
Rocky Enterprise Linux 9.2 Manual Pages on command 'unix.7'

$ man unix.7

UNIX(7) Linux Programmer's Manual UNIX(7)

NAME

 unix - sockets for local interprocess communication

SYNOPSIS

 #include <sys/socket.h>

 #include <sys/un.h>

 unix_socket = socket(AF_UNIX, type, 0);

 error = socketpair(AF_UNIX, type, 0, int *sv);

DESCRIPTION

 The AF_UNIX (also known as AF_LOCAL) socket family is used to communi?

 cate between processes on the same machine efficiently. Traditionally,

 UNIX domain sockets can be either unnamed, or bound to a filesystem

 pathname (marked as being of type socket). Linux also supports an ab?

 stract namespace which is independent of the filesystem.

 Valid socket types in the UNIX domain are: SOCK_STREAM, for a stream-

 oriented socket; SOCK_DGRAM, for a datagram-oriented socket that pre?

 serves message boundaries (as on most UNIX implementations, UNIX domain

 datagram sockets are always reliable and don't reorder datagrams); and Page 1/20

 (since Linux 2.6.4) SOCK_SEQPACKET, for a sequenced-packet socket that

 is connection-oriented, preserves message boundaries, and delivers mes?

 sages in the order that they were sent.

 UNIX domain sockets support passing file descriptors or process creden?

 tials to other processes using ancillary data.

 Address format

 A UNIX domain socket address is represented in the following structure:

 struct sockaddr_un {

 sa_family_t sun_family; /* AF_UNIX */

 char sun_path[108]; /* Pathname */

 };

 The sun_family field always contains AF_UNIX. On Linux, sun_path is

 108 bytes in size; see also NOTES, below.

 Various systems calls (for example, bind(2), connect(2), and sendto(2))

 take a sockaddr_un argument as input. Some other system calls (for ex?

 ample, getsockname(2), getpeername(2), recvfrom(2), and accept(2)) re?

 turn an argument of this type.

 Three types of address are distinguished in the sockaddr_un structure:

 * pathname: a UNIX domain socket can be bound to a null-terminated

 filesystem pathname using bind(2). When the address of a pathname

 socket is returned (by one of the system calls noted above), its

 length is

 offsetof(struct sockaddr_un, sun_path) + strlen(sun_path) + 1

 and sun_path contains the null-terminated pathname. (On Linux, the

 above offsetof() expression equates to the same value as

 sizeof(sa_family_t), but some other implementations include other

 fields before sun_path, so the offsetof() expression more portably

 describes the size of the address structure.)

 For further details of pathname sockets, see below.

 * unnamed: A stream socket that has not been bound to a pathname using

 bind(2) has no name. Likewise, the two sockets created by socket?

 pair(2) are unnamed. When the address of an unnamed socket is re?

 turned, its length is sizeof(sa_family_t), and sun_path should not Page 2/20

 be inspected.

 * abstract: an abstract socket address is distinguished (from a path?

 name socket) by the fact that sun_path[0] is a null byte ('\0').

 The socket's address in this namespace is given by the additional

 bytes in sun_path that are covered by the specified length of the

 address structure. (Null bytes in the name have no special signifi?

 cance.) The name has no connection with filesystem pathnames. When

 the address of an abstract socket is returned, the returned addrlen

 is greater than sizeof(sa_family_t) (i.e., greater than 2), and the

 name of the socket is contained in the first (addrlen -

 sizeof(sa_family_t)) bytes of sun_path.

 Pathname sockets

 When binding a socket to a pathname, a few rules should be observed for

 maximum portability and ease of coding:

 * The pathname in sun_path should be null-terminated.

 * The length of the pathname, including the terminating null byte,

 should not exceed the size of sun_path.

 * The addrlen argument that describes the enclosing sockaddr_un struc?

 ture should have a value of at least:

 offsetof(struct sockaddr_un, sun_path)+strlen(addr.sun_path)+1

 or, more simply, addrlen can be specified as sizeof(struct sock?

 addr_un).

