
Rocky Enterprise Linux 9.2 Manual Pages on command 'user_caps.5'

$ man user_caps.5

user_caps(5) File Formats Manual user_caps(5)

NAME

 user_caps - user-defined terminfo capabilities

SYNOPSIS

 tic -x, infocmp -x

DESCRIPTION

 Background

 Before ncurses 5.0, terminfo databases used a fixed repertoire of ter?

 minal capabilities designed for the SVr2 terminal database in 1984, and

 extended in stages through SVr4 (1989), and standardized in the Single

 Unix Specification beginning in 1995.

 Most of the extensions in this fixed repertoire were additions to the

 tables of boolean, numeric and string capabilities. Rather than change

 the meaning of an existing capability, a new name was added. The ter?

 minfo database uses a binary format; binary compatibility was ensured

 by using a header which gave the number of items in the tables for each

 type of capability. The standardization was incomplete:

 ? The binary format itself is not described in the X/Open Curses doc? Page 1/9

 umentation. Only the source format is described.

 Library developers rely upon the SVr4 documentation, and reverse-

 engineering the compiled terminfo files to match the binary format.

 ? Lacking a standard for the binary format, most implementations copy

 the SVr2 binary format, which uses 16-bit signed integers, and is

 limited to 4096-byte entries.

 The format cannot represent very large numeric capabilities, nor

 can it represent large numbers of special keyboard definitions.

 ? The tables of capability names differ between implementations.

 Although they may provide all of the standard capability names, the

 position in the tables differs because some features were added as

 needed, while others were added (out of order) to comply with

 X/Open Curses.

 While ncurses' repertoire of predefined capabilities is closest to

 Solaris, Solaris's terminfo database has a few differences from the

 list published by X/Open Curses. For example, ncurses can be con?

 figured with tables which match the terminal databases for AIX, HP-

 UX or OSF/1, rather than the default Solaris-like configuration.

 ? In SVr4 curses and ncurses, the terminal database is defined at

 compile-time using a text file which lists the different terminal

 capabilities.

 In principle, the text-file can be extended, but doing this re?

 quires recompiling and reinstalling the library. The text-file

 used in ncurses for terminal capabilities includes details for var?

 ious systems past the documented X/Open Curses features. For exam?

 ple, ncurses supports these capabilities in each configuration:

 memory_lock

 (meml) lock memory above cursor

 memory_unlock

 (memu) unlock memory

 box_chars_1

 (box1) box characters primary set

 The memory lock/unlock capabilities were included because they were Page 2/9

 used in the X11R6 terminal description for xterm. The box1 capa?

 bility is used in tic to help with terminal descriptions written

 for AIX.

 During the 1990s, some users were reluctant to use terminfo in spite of

 its performance advantages over termcap:

 ? The fixed repertoire prevented users from adding features for unan?

 ticipated terminal improvements (or required them to reuse existing

 capabilities as a workaround).

 ? The limitation to 16-bit signed integers was also mentioned. Be?

 cause termcap stores everything as a string, it could represent

 larger numbers.

 Although termcap's extensibility was rarely used (it was never the

 speaker who had actually used the feature), the criticism had a point.

 ncurses 5.0 provided a way to detect nonstandard capabilities, deter?

 mine their type and optionally store and retrieve them in a way which

 did not interfere with other applications. These are referred to as

 user-defined capabilities because no modifications to the toolset's

 predefined capability names are needed.

 The ncurses utilities tic and infocmp have a command-line option ?-x?

 to control whether the nonstandard capabilities are stored or re?

 trieved. A library function use_extended_names is provided for the

 same purpose.

 When compiling a terminal database, if ?-x? is set, tic will store a

 user-defined capability if the capability name is not one of the prede?

 fined names.

 Because ncurses provides a termcap library interface, these user-de?

 fined capabilities may be visible to termcap applications:

 ? The termcap interface (like all implementations of termcap) re?

 quires that the capability names are 2-characters.

