
Rocky Enterprise Linux 9.2 Manual Pages on command 'user_namespaces.7'

$ man user_namespaces.7

USER_NAMESPACES(7) Linux Programmer's Manual USER_NAMESPACES(7)

NAME

 user_namespaces - overview of Linux user namespaces

DESCRIPTION

 For an overview of namespaces, see namespaces(7).

 User namespaces isolate security-related identifiers and attributes, in

 particular, user IDs and group IDs (see credentials(7)), the root di?

 rectory, keys (see keyrings(7)), and capabilities (see capabili?

 ties(7)). A process's user and group IDs can be different inside and

 outside a user namespace. In particular, a process can have a normal

 unprivileged user ID outside a user namespace while at the same time

 having a user ID of 0 inside the namespace; in other words, the process

 has full privileges for operations inside the user namespace, but is

 unprivileged for operations outside the namespace.

 Nested namespaces, namespace membership

 User namespaces can be nested; that is, each user namespace?except the

 initial ("root") namespace?has a parent user namespace, and can have

 zero or more child user namespaces. The parent user namespace is the Page 1/22

 user namespace of the process that creates the user namespace via a

 call to unshare(2) or clone(2) with the CLONE_NEWUSER flag.

 The kernel imposes (since version 3.11) a limit of 32 nested levels of

 user namespaces. Calls to unshare(2) or clone(2) that would cause this

 limit to be exceeded fail with the error EUSERS.

 Each process is a member of exactly one user namespace. A process cre?

 ated via fork(2) or clone(2) without the CLONE_NEWUSER flag is a member

 of the same user namespace as its parent. A single-threaded process

 can join another user namespace with setns(2) if it has the CAP_SYS_AD?

 MIN in that namespace; upon doing so, it gains a full set of capabili?

 ties in that namespace.

 A call to clone(2) or unshare(2) with the CLONE_NEWUSER flag makes the

 new child process (for clone(2)) or the caller (for unshare(2)) a mem?

 ber of the new user namespace created by the call.

 The NS_GET_PARENT ioctl(2) operation can be used to discover the

 parental relationship between user namespaces; see ioctl_ns(2).

 Capabilities

 The child process created by clone(2) with the CLONE_NEWUSER flag

 starts out with a complete set of capabilities in the new user name?

 space. Likewise, a process that creates a new user namespace using un?

 share(2) or joins an existing user namespace using setns(2) gains a

 full set of capabilities in that namespace. On the other hand, that

 process has no capabilities in the parent (in the case of clone(2)) or

 previous (in the case of unshare(2) and setns(2)) user namespace, even

 if the new namespace is created or joined by the root user (i.e., a

 process with user ID 0 in the root namespace).

 Note that a call to execve(2) will cause a process's capabilities to be

 recalculated in the usual way (see capabilities(7)). Consequently, un?

 less the process has a user ID of 0 within the namespace, or the exe?

 cutable file has a nonempty inheritable capabilities mask, the process

 will lose all capabilities. See the discussion of user and group ID

 mappings, below.

 A call to clone(2) or unshare(2) using the CLONE_NEWUSER flag or a call Page 2/22

 to setns(2) that moves the caller into another user namespace sets the

 "securebits" flags (see capabilities(7)) to their default values (all

 flags disabled) in the child (for clone(2)) or caller (for unshare(2)

 or setns(2)). Note that because the caller no longer has capabilities

 in its original user namespace after a call to setns(2), it is not pos?

 sible for a process to reset its "securebits" flags while retaining its

 user namespace membership by using a pair of setns(2) calls to move to

 another user namespace and then return to its original user namespace.

 The rules for determining whether or not a process has a capability in

 a particular user namespace are as follows:

 1. A process has a capability inside a user namespace if it is a member

 of that namespace and it has the capability in its effective capa?

 bility set. A process can gain capabilities in its effective capa?

 bility set in various ways. For example, it may execute a set-user-

 ID program or an executable with associated file capabilities. In

 addition, a process may gain capabilities via the effect of

 clone(2), unshare(2), or setns(2), as already described.

 2. If a process has a capability in a user namespace, then it has that

 capability in all child (and further removed descendant) namespaces

 as well.

