
Rocky Enterprise Linux 9.2 Manual Pages on command 'xdrmem_create.3'

$ man xdrmem_create.3

XDR(3) Linux Programmer's Manual XDR(3)

NAME

 xdr - library routines for external data representation

SYNOPSIS AND DESCRIPTION

 These routines allow C programmers to describe arbitrary data struc?

 tures in a machine-independent fashion. Data for remote procedure

 calls are transmitted using these routines.

 The prototypes below are declared in <rpc/xdr.h> and make use of the

 following types:

 typedef int bool_t;

 typedef bool_t (*xdrproc_t) (XDR *, void *,...);

 For the declaration of the XDR type, see <rpc/xdr.h>.

 bool_t xdr_array(XDR *xdrs, char **arrp, unsigned int *sizep,

 unsigned int maxsize, unsigned int elsize,

 xdrproc_t elproc);

 A filter primitive that translates between variable-length ar?

 rays and their corresponding external representations. The ar?

 gument arrp is the address of the pointer to the array, while Page 1/9

 sizep is the address of the element count of the array; this el?

 ement count cannot exceed maxsize. The argument elsize is the

 sizeof each of the array's elements, and elproc is an XDR filter

 that translates between the array elements' C form, and their

 external representation. This routine returns one if it suc?

 ceeds, zero otherwise.

 bool_t xdr_bool(XDR *xdrs, bool_t *bp);

 A filter primitive that translates between booleans (C integers)

 and their external representations. When encoding data, this

 filter produces values of either one or zero. This routine re?

 turns one if it succeeds, zero otherwise.

 bool_t xdr_bytes(XDR *xdrs, char **sp, unsigned int *sizep,

 unsigned int maxsize);

 A filter primitive that translates between counted byte strings

 and their external representations. The argument sp is the ad?

 dress of the string pointer. The length of the string is lo?

 cated at address sizep; strings cannot be longer than maxsize.

 This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_char(XDR *xdrs, char *cp);

 A filter primitive that translates between C characters and

 their external representations. This routine returns one if it

 succeeds, zero otherwise. Note: encoded characters are not

 packed, and occupy 4 bytes each. For arrays of characters, it

 is worthwhile to consider xdr_bytes(), xdr_opaque() or

 xdr_string().

 void xdr_destroy(XDR *xdrs);

 A macro that invokes the destroy routine associated with the XDR

 stream, xdrs. Destruction usually involves freeing private data

 structures associated with the stream. Using xdrs after invok?

 ing xdr_destroy() is undefined.

 bool_t xdr_double(XDR *xdrs, double *dp);

 A filter primitive that translates between C double precision

 numbers and their external representations. This routine re? Page 2/9

 turns one if it succeeds, zero otherwise.

 bool_t xdr_enum(XDR *xdrs, enum_t *ep);

 A filter primitive that translates between C enums (actually in?

 tegers) and their external representations. This routine re?

 turns one if it succeeds, zero otherwise.

 bool_t xdr_float(XDR *xdrs, float *fp);

 A filter primitive that translates between C floats and their

 external representations. This routine returns one if it suc?

 ceeds, zero otherwise.

 void xdr_free(xdrproc_t proc, char *objp);

 Generic freeing routine. The first argument is the XDR routine

 for the object being freed. The second argument is a pointer to

 the object itself. Note: the pointer passed to this routine is

 not freed, but what it points to is freed (recursively).

 unsigned int xdr_getpos(XDR *xdrs);

 A macro that invokes the get-position routine associated with

 the XDR stream, xdrs. The routine returns an unsigned integer,

 which indicates the position of the XDR byte stream. A desir?

 able feature of XDR streams is that simple arithmetic works with

 this number, although the XDR stream instances need not guaran?

 tee this.

 long *xdr_inline(XDR *xdrs, int len);

 A macro that invokes the inline routine associated with the XDR

 stream, xdrs. The routine returns a pointer to a contiguous

 piece of the stream's buffer; len is the byte length of the de?

 sired buffer. Note: pointer is cast to long *.