 There is some variation in how implementations handle UNIX domain

 socket addresses that do not follow the above rules. For example, some

 (but not all) implementations append a null terminator if none is

 present in the supplied sun_path.

 When coding portable applications, keep in mind that some implementa?

 tions have sun_path as short as 92 bytes.

 Various system calls (accept(2), recvfrom(2), getsockname(2), getpeer?

 name(2)) return socket address structures. When applied to UNIX domain

 sockets, the value-result addrlen argument supplied to the call should

 be initialized as above. Upon return, the argument is set to indicate

 the actual size of the address structure. The caller should check the Page 3/20

 value returned in this argument: if the output value exceeds the input

 value, then there is no guarantee that a null terminator is present in

 sun_path. (See BUGS.)

 Pathname socket ownership and permissions

 In the Linux implementation, pathname sockets honor the permissions of

 the directory they are in. Creation of a new socket fails if the

 process does not have write and search (execute) permission on the di?

 rectory in which the socket is created.

 On Linux, connecting to a stream socket object requires write permis?

 sion on that socket; sending a datagram to a datagram socket likewise

 requires write permission on that socket. POSIX does not make any

 statement about the effect of the permissions on a socket file, and on

 some systems (e.g., older BSDs), the socket permissions are ignored.

 Portable programs should not rely on this feature for security.

 When creating a new socket, the owner and group of the socket file are

 set according to the usual rules. The socket file has all permissions

 enabled, other than those that are turned off by the process umask(2).

 The owner, group, and permissions of a pathname socket can be changed

 (using chown(2) and chmod(2)).

 Abstract sockets

 Socket permissions have no meaning for abstract sockets: the process

 umask(2) has no effect when binding an abstract socket, and changing

 the ownership and permissions of the object (via fchown(2) and fch?

 mod(2)) has no effect on the accessibility of the socket.

 Abstract sockets automatically disappear when all open references to

 the socket are closed.

 The abstract socket namespace is a nonportable Linux extension.

 Socket options

 For historical reasons, these socket options are specified with a

 SOL_SOCKET type even though they are AF_UNIX specific. They can be set

 with setsockopt(2) and read with getsockopt(2) by specifying SOL_SOCKET

 as the socket family.

 SO_PASSCRED Page 4/20

 Enabling this socket option causes receipt of the credentials of

 the sending process in an SCM_CREDENTIALS ancillary message in

 each subsequently received message. The returned credentials

 are those specified by the sender using SCM_CREDENTIALS, or a

 default that includes the sender's PID, real user ID, and real

 group ID, if the sender did not specify SCM_CREDENTIALS ancil?

 lary data.

 When this option is set and the socket is not yet connected, a

 unique name in the abstract namespace will be generated automat?

 ically.

 The value given as an argument to setsockopt(2) and returned as

 the result of getsockopt(2) is an integer boolean flag.

 SO_PASSSEC

 Enables receiving of the SELinux security label of the peer

 socket in an ancillary message of type SCM_SECURITY (see below).

 The value given as an argument to setsockopt(2) and returned as

 the result of getsockopt(2) is an integer boolean flag.

 The SO_PASSSEC option is supported for UNIX domain datagram

 sockets since Linux 2.6.18; support for UNIX domain stream sock?

 ets was added in Linux 4.2.

 SO_PEEK_OFF

 See socket(7).

 SO_PEERCRED

 This read-only socket option returns the credentials of the peer

 process connected to this socket. The returned credentials are

 those that were in effect at the time of the call to connect(2)

 or socketpair(2).

 The argument to getsockopt(2) is a pointer to a ucred structure;

 define the _GNU_SOURCE feature test macro to obtain the defini?

 tion of that structure from <sys/socket.h>.

 The use of this option is possible only for connected AF_UNIX

 stream sockets and for AF_UNIX stream and datagram socket pairs

 created using socketpair(2). Page 5/20

 SO_PEERSEC

 This read-only socket option returns the security context of the

 peer socket connected to this socket. By default, this will be

 the same as the security context of the process that created the

 peer socket unless overridden by the policy or by a process with

 the required permissions.