 3. When a user namespace is created, the kernel records the effective

 user ID of the creating process as being the "owner" of the name?

 space. A process that resides in the parent of the user namespace

 and whose effective user ID matches the owner of the namespace has

 all capabilities in the namespace. By virtue of the previous rule,

 this means that the process has all capabilities in all further re?

 moved descendant user namespaces as well. The NS_GET_OWNER_UID

 ioctl(2) operation can be used to discover the user ID of the owner

 of the namespace; see ioctl_ns(2).

 Effect of capabilities within a user namespace

 Having a capability inside a user namespace permits a process to per?

 form operations (that require privilege) only on resources governed by

 that namespace. In other words, having a capability in a user name? Page 3/22

 space permits a process to perform privileged operations on resources

 that are governed by (nonuser) namespaces owned by (associated with)

 the user namespace (see the next subsection).

 On the other hand, there are many privileged operations that affect re?

 sources that are not associated with any namespace type, for example,

 changing the system (i.e., calendar) time (governed by CAP_SYS_TIME),

 loading a kernel module (governed by CAP_SYS_MODULE), and creating a

 device (governed by CAP_MKNOD). Only a process with privileges in the

 initial user namespace can perform such operations.

 Holding CAP_SYS_ADMIN within the user namespace that owns a process's

 mount namespace allows that process to create bind mounts and mount the

 following types of filesystems:

 * /proc (since Linux 3.8)

 * /sys (since Linux 3.8)

 * devpts (since Linux 3.9)

 * tmpfs(5) (since Linux 3.9)

 * ramfs (since Linux 3.9)

 * mqueue (since Linux 3.9)

 * bpf (since Linux 4.4)

 Holding CAP_SYS_ADMIN within the user namespace that owns a process's

 cgroup namespace allows (since Linux 4.6) that process to the mount the

 cgroup version 2 filesystem and cgroup version 1 named hierarchies

 (i.e., cgroup filesystems mounted with the "none,name=" option).

 Holding CAP_SYS_ADMIN within the user namespace that owns a process's

 PID namespace allows (since Linux 3.8) that process to mount /proc

 filesystems.

 Note however, that mounting block-based filesystems can be done only by

 a process that holds CAP_SYS_ADMIN in the initial user namespace.

 Interaction of user namespaces and other types of namespaces

 Starting in Linux 3.8, unprivileged processes can create user name?

 spaces, and the other types of namespaces can be created with just the

 CAP_SYS_ADMIN capability in the caller's user namespace.

 When a nonuser namespace is created, it is owned by the user namespace Page 4/22

 in which the creating process was a member at the time of the creation

 of the namespace. Privileged operations on resources governed by the

 nonuser namespace require that the process has the necessary capabili?

 ties in the user namespace that owns the nonuser namespace.

 If CLONE_NEWUSER is specified along with other CLONE_NEW* flags in a

 single clone(2) or unshare(2) call, the user namespace is guaranteed to

 be created first, giving the child (clone(2)) or caller (unshare(2))

 privileges over the remaining namespaces created by the call. Thus, it

 is possible for an unprivileged caller to specify this combination of

 flags.

 When a new namespace (other than a user namespace) is created via

 clone(2) or unshare(2), the kernel records the user namespace of the

 creating process as the owner of the new namespace. (This association

 can't be changed.) When a process in the new namespace subsequently

 performs privileged operations that operate on global resources iso?

 lated by the namespace, the permission checks are performed according

 to the process's capabilities in the user namespace that the kernel as?

 sociated with the new namespace. For example, suppose that a process

 attempts to change the hostname (sethostname(2)), a resource governed

 by the UTS namespace. In this case, the kernel will determine which

 user namespace owns the process's UTS namespace, and check whether the

 process has the required capability (CAP_SYS_ADMIN) in that user name?

 space.

 The NS_GET_USERNS ioctl(2) operation can be used to discover the user

 namespace that owns a nonuser namespace; see ioctl_ns(2).

 User and group ID mappings: uid_map and gid_map

 When a user namespace is created, it starts out without a mapping of

 user IDs (group IDs) to the parent user namespace. The

 /proc/[pid]/uid_map and /proc/[pid]/gid_map files (available since

 Linux 3.5) expose the mappings for user and group IDs inside the user

 namespace for the process pid. These files can be read to view the

 mappings in a user namespace and written to (once) to define the map?

 pings. Page 5/22

 The description in the following paragraphs explains the details for

 uid_map; gid_map is exactly the same, but each instance of "user ID" is

 replaced by "group ID".

