
Rocky Enterprise Linux 9.2 Manual Pages on command 'unlinkat.2'

$ man unlinkat.2

UNLINK(2) Linux Programmer's Manual UNLINK(2)

NAME

 unlink, unlinkat - delete a name and possibly the file it refers to

SYNOPSIS

 #include <unistd.h>

 int unlink(const char *pathname);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <unistd.h>

 int unlinkat(int dirfd, const char *pathname, int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 unlinkat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 unlink() deletes a name from the filesystem. If that name was the last

 link to a file and no processes have the file open, the file is deleted Page 1/5

 and the space it was using is made available for reuse.

 If the name was the last link to a file but any processes still have

 the file open, the file will remain in existence until the last file

 descriptor referring to it is closed.

 If the name referred to a symbolic link, the link is removed.

 If the name referred to a socket, FIFO, or device, the name for it is

 removed but processes which have the object open may continue to use

 it.

 unlinkat()

 The unlinkat() system call operates in exactly the same way as either

 unlink() or rmdir(2) (depending on whether or not flags includes the

 AT_REMOVEDIR flag) except for the differences described here.

 If the pathname given in pathname is relative, then it is interpreted

 relative to the directory referred to by the file descriptor dirfd

 (rather than relative to the current working directory of the calling

 process, as is done by unlink() and rmdir(2) for a relative pathname).

 If the pathname given in pathname is relative and dirfd is the special

 value AT_FDCWD, then pathname is interpreted relative to the current

 working directory of the calling process (like unlink() and rmdir(2)).

 If the pathname given in pathname is absolute, then dirfd is ignored.

 flags is a bit mask that can either be specified as 0, or by ORing to?

 gether flag values that control the operation of unlinkat(). Cur?

 rently, only one such flag is defined:

 AT_REMOVEDIR

 By default, unlinkat() performs the equivalent of unlink() on

 pathname. If the AT_REMOVEDIR flag is specified, then performs

 the equivalent of rmdir(2) on pathname.

 See openat(2) for an explanation of the need for unlinkat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 EACCES Write access to the directory containing pathname is not allowed Page 2/5

 for the process's effective UID, or one of the directories in

 pathname did not allow search permission. (See also path_reso?

 lution(7).)

 EBUSY The file pathname cannot be unlinked because it is being used by

 the system or another process; for example, it is a mount point

 or the NFS client software created it to represent an active but

 otherwise nameless inode ("NFS silly renamed").

 EFAULT pathname points outside your accessible address space.

 EIO An I/O error occurred.

 EISDIR pathname refers to a directory. (This is the non-POSIX value

 returned by Linux since 2.1.132.)

 ELOOP Too many symbolic links were encountered in translating path?

 name.

 ENAMETOOLONG

 pathname was too long.

 ENOENT A component in pathname does not exist or is a dangling symbolic

 link, or pathname is empty.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR

 A component used as a directory in pathname is not, in fact, a

 directory.

 EPERM The system does not allow unlinking of directories, or unlinking

 of directories requires privileges that the calling process

 doesn't have. (This is the POSIX prescribed error return; as

 noted above, Linux returns EISDIR for this case.)

 EPERM (Linux only)

 The filesystem does not allow unlinking of files.

 EPERM or EACCES

 The directory containing pathname has the sticky bit (S_ISVTX)

 set and the process's effective UID is neither the UID of the

 file to be deleted nor that of the directory containing it, and

 the process is not privileged (Linux: does not have the

 CAP_FOWNER capability). Page 3/5

 EPERM The file to be unlinked is marked immutable or append-only.

 (See ioctl_iflags(2).)

 EROFS pathname refers to a file on a read-only filesystem.

 The same errors that occur for unlink() and rmdir(2) can also occur for

 unlinkat(). The following additional errors can occur for unlinkat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL An invalid flag value was specified in flags.

 EISDIR pathname refers to a directory, and AT_REMOVEDIR was not speci?

 fied in flags.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to

 a file other than a directory.

VERSIONS

 unlinkat() was added to Linux in kernel 2.6.16; library support was

 added to glibc in version 2.4.

CONFORMING TO

 unlink(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.

 unlinkat(): POSIX.1-2008.

NOTES

 Glibc notes

 On older kernels where unlinkat() is unavailable, the glibc wrapper

 function falls back to the use of unlink() or rmdir(2). When pathname

 is a relative pathname, glibc constructs a pathname based on the sym?

 bolic link in /proc/self/fd that corresponds to the dirfd argument.

BUGS

 Infelicities in the protocol underlying NFS can cause the unexpected

 disappearance of files which are still being used.

SEE ALSO

 rm(1), unlink(1), chmod(2), link(2), mknod(2), open(2), rename(2),

 rmdir(2), mkfifo(3), remove(3), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the Page 4/5

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 UNLINK(2)

Page 5/5