 Warning: xdr_inline() may return NULL (0) if it cannot allocate

 a contiguous piece of a buffer. Therefore the behavior may vary

 among stream instances; it exists for the sake of efficiency.

 bool_t xdr_int(XDR *xdrs, int *ip);

 A filter primitive that translates between C integers and their

 external representations. This routine returns one if it suc?

 ceeds, zero otherwise. Page 3/9

 bool_t xdr_long(XDR *xdrs, long *lp);

 A filter primitive that translates between C long integers and

 their external representations. This routine returns one if it

 succeeds, zero otherwise.

 void xdrmem_create(XDR *xdrs, char *addr, unsigned int size,

 enum xdr_op op);

 This routine initializes the XDR stream object pointed to by

 xdrs. The stream's data is written to, or read from, a chunk of

 memory at location addr whose length is no more than size bytes

 long. The op determines the direction of the XDR stream (either

 XDR_ENCODE, XDR_DECODE, or XDR_FREE).

 bool_t xdr_opaque(XDR *xdrs, char *cp, unsigned int cnt);

 A filter primitive that translates between fixed size opaque

 data and its external representation. The argument cp is the

 address of the opaque object, and cnt is its size in bytes.

 This routine returns one if it succeeds, zero otherwise.

 bool_t xdr_pointer(XDR *xdrs, char **objpp,

 unsigned int objsize, xdrproc_t xdrobj);

 Like xdr_reference() except that it serializes null pointers,

 whereas xdr_reference() does not. Thus, xdr_pointer() can rep?

 resent recursive data structures, such as binary trees or linked

 lists.

 void xdrrec_create(XDR *xdrs, unsigned int sendsize,

 unsigned int recvsize, char *handle,

 int (*readit) (char *, char *, int),

 int (*writeit) (char *, char *, int));

 This routine initializes the XDR stream object pointed to by

 xdrs. The stream's data is written to a buffer of size send?

 size; a value of zero indicates the system should use a suitable

 default. The stream's data is read from a buffer of size recv?

 size; it too can be set to a suitable default by passing a zero

 value. When a stream's output buffer is full, writeit is

 called. Similarly, when a stream's input buffer is empty, rea? Page 4/9

 dit is called. The behavior of these two routines is similar to

 the system calls read(2) and write(2), except that handle is

 passed to the former routines as the first argument. Note: the

 XDR stream's op field must be set by the caller.

 Warning: to read from an XDR stream created by this API, you'll

 need to call xdrrec_skiprecord() first before calling any other

 XDR APIs. This inserts additional bytes in the stream to pro?

 vide record boundary information. Also, XDR streams created

 with different xdr*_create APIs are not compatible for the same

 reason.

 bool_t xdrrec_endofrecord(XDR *xdrs, int sendnow);

 This routine can be invoked only on streams created by xdr?

 rec_create(). The data in the output buffer is marked as a com?

 pleted record, and the output buffer is optionally written out

 if sendnow is nonzero. This routine returns one if it succeeds,

 zero otherwise.

 bool_t xdrrec_eof(XDR *xdrs);

 This routine can be invoked only on streams created by xdr?

 rec_create(). After consuming the rest of the current record in

 the stream, this routine returns one if the stream has no more

 input, zero otherwise.

 bool_t xdrrec_skiprecord(XDR *xdrs);

 This routine can be invoked only on streams created by xdr?

 rec_create(). It tells the XDR implementation that the rest of

 the current record in the stream's input buffer should be dis?

 carded. This routine returns one if it succeeds, zero other?

 wise.

 bool_t xdr_reference(XDR *xdrs, char **pp, unsigned int size,

 xdrproc_t proc);

 A primitive that provides pointer chasing within structures.

 The argument pp is the address of the pointer; size is the

 sizeof the structure that *pp points to; and proc is an XDR pro?

 cedure that filters the structure between its C form and its ex? Page 5/9

 ternal representation. This routine returns one if it succeeds,

 zero otherwise.

 Warning: this routine does not understand null pointers. Use

 xdr_pointer() instead.

 xdr_setpos(XDR *xdrs, unsigned int pos);

 A macro that invokes the set position routine associated with

 the XDR stream xdrs. The argument pos is a position value ob?

 tained from xdr_getpos(). This routine returns one if the XDR

 stream could be repositioned, and zero otherwise.

 Warning: it is difficult to reposition some types of XDR

 streams, so this routine may fail with one type of stream and

 succeed with another.

 bool_t xdr_short(XDR *xdrs, short *sp);

 A filter primitive that translates between C short integers and

 their external representations. This routine returns one if it

 succeeds, zero otherwise.

 void xdrstdio_create(XDR *xdrs, FILE *file, enum xdr_op op);

 This routine initializes the XDR stream object pointed to by

 xdrs. The XDR stream data is written to, or read from, the

 stdio stream file. The argument op determines the direction of

 the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

 Warning: the destroy routine associated with such XDR streams

 calls fflush(3) on the file stream, but never fclose(3).

 bool_t xdr_string(XDR *xdrs, char **sp, unsigned int maxsize);

