) after file cre?

 ation, before any data was written to the file. The realtime section

 is divided into a number of extents of fixed size (specified at

 mkfs.xfs(8) time). Each file in the realtime section has an extent

 size that is a multiple of the realtime section extent size.

 Each allocation group contains several data structures. The first sec?

 tor contains the superblock. For allocation groups after the first,

 the superblock is just a copy and is not updated after mkfs.xfs(8).

 The next three sectors contain information for block and inode alloca?

 tion within the allocation group. Also contained within each alloca?

 tion group are data structures to locate free blocks and inodes; these

 are located through the header structures.

 Each XFS filesystem is labeled with a Universal Unique Identifier

 (UUID). The UUID is stored in every allocation group header and is

 used to help distinguish one XFS filesystem from another, therefore you

 should avoid using dd(1) or other block-by-block copying programs to

 copy XFS filesystems. If two XFS filesystems on the same machine have Page 2/9

 the same UUID, xfsdump(8) may become confused when doing incremental

 and resumed dumps. xfsdump(8) and xfsrestore(8) are recommended for

 making copies of XFS filesystems.

OPERATIONS

 Some functionality specific to the XFS filesystem is accessible to ap?

 plications through the xfsctl(3) and by-handle (see open_by_handle(3))

 interfaces.

MOUNT OPTIONS

 The following XFS-specific mount options may be used when mounting an

 XFS filesystem. Other generic options may be used as well; refer to the

 mount(8) manual page for more details.

 allocsize=size

 Sets the buffered I/O end-of-file preallocation size when doing

 delayed allocation writeout. Valid values for this option are

 page size (typically 4KiB) through to 1GiB, inclusive, in power-

 of-2 increments.

 The default behavior is for dynamic end-of-file preallocation

 size, which uses a set of heuristics to optimise the prealloca?

 tion size based on the current allocation patterns within the

 file and the access patterns to the file. Specifying a fixed al?

 locsize value turns off the dynamic behavior.

 attr2|noattr2

 Note: These options have been deprecated as of kernel v5.10; The

 noattr2 option will be removed no earlier than in September 2025

 and attr2 option will be immutable default.

 The options enable/disable an "opportunistic" improvement to be

 made in the way inline extended attributes are stored on-disk.

 When the new form is used for the first time when attr2 is se?

 lected (either when setting or removing extended attributes) the

 on-disk superblock feature bit field will be updated to reflect

 this format being in use.

 The default behavior is determined by the on-disk feature bit

 indicating that attr2 behavior is active. If either mount option Page 3/9

 it set, then that becomes the new default used by the filesys?

 tem.

 CRC enabled filesystems always use the attr2 format, and so will

 reject the noattr2 mount option if it is set.

 dax=value

 Set CPU direct access (DAX) behavior for the current filesystem.

 This mount option accepts the following values:

 "dax=inode" DAX will be enabled only on regular files with

 FS_XFLAG_DAX applied.

 "dax=never" DAX will not be enabled for any files. FS_XFLAG_DAX

 will be ignored.

 "dax=always" DAX will be enabled for all regular files, regard?

 less of the FS_XFLAG_DAX state.

 If no option is used when mounting a filesystem stored on a DAX

 capable device, dax=inode will be used as default.

 For details regarding DAX behavior in kernel, please refer to

 kernel's documentation at filesystems/dax.txt

 discard|nodiscard

 Enable/disable the issuing of commands to let the block device

 reclaim space freed by the filesystem. This is useful for SSD

 devices, thinly provisioned LUNs and virtual machine images, but

 may have a performance impact.

 Note: It is currently recommended that you use the fstrim appli?

 cation to discard unused blocks rather than the discard mount

 option because the performance impact of this option is quite

 severe. For this reason, nodiscard is the default.

 grpid|bsdgroups|nogrpid|sysvgroups

 These options define what group ID a newly created file gets.

 When grpid is set, it takes the group ID of the directory in

 which it is created; otherwise it takes the fsgid of the current

 process, unless the directory has the setgid bit set, in which

 case it takes the gid from the parent directory, and also gets

 the setgid bit set if it is a directory itself. Page 4/9

 filestreams

 Make the data allocator use the filestreams allocation mode

 across the entire filesystem rather than just on directories

 configured to use it.

 ikeep|noikeep

 Note: These options have been deprecated as of kernel v5.10; The

 noikeep option will be removed no earlier than in September 2025

 and ikeep option will be immutable default.

 When ikeep is specified, XFS does not delete empty inode clus?

 ters and keeps them around on disk. When noikeep is specified,

 empty inode clusters are returned to the free space pool.

 noikeep is the default.

 inode32|inode64

 When inode32 is specified, it indicates that XFS limits inode

 creation to locations which will not result in inode numbers

 with more than 32 bits of significance.

 When inode64 is specified, it indicates that XFS is allowed to

 create inodes at any location in the filesystem, including those

 which will result in inode numbers occupying more than 32 bits

 of significance.

 inode32 is provided for backwards compatibility with older sys?

 tems and applications, since 64 bits inode numbers might cause

 problems for some applications that cannot handle large inode

 numbers. If applications are in use which do not handle inode

 numbers bigger than 32 bits, the inode32 option should be speci?

 fied.

