
Rocky Enterprise Linux 9.2 Manual Pages on command 'wait.2'

$ man wait.2

WAIT(2) Linux Programmer's Manual WAIT(2)

NAME

 wait, waitpid, waitid - wait for process to change state

SYNOPSIS

 #include <sys/types.h>

 #include <sys/wait.h>

 pid_t wait(int *wstatus);

 pid_t waitpid(pid_t pid, int *wstatus, int options);

 int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

 /* This is the glibc and POSIX interface; see

 NOTES for information on the raw system call. */

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 waitid():

 Since glibc 2.26: _XOPEN_SOURCE >= 500 ||

 _POSIX_C_SOURCE >= 200809L

 Glibc 2.25 and earlier:

 _XOPEN_SOURCE

 || /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L Page 1/11

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

DESCRIPTION

 All of these system calls are used to wait for state changes in a child

 of the calling process, and obtain information about the child whose

 state has changed. A state change is considered to be: the child ter?

 minated; the child was stopped by a signal; or the child was resumed by

 a signal. In the case of a terminated child, performing a wait allows

 the system to release the resources associated with the child; if a

 wait is not performed, then the terminated child remains in a "zombie"

 state (see NOTES below).

 If a child has already changed state, then these calls return immedi?

 ately. Otherwise, they block until either a child changes state or a

 signal handler interrupts the call (assuming that system calls are not

 automatically restarted using the SA_RESTART flag of sigaction(2)). In

 the remainder of this page, a child whose state has changed and which

 has not yet been waited upon by one of these system calls is termed

 waitable.

 wait() and waitpid()

 The wait() system call suspends execution of the calling thread until

 one of its children terminates. The call wait(&wstatus) is equivalent

 to:

 waitpid(-1, &wstatus, 0);

 The waitpid() system call suspends execution of the calling thread un?

 til a child specified by pid argument has changed state. By default,

 waitpid() waits only for terminated children, but this behavior is mod?

 ifiable via the options argument, as described below.

 The value of pid can be:

 < -1 meaning wait for any child process whose process group ID is

 equal to the absolute value of pid.

 -1 meaning wait for any child process.

 0 meaning wait for any child process whose process group ID is

 equal to that of the calling process at the time of the call to

 waitpid(). Page 2/11

 > 0 meaning wait for the child whose process ID is equal to the

 value of pid.

 The value of options is an OR of zero or more of the following con?

 stants:

 WNOHANG

 return immediately if no child has exited.

 WUNTRACED

 also return if a child has stopped (but not traced via

 ptrace(2)). Status for traced children which have stopped is

 provided even if this option is not specified.

 WCONTINUED (since Linux 2.6.10)

 also return if a stopped child has been resumed by delivery of

 SIGCONT.

 (For Linux-only options, see below.)

 If wstatus is not NULL, wait() and waitpid() store status information

 in the int to which it points. This integer can be inspected with the

 following macros (which take the integer itself as an argument, not a

 pointer to it, as is done in wait() and waitpid()!):

 WIFEXITED(wstatus)

 returns true if the child terminated normally, that is, by call?

 ing exit(3) or _exit(2), or by returning from main().

 WEXITSTATUS(wstatus)

 returns the exit status of the child. This consists of the

 least significant 8 bits of the status argument that the child

 specified in a call to exit(3) or _exit(2) or as the argument

 for a return statement in main(). This macro should be employed

 only if WIFEXITED returned true.

 WIFSIGNALED(wstatus)

 returns true if the child process was terminated by a signal.

 WTERMSIG(wstatus)

 returns the number of the signal that caused the child process

 to terminate. This macro should be employed only if WIFSIGNALED

 returned true. Page 3/11

 WCOREDUMP(wstatus)

 returns true if the child produced a core dump (see core(5)).

 This macro should be employed only if WIFSIGNALED returned true.

 This macro is not specified in POSIX.1-2001 and is not available

 on some UNIX implementations (e.g., AIX, SunOS). Therefore, en?

 close its use inside #ifdef WCOREDUMP ... #endif.

 WIFSTOPPED(wstatus)

 returns true if the child process was stopped by delivery of a

 signal; this is possible only if the call was done using WUN?

 TRACED or when the child is being traced (see ptrace(2)).

 WSTOPSIG(wstatus)

 returns the number of the signal which caused the child to stop.

 This macro should be employed only if WIFSTOPPED returned true.

 WIFCONTINUED(wstatus)

 (since Linux 2.6.10) returns true if the child process was re?

 sumed by delivery of SIGCONT.

 waitid()

 The waitid() system call (available since Linux 2.6.9) provides more

 precise control over which child state changes to wait for.

