
Rocky Enterprise Linux 9.2 Manual Pages on command 'utf8.7'

$ man utf8.7

UTF-8(7) Linux Programmer's Manual UTF-8(7)

NAME

 UTF-8 - an ASCII compatible multibyte Unicode encoding

DESCRIPTION

 The Unicode 3.0 character set occupies a 16-bit code space. The most

 obvious Unicode encoding (known as UCS-2) consists of a sequence of

 16-bit words. Such strings can contain?as part of many 16-bit charac?

 ters?bytes such as '\0' or '/', which have a special meaning in file?

 names and other C library function arguments. In addition, the major?

 ity of UNIX tools expect ASCII files and can't read 16-bit words as

 characters without major modifications. For these reasons, UCS-2 is

 not a suitable external encoding of Unicode in filenames, text files,

 environment variables, and so on. The ISO 10646 Universal Character

 Set (UCS), a superset of Unicode, occupies an even larger code

 space?31 bits?and the obvious UCS-4 encoding for it (a sequence of

 32-bit words) has the same problems.

 The UTF-8 encoding of Unicode and UCS does not have these problems and

 is the common way in which Unicode is used on UNIX-style operating sys? Page 1/5

 tems.

 Properties

 The UTF-8 encoding has the following nice properties:

 * UCS characters 0x00000000 to 0x0000007f (the classic US-ASCII charac?

 ters) are encoded simply as bytes 0x00 to 0x7f (ASCII compatibility).

 This means that files and strings which contain only 7-bit ASCII

 characters have the same encoding under both ASCII and UTF-8 .

 * All UCS characters greater than 0x7f are encoded as a multibyte se?

 quence consisting only of bytes in the range 0x80 to 0xfd, so no

 ASCII byte can appear as part of another character and there are no

 problems with, for example, '\0' or '/'.

 * The lexicographic sorting order of UCS-4 strings is preserved.

 * All possible 2^31 UCS codes can be encoded using UTF-8.

 * The bytes 0xc0, 0xc1, 0xfe, and 0xff are never used in the UTF-8 en?

 coding.

 * The first byte of a multibyte sequence which represents a single non-

 ASCII UCS character is always in the range 0xc2 to 0xfd and indicates

 how long this multibyte sequence is. All further bytes in a multi?

 byte sequence are in the range 0x80 to 0xbf. This allows easy resyn?

 chronization and makes the encoding stateless and robust against

 missing bytes.

 * UTF-8 encoded UCS characters may be up to six bytes long, however the

 Unicode standard specifies no characters above 0x10ffff, so Unicode

 characters can be only up to four bytes long in UTF-8.

 Encoding

 The following byte sequences are used to represent a character. The

 sequence to be used depends on the UCS code number of the character:

 0x00000000 - 0x0000007F:

 0xxxxxxx

 0x00000080 - 0x000007FF:

 110xxxxx 10xxxxxx

 0x00000800 - 0x0000FFFF:

 1110xxxx 10xxxxxx 10xxxxxx Page 2/5

 0x00010000 - 0x001FFFFF:

 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

 0x00200000 - 0x03FFFFFF:

 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

 0x04000000 - 0x7FFFFFFF:

 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

 The xxx bit positions are filled with the bits of the character code

 number in binary representation, most significant bit first (big-en?

 dian). Only the shortest possible multibyte sequence which can repre?

 sent the code number of the character can be used.

 The UCS code values 0xd800?0xdfff (UTF-16 surrogates) as well as 0xfffe

 and 0xffff (UCS noncharacters) should not appear in conforming UTF-8

 streams. According to RFC 3629 no point above U+10FFFF should be used,

 which limits characters to four bytes.

 Example

 The Unicode character 0xa9 = 1010 1001 (the copyright sign) is encoded

 in UTF-8 as

 11000010 10101001 = 0xc2 0xa9

 and character 0x2260 = 0010 0010 0110 0000 (the "not equal" symbol) is

 encoded as:

 11100010 10001001 10100000 = 0xe2 0x89 0xa0

 Application notes

 Users have to select a UTF-8 locale, for example with

 export LANG=en_GB.UTF-8

 in order to activate the UTF-8 support in applications.

 Application software that has to be aware of the used character encod?

 ing should always set the locale with for example

 setlocale(LC_CTYPE, "")

 and programmers can then test the expression

 strcmp(nl_langinfo(CODESET), "UTF-8") == 0

 to determine whether a UTF-8 locale has been selected and whether

 therefore all plaintext standard input and output, terminal communica?

 tion, plaintext file content, filenames and environment variables are Page 3/5

 encoded in UTF-8.

 Programmers accustomed to single-byte encodings such as US-ASCII or ISO

 8859 have to be aware that two assumptions made so far are no longer

 valid in UTF-8 locales. Firstly, a single byte does not necessarily

 correspond any more to a single character. Secondly, since modern ter?

 minal emulators in UTF-8 mode also support Chinese, Japanese, and Ko?

 rean double-width characters as well as nonspacing combining charac?

 ters, outputting a single character does not necessarily advance the

 cursor by one position as it did in ASCII. Library functions such as

 mbsrtowcs(3) and wcswidth(3) should be used today to count characters

 and cursor positions.

 The official ESC sequence to switch from an ISO 2022 encoding scheme

 (as used for instance by VT100 terminals) to UTF-8 is ESC % G

 ("\x1b%G"). The corresponding return sequence from UTF-8 to ISO 2022

 is ESC % @ ("\x1b%@"). Other ISO 2022 sequences (such as for switching

 the G0 and G1 sets) are not applicable in UTF-8 mode.

 Security

 The Unicode and UCS standards require that producers of UTF-8 shall use

 the shortest form possible, for example, producing a two-byte sequence

 with first byte 0xc0 is nonconforming. Unicode 3.1 has added the re?

 quirement that conforming programs must not accept non-shortest forms

 in their input. This is for security reasons: if user input is checked

 for possible security violations, a program might check only for the

 ASCII version of "/../" or ";" or NUL and overlook that there are many

 non-ASCII ways to represent these things in a non-shortest UTF-8 encod?

 ing.

 Standards

 ISO/IEC 10646-1:2000, Unicode 3.1, RFC 3629, Plan 9.

SEE ALSO

 locale(1), nl_langinfo(3), setlocale(3), charsets(7), unicode(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the Page 4/5

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2019-03-06 UTF-8(7)

Page 5/5