 The uid_map file exposes the mapping of user IDs from the user name?

 space of the process pid to the user namespace of the process that

 opened uid_map (but see a qualification to this point below). In other

 words, processes that are in different user namespaces will potentially

 see different values when reading from a particular uid_map file, de?

 pending on the user ID mappings for the user namespaces of the reading

 processes.

 Each line in the uid_map file specifies a 1-to-1 mapping of a range of

 contiguous user IDs between two user namespaces. (When a user name?

 space is first created, this file is empty.) The specification in each

 line takes the form of three numbers delimited by white space. The

 first two numbers specify the starting user ID in each of the two user

 namespaces. The third number specifies the length of the mapped range.

 In detail, the fields are interpreted as follows:

 (1) The start of the range of user IDs in the user namespace of the

 process pid.

 (2) The start of the range of user IDs to which the user IDs specified

 by field one map. How field two is interpreted depends on whether

 the process that opened uid_map and the process pid are in the same

 user namespace, as follows:

 a) If the two processes are in different user namespaces: field two

 is the start of a range of user IDs in the user namespace of the

 process that opened uid_map.

 b) If the two processes are in the same user namespace: field two

 is the start of the range of user IDs in the parent user name?

 space of the process pid. This case enables the opener of

 uid_map (the common case here is opening /proc/self/uid_map) to

 see the mapping of user IDs into the user namespace of the

 process that created this user namespace.

 (3) The length of the range of user IDs that is mapped between the two Page 6/22

 user namespaces.

 System calls that return user IDs (group IDs)?for example, getuid(2),

 getgid(2), and the credential fields in the structure returned by

 stat(2)?return the user ID (group ID) mapped into the caller's user

 namespace.

 When a process accesses a file, its user and group IDs are mapped into

 the initial user namespace for the purpose of permission checking and

 assigning IDs when creating a file. When a process retrieves file user

 and group IDs via stat(2), the IDs are mapped in the opposite direc?

 tion, to produce values relative to the process user and group ID map?

 pings.

 The initial user namespace has no parent namespace, but, for consis?

 tency, the kernel provides dummy user and group ID mapping files for

 this namespace. Looking at the uid_map file (gid_map is the same) from

 a shell in the initial namespace shows:

 $ cat /proc/$$/uid_map

 0 0 4294967295

 This mapping tells us that the range starting at user ID 0 in this

 namespace maps to a range starting at 0 in the (nonexistent) parent

 namespace, and the length of the range is the largest 32-bit unsigned

 integer. This leaves 4294967295 (the 32-bit signed -1 value) unmapped.

 This is deliberate: (uid_t) -1 is used in several interfaces (e.g., se?

 treuid(2)) as a way to specify "no user ID". Leaving (uid_t) -1 un?

 mapped and unusable guarantees that there will be no confusion when us?

 ing these interfaces.

 Defining user and group ID mappings: writing to uid_map and gid_map

 After the creation of a new user namespace, the uid_map file of one of

 the processes in the namespace may be written to once to define the

 mapping of user IDs in the new user namespace. An attempt to write

 more than once to a uid_map file in a user namespace fails with the er?

 ror EPERM. Similar rules apply for gid_map files.

 The lines written to uid_map (gid_map) must conform to the following

 rules: Page 7/22

 * The three fields must be valid numbers, and the last field must be

 greater than 0.

 * Lines are terminated by newline characters.

 * There is a limit on the number of lines in the file. In Linux 4.14

 and earlier, this limit was (arbitrarily) set at 5 lines. Since

 Linux 4.15, the limit is 340 lines. In addition, the number of

 bytes written to the file must be less than the system page size,

 and the write must be performed at the start of the file (i.e.,

 lseek(2) and pwrite(2) can't be used to write to nonzero offsets in

 the file).

 * The range of user IDs (group IDs) specified in each line cannot

 overlap with the ranges in any other lines. In the initial imple?

 mentation (Linux 3.8), this requirement was satisfied by a simplis?

 tic implementation that imposed the further requirement that the

 values in both field 1 and field 2 of successive lines must be in

 ascending numerical order, which prevented some otherwise valid maps

 from being created. Linux 3.9 and later fix this limitation, allow?

 ing any valid set of nonoverlapping maps.

 * At least one line must be written to the file.

 Writes that violate the above rules fail with the error EINVAL.