 The argument to getsockopt(2) is a pointer to a buffer of the

 specified length in bytes into which the security context string

 will be copied. If the buffer length is less than the length of

 the security context string, then getsockopt(2) returns -1, sets

 errno to ERANGE, and returns the required length via optlen.

 The caller should allocate at least NAME_MAX bytes for the buf?

 fer initially, although this is not guaranteed to be sufficient.

 Resizing the buffer to the returned length and retrying may be

 necessary.

 The security context string may include a terminating null char?

 acter in the returned length, but is not guaranteed to do so: a

 security context "foo" might be represented as either

 {'f','o','o'} of length 3 or {'f','o','o','\0'} of length 4,

 which are considered to be interchangeable. The string is

 printable, does not contain non-terminating null characters, and

 is in an unspecified encoding (in particular, it is not guaran?

 teed to be ASCII or UTF-8).

 The use of this option for sockets in the AF_UNIX address family

 is supported since Linux 2.6.2 for connected stream sockets, and

 since Linux 4.18 also for stream and datagram socket pairs cre?

 ated using socketpair(2).

 Autobind feature

 If a bind(2) call specifies addrlen as sizeof(sa_family_t), or the

 SO_PASSCRED socket option was specified for a socket that was not ex?

 plicitly bound to an address, then the socket is autobound to an ab?

 stract address. The address consists of a null byte followed by 5

 bytes in the character set [0-9a-f]. Thus, there is a limit of 2^20 Page 6/20

 autobind addresses. (From Linux 2.1.15, when the autobind feature was

 added, 8 bytes were used, and the limit was thus 2^32 autobind ad?

 dresses. The change to 5 bytes came in Linux 2.3.15.)

 Sockets API

 The following paragraphs describe domain-specific details and unsup?

 ported features of the sockets API for UNIX domain sockets on Linux.

 UNIX domain sockets do not support the transmission of out-of-band data

 (the MSG_OOB flag for send(2) and recv(2)).

 The send(2) MSG_MORE flag is not supported by UNIX domain sockets.

 Before Linux 3.4, the use of MSG_TRUNC in the flags argument of recv(2)

 was not supported by UNIX domain sockets.

 The SO_SNDBUF socket option does have an effect for UNIX domain sock?

 ets, but the SO_RCVBUF option does not. For datagram sockets, the

 SO_SNDBUF value imposes an upper limit on the size of outgoing data?

 grams. This limit is calculated as the doubled (see socket(7)) option

 value less 32 bytes used for overhead.

 Ancillary messages

 Ancillary data is sent and received using sendmsg(2) and recvmsg(2).

 For historical reasons, the ancillary message types listed below are

 specified with a SOL_SOCKET type even though they are AF_UNIX specific.

 To send them, set the cmsg_level field of the struct cmsghdr to

 SOL_SOCKET and the cmsg_type field to the type. For more information,

 see cmsg(3).

 SCM_RIGHTS

 Send or receive a set of open file descriptors from another

 process. The data portion contains an integer array of the file

 descriptors.

 Commonly, this operation is referred to as "passing a file de?

 scriptor" to another process. However, more accurately, what is

 being passed is a reference to an open file description (see

 open(2)), and in the receiving process it is likely that a dif?

 ferent file descriptor number will be used. Semantically, this

 operation is equivalent to duplicating (dup(2)) a file descrip? Page 7/20

 tor into the file descriptor table of another process.

 If the buffer used to receive the ancillary data containing file

 descriptors is too small (or is absent), then the ancillary data

 is truncated (or discarded) and the excess file descriptors are

 automatically closed in the receiving process.

 If the number of file descriptors received in the ancillary data

 would cause the process to exceed its RLIMIT_NOFILE resource

 limit (see getrlimit(2)), the excess file descriptors are auto?

 matically closed in the receiving process.

