
Rocky Enterprise Linux 9.2 Manual Pages on command 'udisks.8'

$ man udisks.8

UDISKS(8) System Administration UDISKS(8)

NAME

 udisks - Disk Manager

DESCRIPTION

 udisks provides interfaces to enumerate and perform operations on disks

 and storage devices. Any application (including unprivileged ones) can

 access the udisksd(8) daemon via the name org.freedesktop.UDisks2 on

 the system message bus[1]. In addition to the D-Bus API, a library,

 libudisks2 is also provided. This library can be used from C/C++ and

 any high-level language with GObjectIntrospection[2] support such as

 Javascript and Python. udisks is only indirectly involved in what

 devices and objects are shown in the user interface.

ACCESS CONTROL

 By default, logged-in users in active log-in sessions are permitted to

 perform operations (for example, mounting, unlocking or modifying) on

 devices attached to the seat their session is on. Access-control is

 fine-grained and based on polkit(8), see the ?Authorization Checks?

 chapter in the udisks documentation for more information. Note that the Page 1/7

 x-udisks-auth option can be used in the /etc/fstab and /etc/crypttab

 files to specify that additional authorization is required to mount

 resp. unlock the device (typically requiring the user to authenticate

 as an administrator).

DRIVE CONFIGURATION

 At start-up and when a drive is connected, udisksd(8) will apply

 configuration stored in the file /etc/udisks2/IDENTIFIER.conf where

 IDENTIFIER is the value of the Drive:Id property for the drive. If the

 file changes on disk its new contents will also be applied to the

 drive. Typically, users or administrators will never need to edit drive

 configuration files as they are effectively managed through graphical

 applications such as gnome-disks(1). Manually editing configuration

 files is however supported ? the file format is a simple .ini-like

 format (see the Desktop Entry Specification[3] for the exact syntax).

 New groups and keys may be added in the future.

 ATA group

 The ATA group is for settings that apply to drives using the ATA

 command-set. The following keys are supported:

 StandbyTimeout

 The standby timeout. A value of zero means "timeouts are disabled":

 the device will not automatically enter standby mode. Values from 1

 to 240 specify multiples of 5 seconds, yielding timeouts from 5

 seconds to 20 minutes. Values from 241 to 251 specify from 1 to 11

 units of 30 minutes, yielding timeouts from 30 minutes to 5.5

 hours. A value of 252 signifies a timeout of 21 minutes. A value of

 253 sets a vendor-defined timeout period between 8 and 12 hours,

 and the value 254 is reserved. 255 is interpreted as 21 minutes

 plus 15 seconds. Note that some older drives may have very

 different interpretations of these values. This is similar to the

 -S option in hdparm(8).

 APMLevel

 The Advanced Power Management level. A low value means aggressive

 power management and a high value means better performance. Page 2/7

 Possible settings range from values 1 through 127 (which permit

 spin-down), and values 128 through 254 (which do not permit

 spin-down). The highest degree of power management is attained with

 a setting of 1, and the highest I/O performance with a setting of

 254. A value of 255 can be used to disable Advanced Power

 Management altogether on the drive (not all drives support

 disabling it, but most do). This is similar to the -B option in

 hdparm(8).

 AAMLevel

 The Automatic Acoustic Management level. Most modern harddisk

 drives have the ability to speed down the head movements to reduce

 their noise output. The possible values are between 0 and 254. 128

 is the most quiet (and therefore slowest) setting and 254 the

 fastest (and loudest). Some drives have only two levels (quiet /

 fast), while others may have different levels between 128 and 254.

 At the moment, most drives only support 3 options, off, quiet, and

 fast. These have been assigned the values 0, 128, and 254 at

 present, respectively, but integer space has been incorporated for

 future expansion, should this change. This is similar to the -M

 option in hdparm(8).

 WriteCacheEnabled

 A boolean specifying whether to enable or disable the Write Cache.

 Valid values for this key are ?true? and ?false?. This is similar

 to the -W option in hdparm(8). This key was added in 2.1.

 ReadLookaheadEnabled

 A boolean specifying whether to enable or disable the Read

 Look-ahead. Valid values for this key are ?true? and ?false?. This

 is similar to the -A option in hdparm(8). This key was added in

 2.6.0.

DEVICE INFORMATION

 udisks relies on recent versions of udev(7) and the Linux kernel.

 Influential device properties in the udev database include:

 UDISKS_SYSTEM Page 3/7

 If set, this overrides the value of the HintSystem property.

 UDISKS_IGNORE

 If set, this overrides the value of the HintIgnore property.

 UDISKS_AUTO

 If set, this overrides the value of the HintAuto property.

 UDISKS_CAN_POWER_OFF

 If set, this overrides the value of the CanPowerOff property.

 UDISKS_NAME

 The name to use for the device when presenting it in an user

 interface. This corresponds to the HintName property.