 A filter primitive that translates between C strings and their

 corresponding external representations. Strings cannot be

 longer than maxsize. Note: sp is the address of the string's

 pointer. This routine returns one if it succeeds, zero other?

 wise.

 bool_t xdr_u_char(XDR *xdrs, unsigned char *ucp);

 A filter primitive that translates between unsigned C characters

 and their external representations. This routine returns one if

 it succeeds, zero otherwise. Page 6/9

 bool_t xdr_u_int(XDR *xdrs, unsigned *up);

 A filter primitive that translates between C unsigned integers

 and their external representations. This routine returns one if

 it succeeds, zero otherwise.

 bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp);

 A filter primitive that translates between C unsigned long inte?

 gers and their external representations. This routine returns

 one if it succeeds, zero otherwise.

 bool_t xdr_u_short(XDR *xdrs, unsigned short *usp);

 A filter primitive that translates between C unsigned short in?

 tegers and their external representations. This routine returns

 one if it succeeds, zero otherwise.

 bool_t xdr_union(XDR *xdrs, int *dscmp, char *unp,

 struct xdr_discrim *choices,

 xdrproc_t defaultarm); /* may equal NULL */

 A filter primitive that translates between a discriminated C

 union and its corresponding external representation. It first

 translates the discriminant of the union located at dscmp. This

 discriminant is always an enum_t. Next the union located at unp

 is translated. The argument choices is a pointer to an array of

 xdr_discrim() structures. Each structure contains an ordered

 pair of [value,proc]. If the union's discriminant is equal to

 the associated value, then the proc is called to translate the

 union. The end of the xdr_discrim() structure array is denoted

 by a routine of value NULL. If the discriminant is not found in

 the choices array, then the defaultarm procedure is called (if

 it is not NULL). Returns one if it succeeds, zero otherwise.

 bool_t xdr_vector(XDR *xdrs, char *arrp, unsigned int size,

 unsigned int elsize, xdrproc_t elproc);

 A filter primitive that translates between fixed-length arrays

 and their corresponding external representations. The argument

 arrp is the address of the pointer to the array, while size is

 the element count of the array. The argument elsize is the Page 7/9

 sizeof each of the array's elements, and elproc is an XDR filter

 that translates between the array elements' C form, and their

 external representation. This routine returns one if it suc?

 ceeds, zero otherwise.

 bool_t xdr_void(void);

 This routine always returns one. It may be passed to RPC rou?

 tines that require a function argument, where nothing is to be

 done.

 bool_t xdr_wrapstring(XDR *xdrs, char **sp);

 A primitive that calls xdr_string(xdrs, sp,MAXUN.UNSIGNED);

 where MAXUN.UNSIGNED is the maximum value of an unsigned inte?

 ger. xdr_wrapstring() is handy because the RPC package passes a

 maximum of two XDR routines as arguments, and xdr_string(), one

 of the most frequently used primitives, requires three. Returns

 one if it succeeds, zero otherwise.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?xdr_array(), xdr_bool(), ? Thread safety ? MT-Safe ?

 ?xdr_bytes(), xdr_char(), ? ? ?

 ?xdr_destroy(), xdr_double(), ? ? ?

 ?xdr_enum(), xdr_float(), ? ? ?

 ?xdr_free(), xdr_getpos(), ? ? ?

 ?xdr_inline(), xdr_int(), ? ? ?

 ?xdr_long(), xdrmem_create(), ? ? ?

 ?xdr_opaque(), xdr_pointer(), ? ? ?

 ?xdrrec_create(), xdrrec_eof(), ? ? ?

 ?xdrrec_endofrecord(), ? ? ?

 ?xdrrec_skiprecord(), ? ? ?

 ?xdr_reference(), xdr_setpos(), ? ? ? Page 8/9

 ?xdr_short(), xdrstdio_create(), ? ? ?

 ?xdr_string(), xdr_u_char(), ? ? ?

 ?xdr_u_int(), xdr_u_long(), ? ? ?

 ?xdr_u_short(), xdr_union(), ? ? ?

 ?xdr_vector(), xdr_void(), ? ? ?

 ?xdr_wrapstring() ? ? ?

 ??

SEE ALSO

 rpc(3)

 The following manuals:

 eXternal Data Representation Standard: Protocol Specification

 eXternal Data Representation: Sun Technical Notes

 XDR: External Data Representation Standard, RFC 1014, Sun Mi?

 crosystems, Inc., USC-ISI.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2017-09-15 XDR(3)

Page 9/9