 For kernel v3.7 and later, inode64 is the default.

 largeio|nolargeio

 If "nolargeio" is specified, the optimal I/O reported in st_blk?

 size by stat(2) will be as small as possible to allow user ap?

 plications to avoid inefficient read/modify/write I/O. This is

 typically the page size of the machine, as this is the granular?

 ity of the page cache. Page 5/9

 If "largeio" specified, a filesystem that was created with a

 "swidth" specified will return the "swidth" value (in bytes) in

 st_blksize. If the filesystem does not have a "swidth" specified

 but does specify an "allocsize" then "allocsize" (in bytes) will

 be returned instead. Otherwise the behavior is the same as if

 "nolargeio" was specified. nolargeio is the default.

 logbufs=value

 Set the number of in-memory log buffers. Valid numbers range

 from 2?8 inclusive.

 The default value is 8 buffers.

 If the memory cost of 8 log buffers is too high on small sys?

 tems, then it may be reduced at some cost to performance on

 metadata intensive workloads. The logbsize option below controls

 the size of each buffer and so is also relevant to this case.

 logbsize=value

 Set the size of each in-memory log buffer. The size may be

 specified in bytes, or in kibibytes (KiB) with a "k" suffix.

 Valid sizes for version 1 and version 2 logs are 16384

 (value=16k) and 32768 (value=32k). Valid sizes for version 2

 logs also include 65536 (value=64k), 131072 (value=128k) and

 262144 (value=256k). The logbsize must be an integer multiple of

 the log stripe unit configured at mkfs time.

 The default value for version 1 logs is 32768, while the default

 value for version 2 logs is max(32768, log_sunit).

 logdev=device and rtdev=device

 Use an external log (metadata journal) and/or real-time device.

 An XFS filesystem has up to three parts: a data section, a log

 section, and a real-time section. The real-time section is op?

 tional, and the log section can be separate from the data sec?

 tion or contained within it.

 noalign

 Data allocations will not be aligned at stripe unit boundaries.

 This is only relevant to filesystems created with non-zero data Page 6/9

 alignment parameters (sunit, swidth) by mkfs.

 norecovery

 The filesystem will be mounted without running log recovery. If

 the filesystem was not cleanly unmounted, it is likely to be in?

 consistent when mounted in "norecovery" mode. Some files or di?

 rectories may not be accessible because of this. Filesystems

 mounted "norecovery" must be mounted read-only or the mount will

 fail.

 nouuid Don't check for double mounted file systems using the file sys?

 tem uuid. This is useful to mount LVM snapshot volumes, and of?

 ten used in combination with "norecovery" for mounting read-only

 snapshots.

 noquota

 Forcibly turns off all quota accounting and enforcement within

 the filesystem.

 uquota/usrquota/quota/uqnoenforce/qnoenforce

 User disk quota accounting enabled, and limits (optionally) en?

 forced. Refer to xfs_quota(8) for further details.

 gquota/grpquota/gqnoenforce

 Group disk quota accounting enabled and limits (optionally) en?

 forced. Refer to xfs_quota(8) for further details.

 pquota/prjquota/pqnoenforce

 Project disk quota accounting enabled and limits (optionally)

 enforced. Refer to xfs_quota(8) for further details.

 sunit=value and swidth=value

 Used to specify the stripe unit and width for a RAID device or a

 stripe volume. "value" must be specified in 512-byte block

 units. These options are only relevant to filesystems that were

 created with non-zero data alignment parameters.

 The sunit and swidth parameters specified must be compatible

 with the existing filesystem alignment characteristics. In gen?

 eral, that means the only valid changes to sunit are increasing

 it by a power-of-2 multiple. Valid swidth values are any integer Page 7/9

 multiple of a valid sunit value.

 Typically the only time these mount options are necessary if af?

 ter an underlying RAID device has had it's geometry modified,

 such as adding a new disk to a RAID5 lun and reshaping it.

 swalloc

 Data allocations will be rounded up to stripe width boundaries

 when the current end of file is being extended and the file size

 is larger than the stripe width size.

 wsync When specified, all filesystem namespace operations are executed

 synchronously. This ensures that when the namespace operation

 (create, unlink, etc) completes, the change to the namespace is

 on stable storage. This is useful in HA setups where failover

 must not result in clients seeing inconsistent namespace presen?

 tation during or after a failover event.

REMOVED MOUNT OPTIONS

 The following mount options have been removed from the kernel, and will

 yield mount failures if specified. Mount options are deprecated for a

 significant period time prior to removal.

 Name Removed

 ---- -------

 delaylog/nodelaylog v4.0

 ihashsize v4.0

 irixsgid v4.0

 osyncisdsync/osyncisosync v4.0

 barrier/nobarrier v4.19

FILE ATTRIBUTES

 The XFS filesystem supports setting the following file attributes on

 Linux systems using the chattr(1) utility:

 a - append only

 A - no atime updates

 d - no dump

 i - immutable

 S - synchronous updates Page 8/9

 For descriptions of these attribute flags, please refer to the

 chattr(1) man page.

SEE ALSO

 chattr(1), xfsctl(3), mount(8), mkfs.xfs(8), xfs_info(8), xfs_admin(8),

 xfsdump(8), xfsrestore(8).

 xfs(5)

Page 9/9