 The kernel constant SCM_MAX_FD defines a limit on the number of

 file descriptors in the array. Attempting to send an array

 larger than this limit causes sendmsg(2) to fail with the error

 EINVAL. SCM_MAX_FD has the value 253 (or 255 in kernels before

 2.6.38).

 SCM_CREDENTIALS

 Send or receive UNIX credentials. This can be used for authen?

 tication. The credentials are passed as a struct ucred ancil?

 lary message. This structure is defined in <sys/socket.h> as

 follows:

 struct ucred {

 pid_t pid; /* Process ID of the sending process */

 uid_t uid; /* User ID of the sending process */

 gid_t gid; /* Group ID of the sending process */

 };

 Since glibc 2.8, the _GNU_SOURCE feature test macro must be de?

 fined (before including any header files) in order to obtain the

 definition of this structure.

 The credentials which the sender specifies are checked by the

 kernel. A privileged process is allowed to specify values that

 do not match its own. The sender must specify its own process

 ID (unless it has the capability CAP_SYS_ADMIN, in which case

 the PID of any existing process may be specified), its real user

 ID, effective user ID, or saved set-user-ID (unless it has Page 8/20

 CAP_SETUID), and its real group ID, effective group ID, or saved

 set-group-ID (unless it has CAP_SETGID).

 To receive a struct ucred message, the SO_PASSCRED option must

 be enabled on the socket.

 SCM_SECURITY

 Receive the SELinux security context (the security label) of the

 peer socket. The received ancillary data is a null-terminated

 string containing the security context. The receiver should al?

 locate at least NAME_MAX bytes in the data portion of the ancil?

 lary message for this data.

 To receive the security context, the SO_PASSSEC option must be

 enabled on the socket (see above).

 When sending ancillary data with sendmsg(2), only one item of each of

 the above types may be included in the sent message.

 At least one byte of real data should be sent when sending ancillary

 data. On Linux, this is required to successfully send ancillary data

 over a UNIX domain stream socket. When sending ancillary data over a

 UNIX domain datagram socket, it is not necessary on Linux to send any

 accompanying real data. However, portable applications should also in?

 clude at least one byte of real data when sending ancillary data over a

 datagram socket.

 When receiving from a stream socket, ancillary data forms a kind of

 barrier for the received data. For example, suppose that the sender

 transmits as follows:

 1. sendmsg(2) of four bytes, with no ancillary data.

 2. sendmsg(2) of one byte, with ancillary data.

 3. sendmsg(2) of four bytes, with no ancillary data.

 Suppose that the receiver now performs recvmsg(2) calls each with a

 buffer size of 20 bytes. The first call will receive five bytes of

 data, along with the ancillary data sent by the second sendmsg(2) call.

 The next call will receive the remaining four bytes of data.

 If the space allocated for receiving incoming ancillary data is too

 small then the ancillary data is truncated to the number of headers Page 9/20

 that will fit in the supplied buffer (or, in the case of an SCM_RIGHTS

 file descriptor list, the list of file descriptors may be truncated).

 If no buffer is provided for incoming ancillary data (i.e., the

 msg_control field of the msghdr structure supplied to recvmsg(2) is

 NULL), then the incoming ancillary data is discarded. In both of these

 cases, the MSG_CTRUNC flag will be set in the msg.msg_flags value re?

 turned by recvmsg(2).

 Ioctls

 The following ioctl(2) calls return information in value. The correct

 syntax is:

 int value;

 error = ioctl(unix_socket, ioctl_type, &value);

 ioctl_type can be:

 SIOCINQ

 For SOCK_STREAM sockets, this call returns the number of unread

 bytes in the receive buffer. The socket must not be in LISTEN

 state, otherwise an error (EINVAL) is returned. SIOCINQ is de?

 fined in <linux/sockios.h>. Alternatively, you can use the syn?

 onymous FIONREAD, defined in <sys/ioctl.h>. For SOCK_DGRAM

 sockets, the returned value is the same as for Internet domain

 datagram sockets; see udp(7).