 In order for a process to write to the /proc/[pid]/uid_map

 (/proc/[pid]/gid_map) file, all of the following requirements must be

 met:

 1. The writing process must have the CAP_SETUID (CAP_SETGID) capability

 in the user namespace of the process pid.

 2. The writing process must either be in the user namespace of the

 process pid or be in the parent user namespace of the process pid.

 3. The mapped user IDs (group IDs) must in turn have a mapping in the

 parent user namespace.

 4. One of the following two cases applies:

 * Either the writing process has the CAP_SETUID (CAP_SETGID) capa?

 bility in the parent user namespace.

 + No further restrictions apply: the process can make mappings Page 8/22

 to arbitrary user IDs (group IDs) in the parent user name?

 space.

 * Or otherwise all of the following restrictions apply:

 + The data written to uid_map (gid_map) must consist of a single

 line that maps the writing process's effective user ID (group

 ID) in the parent user namespace to a user ID (group ID) in

 the user namespace.

 + The writing process must have the same effective user ID as

 the process that created the user namespace.

 + In the case of gid_map, use of the setgroups(2) system call

 must first be denied by writing "deny" to the /proc/[pid]/set?

 groups file (see below) before writing to gid_map.

 Writes that violate the above rules fail with the error EPERM.

 Interaction with system calls that change process UIDs or GIDs

 In a user namespace where the uid_map file has not been written, the

 system calls that change user IDs will fail. Similarly, if the gid_map

 file has not been written, the system calls that change group IDs will

 fail. After the uid_map and gid_map files have been written, only the

 mapped values may be used in system calls that change user and group

 IDs.

 For user IDs, the relevant system calls include setuid(2), setfsuid(2),

 setreuid(2), and setresuid(2). For group IDs, the relevant system

 calls include setgid(2), setfsgid(2), setregid(2), setresgid(2), and

 setgroups(2).

 Writing "deny" to the /proc/[pid]/setgroups file before writing to

 /proc/[pid]/gid_map will permanently disable setgroups(2) in a user

 namespace and allow writing to /proc/[pid]/gid_map without having the

 CAP_SETGID capability in the parent user namespace.

 The /proc/[pid]/setgroups file

 The /proc/[pid]/setgroups file displays the string "allow" if processes

 in the user namespace that contains the process pid are permitted to

 employ the setgroups(2) system call; it displays "deny" if setgroups(2)

 is not permitted in that user namespace. Note that regardless of the Page 9/22

 value in the /proc/[pid]/setgroups file (and regardless of the

 process's capabilities), calls to setgroups(2) are also not permitted

 if /proc/[pid]/gid_map has not yet been set.

 A privileged process (one with the CAP_SYS_ADMIN capability in the

 namespace) may write either of the strings "allow" or "deny" to this

 file before writing a group ID mapping for this user namespace to the

 file /proc/[pid]/gid_map. Writing the string "deny" prevents any

 process in the user namespace from employing setgroups(2).

 The essence of the restrictions described in the preceding paragraph is

 that it is permitted to write to /proc/[pid]/setgroups only so long as

 calling setgroups(2) is disallowed because /proc/[pid]/gid_map has not

 been set. This ensures that a process cannot transition from a state

 where setgroups(2) is allowed to a state where setgroups(2) is denied;

 a process can transition only from setgroups(2) being disallowed to

 setgroups(2) being allowed.

 The default value of this file in the initial user namespace is "al?

 low".

 Once /proc/[pid]/gid_map has been written to (which has the effect of

 enabling setgroups(2) in the user namespace), it is no longer possible

 to disallow setgroups(2) by writing "deny" to /proc/[pid]/setgroups

 (the write fails with the error EPERM).

 A child user namespace inherits the /proc/[pid]/setgroups setting from

 its parent.

 If the setgroups file has the value "deny", then the setgroups(2) sys?

 tem call can't subsequently be reenabled (by writing "allow" to the

 file) in this user namespace. (Attempts to do so fail with the error

 EPERM.) This restriction also propagates down to all child user name?

 spaces of this user namespace.