 UDISKS_ICON_NAME

 The icon to use for the device when presenting it in an user

 interface. If set, the name must adhere to the freedesktop.org icon

 theme specification[4]. This corresponds to the HintIconName

 property.

 UDISKS_SYMBOLIC_ICON_NAME

 The icon to use for the device when presenting it in an user

 interface using a symbolic icon. If set, the name must adhere to

 the freedesktop.org icon theme specification[4]. This corresponds

 to the HintSymbolicIconName property.

 UDISKS_FILESYSTEM_SHARED

 If set to 1, the filesystem on the device will be mounted in a

 shared directory (e.g. /media/VolumeName) instead of a private

 directory (e.g. /run/media/$USER/VolumeName) when the

 Filesystem.Mount() method is handled.

 ID_SEAT

 The physical seat the device is attached to. If unset or set to the

 empty string, ?seat0? (the first seat) is assumed.

API STABILITY

 udisks guarantees a stable D-Bus API within the same major version and

 this guarantee also extends to the client-side library libudisks2.

 Additionally, several major versions of udisks can be installed and

 operate at the same time although interoperability may be limited - for Page 4/7

 example, a device mounted using the udisks N.x API may require

 additional authorization if attempting to unmount it through the the

 (N-1).x API.

 The udisks developers do not anticipate breaking API but does reserve

 the right to do so and if it happens, promises to bump the major

 version and ensure the new major version of udisks is

 parallel-installable with any older major version. However, note that

 programs, man pages and other artifacts may change name (for example,

 adopt a ?2? suffix) to make room for the next major version. Therefore,

 applications can not rely on tools like e.g. udisksctl(1) to be

 available. Additionally, there is no guarantee that the options,

 command-line switches etc. of command-line tools or similar will remain

 stable.

 Instead, applications should only use the D-Bus API, the libudisks2

 library or tools such as dbus-send(1) or gdbus(1) to interact with

 udisksd(8).

AUDIENCE

 The intended audience of udisks include operating system developers

 working on the higher-level parts of the operating system, for example

 the desktop shell (such as GNOME[5]) and disk management applications

 (e.g. GNOME's Disks[6] application). Software on this level typically

 depend on a specific (major) version of udisks and may even have

 support for previous versions of udisks or alternative interfaces

 performing the same role as udisks.

 While udisks indeed provides a stable API and a clear upgrade path, it

 may not be an appropriate dependency for third party applications. For

 example, if the operating system switches to udisks version N.x and an

 application is still using the udisks (N-1).x API, the application will

 not work unless udisks (N-1).x is installed. While this situation is

 still workable (since both udisks N.x and udisks (N-1).x can be

 installed) it may not be desirable to ask the user to install the old

 version - in fact, the operating system vendor may not even provide a

 packaged version of the old version. Hence, if an application does not Page 5/7

 want to tie itself to a specific version of the operating system, it

 should not use udisks.

 Viable alternatives to udisks are APIs that are guaranteed to be around

 for longer time-frames, including:

 ? Low-level APIs and commands such as e.g. sysfs[7], libudev[8],

 /proc/self/mountinfo[9] and util-linux[10].

 ? High-level APIs such as GVolumeMonitor[11].

 In particular, for desktop applications it is a much better idea to use

 something like GVolumeMonitor since it will make the application show

 the same devices as the desktop shell (e.g. file manager, file chooser

 and so on) is showing.

AUTHOR

 This man page was originally written for UDisks2 by David Zeuthen

 <zeuthen@gmail.com> with a lot of help from many others.

BUGS

 Please send bug reports to either the distribution bug tracker or the

 upstream bug tracker at

 https://github.com/storaged-project/udisks/issues.

SEE ALSO

 udev(7), polkit(8), udisksd(8), udisksctl(1), umount.udisks2(8), gnome-

 disks(1)

NOTES

 1. system message bus

 http://www.freedesktop.org/wiki/Software/dbus

 2. GObjectIntrospection

 https://live.gnome.org/GObjectIntrospection

 3. Desktop Entry Specification

 http://freedesktop.org/wiki/Specifications/desktop-entry-spec

 4. freedesktop.org icon theme specification

 http://www.freedesktop.org/wiki/Specifications/icon-theme-spec

 5. GNOME

 http://www.gnome.org

 6. Disks Page 6/7

 https://live.gnome.org/Design/Apps/Disks

 7. sysfs

 http://en.wikipedia.org/wiki/Sysfs

 8. libudev

 https://www.freedesktop.org/software/systemd/man/libudev.html

 9. /proc/self/mountinfo

 http://www.kernel.org/doc/Documentation/filesystems/proc.txt

 10. util-linux

 http://en.wikipedia.org/wiki/Util-linux

 11. GVolumeMonitor

 http://developer.gnome.org/gio/stable/volume_mon.html

udisks 2.9.4 August 2018 UDISKS(8)

Page 7/7