ERRORS

 EADDRINUSE

 The specified local address is already in use or the filesystem

 socket object already exists.

 EBADF This error can occur for sendmsg(2) when sending a file descrip?

 tor as ancillary data over a UNIX domain socket (see the de?

 scription of SCM_RIGHTS, above), and indicates that the file de?

 scriptor number that is being sent is not valid (e.g., it is not

 an open file descriptor).

 ECONNREFUSED

 The remote address specified by connect(2) was not a listening

 socket. This error can also occur if the target pathname is not Page 10/20

 a socket.

 ECONNRESET

 Remote socket was unexpectedly closed.

 EFAULT User memory address was not valid.

 EINVAL Invalid argument passed. A common cause is that the value

 AF_UNIX was not specified in the sun_type field of passed ad?

 dresses, or the socket was in an invalid state for the applied

 operation.

 EISCONN

 connect(2) called on an already connected socket or a target ad?

 dress was specified on a connected socket.

 ENOENT The pathname in the remote address specified to connect(2) did

 not exist.

 ENOMEM Out of memory.

 ENOTCONN

 Socket operation needs a target address, but the socket is not

 connected.

 EOPNOTSUPP

 Stream operation called on non-stream oriented socket or tried

 to use the out-of-band data option.

 EPERM The sender passed invalid credentials in the struct ucred.

 EPIPE Remote socket was closed on a stream socket. If enabled, a SIG?

 PIPE is sent as well. This can be avoided by passing the

 MSG_NOSIGNAL flag to send(2) or sendmsg(2).

 EPROTONOSUPPORT

 Passed protocol is not AF_UNIX.

 EPROTOTYPE

 Remote socket does not match the local socket type (SOCK_DGRAM

 versus SOCK_STREAM).

 ESOCKTNOSUPPORT

 Unknown socket type.

 ESRCH While sending an ancillary message containing credentials

 (SCM_CREDENTIALS), the caller specified a PID that does not Page 11/20

 match any existing process.

 ETOOMANYREFS

 This error can occur for sendmsg(2) when sending a file descrip?

 tor as ancillary data over a UNIX domain socket (see the de?

 scription of SCM_RIGHTS, above). It occurs if the number of

 "in-flight" file descriptors exceeds the RLIMIT_NOFILE resource

 limit and the caller does not have the CAP_SYS_RESOURCE capabil?

 ity. An in-flight file descriptor is one that has been sent us?

 ing sendmsg(2) but has not yet been accepted in the recipient

 process using recvmsg(2).

 This error is diagnosed since mainline Linux 4.5 (and in some

 earlier kernel versions where the fix has been backported). In

 earlier kernel versions, it was possible to place an unlimited

 number of file descriptors in flight, by sending each file de?

 scriptor with sendmsg(2) and then closing the file descriptor so

 that it was not accounted against the RLIMIT_NOFILE resource

 limit.

 Other errors can be generated by the generic socket layer or by the

 filesystem while generating a filesystem socket object. See the appro?

 priate manual pages for more information.

VERSIONS

 SCM_CREDENTIALS and the abstract namespace were introduced with Linux

 2.2 and should not be used in portable programs. (Some BSD-derived

 systems also support credential passing, but the implementation details

 differ.)

NOTES

 Binding to a socket with a filename creates a socket in the filesystem

 that must be deleted by the caller when it is no longer needed (using

 unlink(2)). The usual UNIX close-behind semantics apply; the socket

 can be unlinked at any time and will be finally removed from the

 filesystem when the last reference to it is closed.

 To pass file descriptors or credentials over a SOCK_STREAM socket, you

 must to send or receive at least one byte of nonancillary data in the Page 12/20

 same sendmsg(2) or recvmsg(2) call.

 UNIX domain stream sockets do not support the notion of out-of-band

 data.

BUGS

 When binding a socket to an address, Linux is one of the implementa?

 tions that appends a null terminator if none is supplied in sun_path.