 The /proc/[pid]/setgroups file was added in Linux 3.19, but was back?

 ported to many earlier stable kernel series, because it addresses a se?

 curity issue. The issue concerned files with permissions such as

 "rwx---rwx". Such files give fewer permissions to "group" than they do

 to "other". This means that dropping groups using setgroups(2) might Page 10/22

 allow a process file access that it did not formerly have. Before the

 existence of user namespaces this was not a concern, since only a priv?

 ileged process (one with the CAP_SETGID capability) could call set?

 groups(2). However, with the introduction of user namespaces, it be?

 came possible for an unprivileged process to create a new namespace in

 which the user had all privileges. This then allowed formerly unprivi?

 leged users to drop groups and thus gain file access that they did not

 previously have. The /proc/[pid]/setgroups file was added to address

 this security issue, by denying any pathway for an unprivileged process

 to drop groups with setgroups(2).

 Unmapped user and group IDs

 There are various places where an unmapped user ID (group ID) may be

 exposed to user space. For example, the first process in a new user

 namespace may call getuid(2) before a user ID mapping has been defined

 for the namespace. In most such cases, an unmapped user ID is con?

 verted to the overflow user ID (group ID); the default value for the

 overflow user ID (group ID) is 65534. See the descriptions of

 /proc/sys/kernel/overflowuid and /proc/sys/kernel/overflowgid in

 proc(5).

 The cases where unmapped IDs are mapped in this fashion include system

 calls that return user IDs (getuid(2), getgid(2), and similar), creden?

 tials passed over a UNIX domain socket, credentials returned by

 stat(2), waitid(2), and the System V IPC "ctl" IPC_STAT operations,

 credentials exposed by /proc/[pid]/status and the files in

 /proc/sysvipc/*, credentials returned via the si_uid field in the sig?

 info_t received with a signal (see sigaction(2)), credentials written

 to the process accounting file (see acct(5)), and credentials returned

 with POSIX message queue notifications (see mq_notify(3)).

 There is one notable case where unmapped user and group IDs are not

 converted to the corresponding overflow ID value. When viewing a

 uid_map or gid_map file in which there is no mapping for the second

 field, that field is displayed as 4294967295 (-1 as an unsigned inte?

 ger). Page 11/22

 Accessing files

 In order to determine permissions when an unprivileged process accesses

 a file, the process credentials (UID, GID) and the file credentials are

 in effect mapped back to what they would be in the initial user name?

 space and then compared to determine the permissions that the process

 has on the file. The same is also of other objects that employ the

 credentials plus permissions mask accessibility model, such as System V

 IPC objects

 Operation of file-related capabilities

 Certain capabilities allow a process to bypass various kernel-enforced

 restrictions when performing operations on files owned by other users

 or groups. These capabilities are: CAP_CHOWN, CAP_DAC_OVERRIDE,

 CAP_DAC_READ_SEARCH, CAP_FOWNER, and CAP_FSETID.

 Within a user namespace, these capabilities allow a process to bypass

 the rules if the process has the relevant capability over the file,

 meaning that:

 * the process has the relevant effective capability in its user name?

 space; and

 * the file's user ID and group ID both have valid mappings in the user

 namespace.

 The CAP_FOWNER capability is treated somewhat exceptionally: it allows

 a process to bypass the corresponding rules so long as at least the

 file's user ID has a mapping in the user namespace (i.e., the file's

 group ID does not need to have a valid mapping).

 Set-user-ID and set-group-ID programs

 When a process inside a user namespace executes a set-user-ID (set-

 group-ID) program, the process's effective user (group) ID inside the

 namespace is changed to whatever value is mapped for the user (group)

 ID of the file. However, if either the user or the group ID of the

 file has no mapping inside the namespace, the set-user-ID (set-group-

 ID) bit is silently ignored: the new program is executed, but the

 process's effective user (group) ID is left unchanged. (This mirrors

 the semantics of executing a set-user-ID or set-group-ID program that Page 12/22

 resides on a filesystem that was mounted with the MS_NOSUID flag, as

 described in mount(2).)

 Miscellaneous

 When a process's user and group IDs are passed over a UNIX domain

 socket to a process in a different user namespace (see the description

 of SCM_CREDENTIALS in unix(7)), they are translated into the corre?

 sponding values as per the receiving process's user and group ID map?

 pings.

CONFORMING TO

 Namespaces are a Linux-specific feature.

NOTES

 Over the years, there have been a lot of features that have been added

 to the Linux kernel that have been made available only to privileged

 users because of their potential to confuse set-user-ID-root applica?

 tions. In general, it becomes safe to allow the root user in a user

 namespace to use those features because it is impossible, while in a

 user namespace, to gain more privilege than the root user of a user

 namespace has.