 When the capability is simple enough for use in a termcap applica?

 tion, it is provided as a 2-character name.

 ? There are other user-defined capabilities which refer to features

 not usable in termcap, e.g., parameterized strings that use more Page 3/9

 than two parameters or use more than the trivial expression support

 provided by termcap. For these, the terminfo database should have

 only capability names with 3 or more characters.

 ? Some terminals can send distinct strings for special keys (cursor-,

 keypad- or function-keys) depending on modifier keys (shift, con?

 trol, etc.). While terminfo and termcap have a set of 60 prede?

 fined function-key names, to which a series of keys can be as?

 signed, that is insufficient for more than a dozen keys multiplied

 by more than a couple of modifier combinations. The ncurses data?

 base uses a convention based on xterm to provide extended special-

 key names.

 Fitting that into termcap's limitation of 2-character names would

 be pointless. These extended keys are available only with ter?

 minfo.

 Recognized capabilities

 The ncurses library uses the user-definable capabilities. While the

 terminfo database may have other extensions, ncurses makes explicit

 checks for these:

 AX boolean, asserts that the terminal interprets SGR 39 and SGR 49

 by resetting the foreground and background color, respectively,

 to the default.

 This is a feature recognized by the screen program as well.

 E3 string, tells how to clear the terminal's scrollback buffer.

 When present, the clear(1) program sends this before clearing the

 terminal.

 The command ?tput clear? does the same thing.

 RGB

 boolean, number or string, to assert that the set_a_foreground

 and set_a_background capabilities correspond to direct colors,

 using an RGB (red/green/blue) convention. This capability allows

 the color_content function to return appropriate values without

 requiring the application to initialize colors using init_color.

 The capability type determines the values which ncurses sees: Page 4/9

 boolean

 implies that the number of bits for red, green and blue are

 the same. Using the maximum number of colors, ncurses adds

 two, divides that sum by three, and assigns the result to red,

 green and blue in that order.

 If the number of bits needed for the number of colors is not a

 multiple of three, the blue (and green) components lose in

 comparison to red.

 number

 tells ncurses what result to add to red, green and blue. If

 ncurses runs out of bits, blue (and green) lose just as in the

 boolean case.

 string

 explicitly list the number of bits used for red, green and

 blue components as a slash-separated list of decimal integers.

 Because there are several RGB encodings in use, applications

 which make assumptions about the number of bits per color are un?

 likely to work reliably. As a trivial case, for example, one

 could define RGB#1 to represent the standard eight ANSI colors,

 i.e., one bit per color.

 U8 number, asserts that ncurses must use Unicode values for line-

 drawing characters, and that it should ignore the alternate char?

 acter set capabilities when the locale uses UTF-8 encoding. For

 more information, see the discussion of NCURSES_NO_UTF8_ACS in

 ncurses(3X).

 Set this capability to a nonzero value to enable it.

 XM string, override ncurses's built-in string which enables/disables

 xterm mouse mode.

 ncurses sends a character sequence to the terminal to initialize

 mouse mode, and when the user clicks the mouse buttons or (in

 certain modes) moves the mouse, handles the characters sent back

 by the terminal to tell it what was done with the mouse.

 The mouse protocol is enabled when the mask passed in the mouse? Page 5/9

 mask function is nonzero. By default, ncurses handles the re?

 sponses for the X11 xterm mouse protocol. It also knows about

 the SGR 1006 xterm mouse protocol, but must to be told to look

 for this specifically. It will not be able to guess which mode

 is used, because the responses are enough alike that only confu?

 sion would result.

 The XM capability has a single parameter. If nonzero, the mouse

 protocol should be enabled. If zero, the mouse protocol should

 be disabled. ncurses inspects this capability if it is present,

 to see whether the 1006 protocol is used. If so, it expects the

 responses to use the SGR 1006 xterm mouse protocol.

 The xterm mouse protocol is used by other terminal emulators.

 The terminal database uses building-blocks for the various xterm

 mouse protocols which can be used in customized terminal descrip?

 tions.