 In most cases this is unproblematic: when the socket address is re?

 trieved, it will be one byte longer than that supplied when the socket

 was bound. However, there is one case where confusing behavior can re?

 sult: if 108 non-null bytes are supplied when a socket is bound, then

 the addition of the null terminator takes the length of the pathname

 beyond sizeof(sun_path). Consequently, when retrieving the socket ad?

 dress (for example, via accept(2)), if the input addrlen argument for

 the retrieving call is specified as sizeof(struct sockaddr_un), then

 the returned address structure won't have a null terminator in

 sun_path.

 In addition, some implementations don't require a null terminator when

 binding a socket (the addrlen argument is used to determine the length

 of sun_path) and when the socket address is retrieved on these imple?

 mentations, there is no null terminator in sun_path.

 Applications that retrieve socket addresses can (portably) code to han?

 dle the possibility that there is no null terminator in sun_path by re?

 specting the fact that the number of valid bytes in the pathname is:

 strnlen(addr.sun_path, addrlen - offsetof(sockaddr_un, sun_path))

 Alternatively, an application can retrieve the socket address by allo?

 cating a buffer of size sizeof(struct sockaddr_un)+1 that is zeroed out

 before the retrieval. The retrieving call can specify addrlen as

 sizeof(struct sockaddr_un), and the extra zero byte ensures that there

 will be a null terminator for the string returned in sun_path:

 void *addrp;

 addrlen = sizeof(struct sockaddr_un);

 addrp = malloc(addrlen + 1);

 if (addrp == NULL) Page 13/20

 /* Handle error */ ;

 memset(addrp, 0, addrlen + 1);

 if (getsockname(sfd, (struct sockaddr *) addrp, &addrlen)) == -1)

 /* handle error */ ;

 printf("sun_path = %s\n", ((struct sockaddr_un *) addrp)->sun_path);

 This sort of messiness can be avoided if it is guaranteed that the ap?

 plications that create pathname sockets follow the rules outlined above

 under Pathname sockets.

EXAMPLES

 The following code demonstrates the use of sequenced-packet sockets for

 local interprocess communication. It consists of two programs. The

 server program waits for a connection from the client program. The

 client sends each of its command-line arguments in separate messages.

 The server treats the incoming messages as integers and adds them up.

 The client sends the command string "END". The server sends back a

 message containing the sum of the client's integers. The client prints

 the sum and exits. The server waits for the next client to connect.

 To stop the server, the client is called with the command-line argument

 "DOWN".

 The following output was recorded while running the server in the back?

 ground and repeatedly executing the client. Execution of the server

 program ends when it receives the "DOWN" command.

 Example output

 $./server &

 [1] 25887

 $./client 3 4

 Result = 7

 $./client 11 -5

 Result = 6

 $./client DOWN

 Result = 0

 [1]+ Done ./server

 $ Page 14/20

 Program source

 /*

 * File connection.h

 */

 #define SOCKET_NAME "/tmp/9Lq7BNBnBycd6nxy.socket"

 #define BUFFER_SIZE 12

 /*

 * File server.c

 */

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <sys/socket.h>

 #include <sys/un.h>

 #include <unistd.h>

 #include "connection.h"

 int

 main(int argc, char *argv[])

 {

 struct sockaddr_un name;

 int down_flag = 0;

 int ret;

 int connection_socket;

 int data_socket;

 int result;

 char buffer[BUFFER_SIZE];

 /* Create local socket. */

 connection_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);

 if (connection_socket == -1) {

 perror("socket");

 exit(EXIT_FAILURE);

 }

 /* Page 15/20

 * For portability clear the whole structure, since some

 * implementations have additional (nonstandard) fields in

 * the structure.