 Availability

 Use of user namespaces requires a kernel that is configured with the

 CONFIG_USER_NS option. User namespaces require support in a range of

 subsystems across the kernel. When an unsupported subsystem is config?

 ured into the kernel, it is not possible to configure user namespaces

 support.

 As at Linux 3.8, most relevant subsystems supported user namespaces,

 but a number of filesystems did not have the infrastructure needed to

 map user and group IDs between user namespaces. Linux 3.9 added the

 required infrastructure support for many of the remaining unsupported

 filesystems (Plan 9 (9P), Andrew File System (AFS), Ceph, CIFS, CODA,

 NFS, and OCFS2). Linux 3.12 added support for the last of the unsup?

 ported major filesystems, XFS.

EXAMPLES

 The program below is designed to allow experimenting with user name? Page 13/22

 spaces, as well as other types of namespaces. It creates namespaces as

 specified by command-line options and then executes a command inside

 those namespaces. The comments and usage() function inside the program

 provide a full explanation of the program. The following shell session

 demonstrates its use.

 First, we look at the run-time environment:

 $ uname -rs # Need Linux 3.8 or later

 Linux 3.8.0

 $ id -u # Running as unprivileged user

 1000

 $ id -g

 1000

 Now start a new shell in new user (-U), mount (-m), and PID (-p) name?

 spaces, with user ID (-M) and group ID (-G) 1000 mapped to 0 inside the

 user namespace:

 $./userns_child_exec -p -m -U -M '0 1000 1' -G '0 1000 1' bash

 The shell has PID 1, because it is the first process in the new PID

 namespace:

 bash$ echo $$

 1

 Mounting a new /proc filesystem and listing all of the processes visi?

 ble in the new PID namespace shows that the shell can't see any pro?

 cesses outside the PID namespace:

 bash$ mount -t proc proc /proc

 bash$ ps ax

 PID TTY STAT TIME COMMAND

 1 pts/3 S 0:00 bash

 22 pts/3 R+ 0:00 ps ax

 Inside the user namespace, the shell has user and group ID 0, and a

 full set of permitted and effective capabilities:

 bash$ cat /proc/$$/status | egrep '^[UG]id'

 Uid: 0 0 0 0

 Gid: 0 0 0 0 Page 14/22

 bash$ cat /proc/$$/status | egrep '^Cap(Prm|Inh|Eff)'

 CapInh: 0000000000000000

 CapPrm: 0000001fffffffff

 CapEff: 0000001fffffffff

 Program source

 /* userns_child_exec.c

 Licensed under GNU General Public License v2 or later

 Create a child process that executes a shell command in new

 namespace(s); allow UID and GID mappings to be specified when

 creating a user namespace.

 */

 #define _GNU_SOURCE

 #include <sched.h>

 #include <unistd.h>

 #include <stdint.h>

 #include <stdlib.h>

 #include <sys/wait.h>

 #include <signal.h>

 #include <fcntl.h>

 #include <stdio.h>

 #include <string.h>

 #include <limits.h>

 #include <errno.h>

 /* A simple error-handling function: print an error message based

 on the value in 'errno' and terminate the calling process */

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 struct child_args {

 char **argv; /* Command to be executed by child, with args */

 int pipe_fd[2]; /* Pipe used to synchronize parent and child */

 };

 static int verbose;

 static void Page 15/22

 usage(char *pname)

 {

 fprintf(stderr, "Usage: %s [options] cmd [arg...]\n\n", pname);

 fprintf(stderr, "Create a child process that executes a shell "

 "command in a new user namespace,\n"

 "and possibly also other new namespace(s).\n\n");

 fprintf(stderr, "Options can be:\n\n");