 The idtype and id arguments select the child(ren) to wait for, as fol?

 lows:

 idtype == P_PID

 Wait for the child whose process ID matches id.

 idtype == P_PIDFD (since Linux 5.4)

 Wait for the child referred to by the PID file descriptor speci?

 fied in id. (See pidfd_open(2) for further information on PID

 file descriptors.)

 idtype == P_PGID

 Wait for any child whose process group ID matches id. Since

 Linux 5.4, if id is zero, then wait for any child that is in the

 same process group as the caller's process group at the time of

 the call.

 idtype == P_ALL Page 4/11

 Wait for any child; id is ignored.

 The child state changes to wait for are specified by ORing one or more

 of the following flags in options:

 WEXITED

 Wait for children that have terminated.

 WSTOPPED

 Wait for children that have been stopped by delivery of a sig?

 nal.

 WCONTINUED

 Wait for (previously stopped) children that have been resumed by

 delivery of SIGCONT.

 The following flags may additionally be ORed in options:

 WNOHANG

 As for waitpid().

 WNOWAIT

 Leave the child in a waitable state; a later wait call can be

 used to again retrieve the child status information.

 Upon successful return, waitid() fills in the following fields of the

 siginfo_t structure pointed to by infop:

 si_pid The process ID of the child.

 si_uid The real user ID of the child. (This field is not set on most

 other implementations.)

 si_signo

 Always set to SIGCHLD.

 si_status

 Either the exit status of the child, as given to _exit(2) (or

 exit(3)), or the signal that caused the child to terminate,

 stop, or continue. The si_code field can be used to determine

 how to interpret this field.

 si_code

 Set to one of: CLD_EXITED (child called _exit(2)); CLD_KILLED

 (child killed by signal); CLD_DUMPED (child killed by signal,

 and dumped core); CLD_STOPPED (child stopped by signal); Page 5/11

 CLD_TRAPPED (traced child has trapped); or CLD_CONTINUED (child

 continued by SIGCONT).

 If WNOHANG was specified in options and there were no children in a

 waitable state, then waitid() returns 0 immediately and the state of

 the siginfo_t structure pointed to by infop depends on the implementa?

 tion. To (portably) distinguish this case from that where a child was

 in a waitable state, zero out the si_pid field before the call and

 check for a nonzero value in this field after the call returns.

 POSIX.1-2008 Technical Corrigendum 1 (2013) adds the requirement that

 when WNOHANG is specified in options and there were no children in a

 waitable state, then waitid() should zero out the si_pid and si_signo

 fields of the structure. On Linux and other implementations that ad?

 here to this requirement, it is not necessary to zero out the si_pid

 field before calling waitid(). However, not all implementations follow

 the POSIX.1 specification on this point.

RETURN VALUE

 wait(): on success, returns the process ID of the terminated child; on

 error, -1 is returned.

 waitpid(): on success, returns the process ID of the child whose state

 has changed; if WNOHANG was specified and one or more child(ren) speci?

 fied by pid exist, but have not yet changed state, then 0 is returned.

 On error, -1 is returned.

 waitid(): returns 0 on success or if WNOHANG was specified and no

 child(ren) specified by id has yet changed state; on error, -1 is re?

 turned.

 Each of these calls sets errno to an appropriate value in the case of

 an error.

ERRORS

 ECHILD (for wait()) The calling process does not have any unwaited-for

 children.

 ECHILD (for waitpid() or waitid()) The process specified by pid (wait?

 pid()) or idtype and id (waitid()) does not exist or is not a

 child of the calling process. (This can happen for one's own Page 6/11

 child if the action for SIGCHLD is set to SIG_IGN. See also the

 Linux Notes section about threads.)

 EINTR WNOHANG was not set and an unblocked signal or a SIGCHLD was

 caught; see signal(7).

 EINVAL The options argument was invalid.

CONFORMING TO

 SVr4, 4.3BSD, POSIX.1-2001.

NOTES

 A child that terminates, but has not been waited for becomes a "zom?

 bie". The kernel maintains a minimal set of information about the zom?

 bie process (PID, termination status, resource usage information) in

 order to allow the parent to later perform a wait to obtain information

 about the child. As long as a zombie is not removed from the system

 via a wait, it will consume a slot in the kernel process table, and if

 this table fills, it will not be possible to create further processes.

 If a parent process terminates, then its "zombie" children (if any) are

 adopted by init(1), (or by the nearest "subreaper" process as defined

 through the use of the prctl(2) PR_SET_CHILD_SUBREAPER operation);

 init(1) automatically performs a wait to remove the zombies.

 POSIX.1-2001 specifies that if the disposition of SIGCHLD is set to

 SIG_IGN or the SA_NOCLDWAIT flag is set for SIGCHLD (see sigaction(2)),

 then children that terminate do not become zombies and a call to wait()

 or waitpid() will block until all children have terminated, and then

 fail with errno set to ECHILD. (The original POSIX standard left the

 behavior of setting SIGCHLD to SIG_IGN unspecified. Note that even

 though the default disposition of SIGCHLD is "ignore", explicitly set?

 ting the disposition to SIG_IGN results in different treatment of zom?

 bie process children.)