 The terminal database building blocks for this mouse feature also

 have an experimental capability xm. The ?xm? capability de?

 scribes the mouse response. Currently there is no interpreter

 which would use this information to make the mouse support com?

 pletely data-driven.

 xm shows the format of the mouse responses. In this experimental

 capability, the parameters are

 p1 y-ordinate

 p2 x-ordinate

 p3 button

 p4 state, e.g., pressed or released

 p5 y-ordinate starting region

 p6 x-ordinate starting region

 p7 y-ordinate ending region

 p8 x-ordinate ending region

 Here are examples from the terminal database for the most com?

 monly used xterm mouse protocols:

 xterm+x11mouse|X11 xterm mouse protocol, Page 6/9

 kmous=\E[M, XM=\E[?1000%?%p1%{1}%=%th%el%;,

 xm=\E[M

 %?%p4%t%p3%e%{3}%;%' '%+%c

 %p2%'!'%+%c

 %p1%'!'%+%c,

 xterm+sm+1006|xterm SGR-mouse,

 kmous=\E[<, XM=\E[?1006;1000%?%p1%{1}%=%th%el%;,

 xm=\E[<%i%p3%d;

 %p1%d;

 %p2%d;

 %?%p4%tM%em%;,

 Extended key-definitions

 Several terminals provide the ability to send distinct strings for com?

 binations of modified special keys. There is no standard for what

 those keys can send.

 Since 1999, xterm has supported shift, control, alt, and meta modifiers

 which produce distinct special-key strings. In a terminal description,

 ncurses has no special knowledge of the modifiers used. Applications

 can use the naming convention established for xterm to find these spe?

 cial keys in the terminal description.

 Starting with the curses convention that key names begin with ?k? and

 that shifted special keys are an uppercase name, ncurses' terminal

 database defines these names to which a suffix is added:

 Name Description

 ???

 kDC special form of kdch1 (delete character)

 kDN special form of kcud1 (cursor down)

 kEND special form of kend (End)

 kHOM special form of khome (Home)

 kLFT special form of kcub1 (cursor-left or cursor-back)

 kNXT special form of knext (Next, or Page-Down)

 kPRV special form of kprev (Prev, or Page-Up)

 kRIT special form of kcuf1 (cursor-right, or cursor-forward) Page 7/9

 kUP special form of kcuu1 (cursor-up)

 These are the suffixes used to denote the modifiers:

 Value Description

 ??????????????????????????????????

 2 Shift

 3 Alt

 4 Shift + Alt

 5 Control

 6 Shift + Control

 7 Alt + Control

 8 Shift + Alt + Control

 9 Meta

 10 Meta + Shift

 11 Meta + Alt

 12 Meta + Alt + Shift

 13 Meta + Ctrl

 14 Meta + Ctrl + Shift

 15 Meta + Ctrl + Alt

 16 Meta + Ctrl + Alt + Shift

 None of these are predefined; terminal descriptions can refer to names

 which ncurses will allocate at runtime to key-codes. To use these keys

 in an ncurses program, an application could do this:

 ? using a list of extended key names, ask tigetstr(3X) for their val?

 ues, and

 ? given the list of values, ask key_defined(3X) for the key-code

 which would be returned for those keys by wgetch(3X).

PORTABILITY

 The ?-x? extension feature of tic and infocmp has been adopted in Net?

 BSD curses. That implementation stores user-defined capabilities, but

 makes no use of these capabilities itself.

SEE ALSO

 infocmp(1M), tic(1M).

 The terminal database section NCURSES USER-DEFINABLE CAPABILITIES sum? Page 8/9

 marizes commonly-used user-defined capabilities which are used in the

 terminal descriptions. Some of those features are mentioned in

 screen(1) or tmux(1).

 XTerm Control Sequences provides further information on the xterm fea?

 tures which are used in these extended capabilities.

AUTHORS

 Thomas E. Dickey

 beginning with ncurses 5.0 (1999)

 user_caps(5)

Page 9/9