 #define fpe(str) fprintf(stderr, " %s", str);

 fpe("-i New IPC namespace\n");

 fpe("-m New mount namespace\n");

 fpe("-n New network namespace\n");

 fpe("-p New PID namespace\n");

 fpe("-u New UTS namespace\n");

 fpe("-U New user namespace\n");

 fpe("-M uid_map Specify UID map for user namespace\n");

 fpe("-G gid_map Specify GID map for user namespace\n");

 fpe("-z Map user's UID and GID to 0 in user namespace\n");

 fpe(" (equivalent to: -M '0 <uid> 1' -G '0 <gid> 1')\n");

 fpe("-v Display verbose messages\n");

 fpe("\n");

 fpe("If -z, -M, or -G is specified, -U is required.\n");

 fpe("It is not permitted to specify both -z and either -M or -G.\n");

 fpe("\n");

 fpe("Map strings for -M and -G consist of records of the form:\n");

 fpe("\n");

 fpe(" ID-inside-ns ID-outside-ns len\n");

 fpe("\n");

 fpe("A map string can contain multiple records, separated"

 " by commas;\n");

 fpe("the commas are replaced by newlines before writing"

 " to map files.\n");

 exit(EXIT_FAILURE);

 } Page 16/22

 /* Update the mapping file 'map_file', with the value provided in

 'mapping', a string that defines a UID or GID mapping. A UID or

 GID mapping consists of one or more newline-delimited records

 of the form:

 ID_inside-ns ID-outside-ns length

 Requiring the user to supply a string that contains newlines is

 of course inconvenient for command-line use. Thus, we permit the

 use of commas to delimit records in this string, and replace them

 with newlines before writing the string to the file. */

 static void

 update_map(char *mapping, char *map_file)

 {

 int fd;

 size_t map_len; /* Length of 'mapping' */

 /* Replace commas in mapping string with newlines */

 map_len = strlen(mapping);

 for (int j = 0; j < map_len; j++)

 if (mapping[j] == ',')

 mapping[j] = '\n';

 fd = open(map_file, O_RDWR);

 if (fd == -1) {

 fprintf(stderr, "ERROR: open %s: %s\n", map_file,

 strerror(errno));

 exit(EXIT_FAILURE);

 }

 if (write(fd, mapping, map_len) != map_len) {

 fprintf(stderr, "ERROR: write %s: %s\n", map_file,

 strerror(errno));

 exit(EXIT_FAILURE);

 }

 close(fd);

 }

 /* Linux 3.19 made a change in the handling of setgroups(2) and the Page 17/22

 'gid_map' file to address a security issue. The issue allowed

 unprivileged users to employ user namespaces in order to drop

 The upshot of the 3.19 changes is that in order to update the

 'gid_maps' file, use of the setgroups() system call in this

 user namespace must first be disabled by writing "deny" to one of

 the /proc/PID/setgroups files for this namespace. That is the

 purpose of the following function. */

 static void

 proc_setgroups_write(pid_t child_pid, char *str)

 {

 char setgroups_path[PATH_MAX];

 int fd;

 snprintf(setgroups_path, PATH_MAX, "/proc/%jd/setgroups",

 (intmax_t) child_pid);

 fd = open(setgroups_path, O_RDWR);

 if (fd == -1) {

 /* We may be on a system that doesn't support

 /proc/PID/setgroups. In that case, the file won't exist,

 and the system won't impose the restrictions that Linux 3.19

 added. That's fine: we don't need to do anything in order

 to permit 'gid_map' to be updated.

 However, if the error from open() was something other than

 the ENOENT error that is expected for that case, let the

 user know. */

 if (errno != ENOENT)

 fprintf(stderr, "ERROR: open %s: %s\n", setgroups_path,

 strerror(errno));

 return;

 }

 if (write(fd, str, strlen(str)) == -1)

 fprintf(stderr, "ERROR: write %s: %s\n", setgroups_path,

 strerror(errno));

 close(fd); Page 18/22

 }

 static int /* Start function for cloned child */

 childFunc(void *arg)

 {

 struct child_args *args = arg;

 char ch;

 /* Wait until the parent has updated the UID and GID mappings.

 See the comment in main(). We wait for end of file on a

 pipe that will be closed by the parent process once it has

 updated the mappings. */

 close(args->pipe_fd[1]); /* Close our descriptor for the write

 end of the pipe so that we see EOF

 when parent closes its descriptor */

 if (read(args->pipe_fd[0], &ch, 1) != 0) {

 fprintf(stderr,

 "Failure in child: read from pipe returned != 0\n");

 exit(EXIT_FAILURE);

 }

 close(args->pipe_fd[0]);

 /* Execute a shell command */

 printf("About to exec %s\n", args->argv[0]);

 execvp(args->argv[0], args->argv);

 errExit("execvp");