 Linux 2.6 conforms to the POSIX requirements. However, Linux 2.4 (and

 earlier) does not: if a wait() or waitpid() call is made while SIGCHLD

 is being ignored, the call behaves just as though SIGCHLD were not be?

 ing ignored, that is, the call blocks until the next child terminates

 and then returns the process ID and status of that child. Page 7/11

 Linux notes

 In the Linux kernel, a kernel-scheduled thread is not a distinct con?

 struct from a process. Instead, a thread is simply a process that is

 created using the Linux-unique clone(2) system call; other routines

 such as the portable pthread_create(3) call are implemented using

 clone(2). Before Linux 2.4, a thread was just a special case of a

 process, and as a consequence one thread could not wait on the children

 of another thread, even when the latter belongs to the same thread

 group. However, POSIX prescribes such functionality, and since Linux

 2.4 a thread can, and by default will, wait on children of other

 threads in the same thread group.

 The following Linux-specific options are for use with children created

 using clone(2); they can also, since Linux 4.7, be used with waitid():

 __WCLONE

 Wait for "clone" children only. If omitted, then wait for "non-

 clone" children only. (A "clone" child is one which delivers no

 signal, or a signal other than SIGCHLD to its parent upon termi?

 nation.) This option is ignored if __WALL is also specified.

 __WALL (since Linux 2.4)

 Wait for all children, regardless of type ("clone" or "non-

 clone").

 __WNOTHREAD (since Linux 2.4)

 Do not wait for children of other threads in the same thread

 group. This was the default before Linux 2.4.

 Since Linux 4.7, the __WALL flag is automatically implied if the child

 is being ptraced.

 C library/kernel differences

 wait() is actually a library function that (in glibc) is implemented as

 a call to wait4(2).

 On some architectures, there is no waitpid() system call; instead, this

 interface is implemented via a C library wrapper function that calls

 wait4(2).

 The raw waitid() system call takes a fifth argument, of type struct Page 8/11

 rusage *. If this argument is non-NULL, then it is used to return re?

 source usage information about the child, in the same manner as

 wait4(2). See getrusage(2) for details.

BUGS

 According to POSIX.1-2008, an application calling waitid() must ensure

 that infop points to a siginfo_t structure (i.e., that it is a non-null

 pointer). On Linux, if infop is NULL, waitid() succeeds, and returns

 the process ID of the waited-for child. Applications should avoid re?

 lying on this inconsistent, nonstandard, and unnecessary feature.

EXAMPLES

 The following program demonstrates the use of fork(2) and waitpid().

 The program creates a child process. If no command-line argument is

 supplied to the program, then the child suspends its execution using

 pause(2), to allow the user to send signals to the child. Otherwise,

 if a command-line argument is supplied, then the child exits immedi?

 ately, using the integer supplied on the command line as the exit sta?

 tus. The parent process executes a loop that monitors the child using

 waitpid(), and uses the W*() macros described above to analyze the wait

 status value.

 The following shell session demonstrates the use of the program:

 $./a.out &

 Child PID is 32360

 [1] 32359

 $ kill -STOP 32360

 stopped by signal 19

 $ kill -CONT 32360

 continued

 $ kill -TERM 32360

 killed by signal 15

 [1]+ Done ./a.out

 $

 Program source

 #include <sys/wait.h> Page 9/11

 #include <stdint.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <stdio.h>

 int

 main(int argc, char *argv[])

 {

 pid_t cpid, w;

 int wstatus;

 cpid = fork();

 if (cpid == -1) {

 perror("fork");

 exit(EXIT_FAILURE);

 }

 if (cpid == 0) { /* Code executed by child */

 printf("Child PID is %jd\n", (intmax_t) getpid());

 if (argc == 1)

 pause(); /* Wait for signals */

 _exit(atoi(argv[1]));

 } else { /* Code executed by parent */

 do {

 w = waitpid(cpid, &wstatus, WUNTRACED | WCONTINUED);

 if (w == -1) {

 perror("waitpid");

 exit(EXIT_FAILURE);

 }

 if (WIFEXITED(wstatus)) {

 printf("exited, status=%d\n", WEXITSTATUS(wstatus));

 } else if (WIFSIGNALED(wstatus)) {

 printf("killed by signal %d\n", WTERMSIG(wstatus));

 } else if (WIFSTOPPED(wstatus)) {

 printf("stopped by signal %d\n", WSTOPSIG(wstatus));

 } else if (WIFCONTINUED(wstatus)) { Page 10/11

 printf("continued\n");

 }

 } while (!WIFEXITED(wstatus) && !WIFSIGNALED(wstatus));

 exit(EXIT_SUCCESS);

 }

 }

SEE ALSO

 _exit(2), clone(2), fork(2), kill(2), ptrace(2), sigaction(2), sig?

 nal(2), wait4(2), pthread_create(3), core(5), credentials(7), signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 WAIT(2)

Page 11/11