 */

 memset(&name, 0, sizeof(name));

 /* Bind socket to socket name. */

 name.sun_family = AF_UNIX;

 strncpy(name.sun_path, SOCKET_NAME, sizeof(name.sun_path) - 1);

 ret = bind(connection_socket, (const struct sockaddr *) &name,

 sizeof(name));

 if (ret == -1) {

 perror("bind");

 exit(EXIT_FAILURE);

 }

 /*

 * Prepare for accepting connections. The backlog size is set

 * to 20. So while one request is being processed other requests

 * can be waiting.

 */

 ret = listen(connection_socket, 20);

 if (ret == -1) {

 perror("listen");

 exit(EXIT_FAILURE);

 }

 /* This is the main loop for handling connections. */

 for (;;) {

 /* Wait for incoming connection. */

 data_socket = accept(connection_socket, NULL, NULL);

 if (data_socket == -1) {

 perror("accept");

 exit(EXIT_FAILURE);

 }

 result = 0; Page 16/20

 for (;;) {

 /* Wait for next data packet. */

 ret = read(data_socket, buffer, sizeof(buffer));

 if (ret == -1) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 /* Ensure buffer is 0-terminated. */

 buffer[sizeof(buffer) - 1] = 0;

 /* Handle commands. */

 if (!strncmp(buffer, "DOWN", sizeof(buffer))) {

 down_flag = 1;

 break;

 }

 if (!strncmp(buffer, "END", sizeof(buffer))) {

 break;

 }

 /* Add received summand. */

 result += atoi(buffer);

 }

 /* Send result. */

 sprintf(buffer, "%d", result);

 ret = write(data_socket, buffer, sizeof(buffer));

 if (ret == -1) {

 perror("write");

 exit(EXIT_FAILURE);

 }

 /* Close socket. */

 close(data_socket);

 /* Quit on DOWN command. */

 if (down_flag) {

 break;

 } Page 17/20

 }

 close(connection_socket);

 /* Unlink the socket. */

 unlink(SOCKET_NAME);

 exit(EXIT_SUCCESS);

 }

 /*

 * File client.c

 */

 #include <errno.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <sys/socket.h>

 #include <sys/un.h>

 #include <unistd.h>

 #include "connection.h"

 int

 main(int argc, char *argv[])

 {

 struct sockaddr_un addr;

 int ret;

 int data_socket;

 char buffer[BUFFER_SIZE];

 /* Create local socket. */

 data_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);

 if (data_socket == -1) {

 perror("socket");

 exit(EXIT_FAILURE);

 }

 /*

 * For portability clear the whole structure, since some

 * implementations have additional (nonstandard) fields in Page 18/20

 * the structure.

 */

 memset(&addr, 0, sizeof(addr));

 /* Connect socket to socket address */

 addr.sun_family = AF_UNIX;

 strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);

 ret = connect(data_socket, (const struct sockaddr *) &addr,

 sizeof(addr));

 if (ret == -1) {

 fprintf(stderr, "The server is down.\n");

 exit(EXIT_FAILURE);

 }

 /* Send arguments. */

 for (int i = 1; i < argc; ++i) {

 ret = write(data_socket, argv[i], strlen(argv[i]) + 1);

 if (ret == -1) {

 perror("write");

 break;

 }

 }

 /* Request result. */

 strcpy(buffer, "END");

 ret = write(data_socket, buffer, strlen(buffer) + 1);

 if (ret == -1) {

 perror("write");

 exit(EXIT_FAILURE);

 }

 /* Receive result. */

 ret = read(data_socket, buffer, sizeof(buffer));

 if (ret == -1) {

 perror("read");

 exit(EXIT_FAILURE);

 } Page 19/20

 /* Ensure buffer is 0-terminated. */

 buffer[sizeof(buffer) - 1] = 0;

 printf("Result = %s\n", buffer);

 /* Close socket. */

 close(data_socket);

 exit(EXIT_SUCCESS);

 }

 For an example of the use of SCM_RIGHTS see cmsg(3).

SEE ALSO

 recvmsg(2), sendmsg(2), socket(2), socketpair(2), cmsg(3), capabili?

 ties(7), credentials(7), socket(7), udp(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 UNIX(7)

Page 20/20