 }

 #define STACK_SIZE (1024 * 1024)

 static char child_stack[STACK_SIZE]; /* Space for child's stack */

 int

 main(int argc, char *argv[])

 {

 int flags, opt, map_zero;

 pid_t child_pid;

 struct child_args args;

 char *uid_map, *gid_map; Page 19/22

 const int MAP_BUF_SIZE = 100;

 char map_buf[MAP_BUF_SIZE];

 char map_path[PATH_MAX];

 /* Parse command-line options. The initial '+' character in

 the final getopt() argument prevents GNU-style permutation

 of command-line options. That's useful, since sometimes

 the 'command' to be executed by this program itself

 has command-line options. We don't want getopt() to treat

 those as options to this program. */

 flags = 0;

 verbose = 0;

 gid_map = NULL;

 uid_map = NULL;

 map_zero = 0;

 while ((opt = getopt(argc, argv, "+imnpuUM:G:zv")) != -1) {

 switch (opt) {

 case 'i': flags |= CLONE_NEWIPC; break;

 case 'm': flags |= CLONE_NEWNS; break;

 case 'n': flags |= CLONE_NEWNET; break;

 case 'p': flags |= CLONE_NEWPID; break;

 case 'u': flags |= CLONE_NEWUTS; break;

 case 'v': verbose = 1; break;

 case 'z': map_zero = 1; break;

 case 'M': uid_map = optarg; break;

 case 'G': gid_map = optarg; break;

 case 'U': flags |= CLONE_NEWUSER; break;

 default: usage(argv[0]);

 }

 }

 /* -M or -G without -U is nonsensical */

 if (((uid_map != NULL || gid_map != NULL || map_zero) &&

 !(flags & CLONE_NEWUSER)) ||

 (map_zero && (uid_map != NULL || gid_map != NULL))) Page 20/22

 usage(argv[0]);

 args.argv = &argv[optind];

 /* We use a pipe to synchronize the parent and child, in order to

 ensure that the parent sets the UID and GID maps before the child

 calls execve(). This ensures that the child maintains its

 capabilities during the execve() in the common case where we

 want to map the child's effective user ID to 0 in the new user

 namespace. Without this synchronization, the child would lose

 its capabilities if it performed an execve() with nonzero

 user IDs (see the capabilities(7) man page for details of the

 transformation of a process's capabilities during execve()). */

 if (pipe(args.pipe_fd) == -1)

 errExit("pipe");

 /* Create the child in new namespace(s) */

 child_pid = clone(childFunc, child_stack + STACK_SIZE,

 flags | SIGCHLD, &args);

 if (child_pid == -1)

 errExit("clone");

 /* Parent falls through to here */

 if (verbose)

 printf("%s: PID of child created by clone() is %jd\n",

 argv[0], (intmax_t) child_pid);

 /* Update the UID and GID maps in the child */

 if (uid_map != NULL || map_zero) {

 snprintf(map_path, PATH_MAX, "/proc/%jd/uid_map",

 (intmax_t) child_pid);

 if (map_zero) {

 snprintf(map_buf, MAP_BUF_SIZE, "0 %jd 1",

 (intmax_t) getuid());

 uid_map = map_buf;

 }

 update_map(uid_map, map_path);

 } Page 21/22

 if (gid_map != NULL || map_zero) {

 proc_setgroups_write(child_pid, "deny");

 snprintf(map_path, PATH_MAX, "/proc/%jd/gid_map",

 (intmax_t) child_pid);

 if (map_zero) {

 snprintf(map_buf, MAP_BUF_SIZE, "0 %ld 1",

 (intmax_t) getgid());

 gid_map = map_buf;

 }

 update_map(gid_map, map_path);

 }

 /* Close the write end of the pipe, to signal to the child that we

 have updated the UID and GID maps */

 close(args.pipe_fd[1]);

 if (waitpid(child_pid, NULL, 0) == -1) /* Wait for child */

 errExit("waitpid");

 if (verbose)

 printf("%s: terminating\n", argv[0]);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 newgidmap(1), newuidmap(1), clone(2), ptrace(2), setns(2), unshare(2),

 proc(5), subgid(5), subuid(5), capabilities(7), cgroup_namespaces(7),

 credentials(7), namespaces(7), pid_namespaces(7)

 The kernel source file Documentation/namespaces/resource-control.txt.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 USER_NAMESPACES(7)

Page 22/22

