
Rocky Enterprise Linux 9.2 Manual Pages on command 'tpm2_import.1'

$ man tpm2_import.1

tpm2_import(1)              General Commands Manual             tpm2_import(1)

NAME

       tpm2_import(1)  - Imports an external key into the tpm as a TPM managed

       key object.

SYNOPSIS

       tpm2_import [OPTIONS]

DESCRIPTION

       tpm2_import(1) - Imports an external generated key as TPM  managed  key

       object.  It requires that the parent key object be a RSA key.  Can also

       import a TPM managed key object created by the tpm2_duplicate tool.

OPTIONS

       These options control the key importation process:

       ? -G, --key-algorithm=ALGORITHM:

         The algorithm used by the key to be imported.  Supports:

         ? aes - AES 128, 192 or 256 key.

         ? rsa - RSA 1024 or 2048 key.

         ? ecc - ECC NIST P192, P224, P256, P384 or P521  public  and  private

           key. Page 1/13



         ? hmac - HMAC key.

       ? -g, --hash-algorithm=ALGORITHM:

         The hash algorithm for generating the objects name.  This is optional

         and defaults to sha256 when not specified.  Algorithms should  follow

         the  ?formatting standards?, see section ?Algorithm Specifiers?.  Al?

         so, see section ?Supported Hash Algorithms? for a list  of  supported

         hash algorithms.

       ? -i, --input=FILE:

         Specifies the filename of the key to be imported.  For AES keys, this

         file is the raw key bytes.  For assymetric keys in PEM or DER format.

         A typical file is generated with openssl genrsa.

       ? -C, --parent-context=OBJECT:

         The parent key object.

       ? -U, --parent-public=FILE:

         Optional.  Specifies the parent key public data file input.  This can

         be read with tpm2_readpublic(1) tool.  If not specified, the tool in?

         vokes a tpm2_readpublic on the parent object.

       ? -k, --encryption-key=FILE:

         Optional.   Specifies the file containing the symmetric algorithm key

         that was used for the inner wrapper.  If the file  is  specified  the

         tool assumes the algorithm is AES 128 in CFB mode otherwise none.

       ? -r, --private=FILE:

         Specifies  the  file path required to save the encrypted private por?

         tion of the object imported as key.

         When importing a duplicated object this  option  specifies  the  file

         containing  the private portion of the object to be imported.  # Pro?

         tection Details

       Objects that can move outside of TPM need to  be  protected  (confiden?

       tiality  and  integrity).  For instance, transient objects require that

       TPM protected data (key or seal material) be stored outside of the TPM.

       This  is seen in tools like tpm2_create(1), where the -r option outputs

       this protected data.  This blob contains the sensitive portions of  the

       object.  The sensitive portions of the object are protected by the par? Page 2/13



       ent object, using the parent?s symmetric encryption details to  encrypt

       the sensitive data and HMAC it.

       In-depth details can be found in sections 23 of:

       ? https://trustedcomputinggroup.org/wp-content/up?

         loads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf

       Notably Figure 20, is relevant, even though it?s specifically referring

       to duplication blobs, the process is identical.

       If  the  output  is from tpm2_duplicate(1), the output will be slightly

       different, as described fully in section 23.

       ? -u, --public=FILE:

         Specifies the file path required to save the public  portion  of  the

         object imported as key

         When  importing  a  duplicated  object this option specifies the file

         containing the public portion of the object to be imported.

       ? -a, --attributes=ATTRIBUTES:

         The object attributes, optional.

       ? -P, --parent-auth=AUTH:

         The authorization value for using the parent key specified with -C.

       ? -p, --key-auth=AUTH:

         The authorization value for the imported key, optional.

       ? -L, --policy=POLICY_FILE:

         The policy file.

       ? -s, --seed=FILE:

         Specifies the file containing the encrypted seed  of  the  duplicated

         object.

       ? --passin=OSSL_PEM_FILE_PASSWORD

         An  optional password for an Open SSL (OSSL) provided input file.  It

         mirrors the -passin option of OSSL and is known to support the  pass,

         file,  env,  fd  and  plain password formats of openssl.  (see man(1)

         openssl) for more.

       ? --cphash=FILE

         File path to record the hash of the command parameters.  This is com?

         monly termed as cpHash.  NOTE: When this option is selected, The tool Page 3/13



         will not actually execute the command, it simply returns a cpHash.

   References

Context Object Format

       The type of a context object, whether it is a handle or file  name,  is

       determined according to the following logic in-order:

       ? If the argument is a file path, then the file is loaded as a restored

         TPM transient object.

       ? If the argument is a prefix match on one of:

         ? owner: the owner hierarchy

         ? platform: the platform hierarchy

         ? endorsement: the endorsement hierarchy

         ? lockout: the lockout control persistent object

       ? If the argument argument can be loaded as a number it will  be  treat

         as a handle, e.g. 0x81010013 and used directly._OBJECT_.

Authorization Formatting

       Authorization  for  use  of an object in TPM2.0 can come in 3 different

       forms: 1.  Password 2.  HMAC 3.  Sessions

       NOTE: ?Authorizations default to the EMPTY  PASSWORD  when  not  speci?

       fied?.

   Passwords

       Passwords  are  interpreted  in  the following forms below using prefix

       identifiers.

       Note: By default passwords are assumed to be in the  string  form  when

       they do not have a prefix.

   String

       A  string  password,  specified  by  prefix ?str:? or it?s absence (raw

       string without prefix) is not interpreted, and is directly used for au?

       thorization.

   Examples

              foobar

              str:foobar

   Hex-string

       A  hex-string  password, specified by prefix ?hex:? is converted from a Page 4/13



       hexidecimal form into a byte array form, thus allowing  passwords  with

       non-printable and/or terminal un-friendly characters.

   Example

              hex:0x1122334455667788

   File

       A  file  based password, specified be prefix ?file:? should be the path

       of a file containing the password to be read by the tool or  a  ?-?  to

       use  stdin.   Storing  passwords in files prevents information leakage,

       passwords passed as options can be read from the process list or common

       shell history features.

   Examples

              # to use stdin and be prompted

              file:-

              # to use a file from a path

              file:path/to/password/file

              # to echo a password via stdin:

              echo foobar | tpm2_tool -p file:-

              # to use a bash here-string via stdin:

              tpm2_tool -p file:- <<< foobar

   Sessions

       When  using  a policy session to authorize the use of an object, prefix

       the option argument with the session keyword.  Then indicate a path  to

       a session file that was created with tpm2_startauthsession(1).  Option?

       ally, if the session requires an auth value to be sent with the session

       handle  (eg policy password), then append a + and a string as described

       in the Passwords section.

   Examples

       To use a session context file called session.ctx.

              session:session.ctx

       To use a session context file called session.ctx AND send the authvalue

       mypassword.

              session:session.ctx+mypassword

       To use a session context file called session.ctx AND send the HEX auth? Page 5/13



       value 0x11223344.

              session:session.ctx+hex:11223344

   PCR Authorizations

       You can satisfy a PCR policy using the ?pcr:? prefix and the PCR  mini?

       language.       The     PCR     minilanguage     is     as     follows:

       <pcr-spec>=<raw-pcr-file>

       The PCR spec is documented in in the section ?PCR bank specifiers?.

       The raw-pcr-file is an optional argument that contains  the  output  of

       the raw PCR contents as returned by tpm2_pcrread(1).

       PCR bank specifiers (pcr.md)

   Examples

       To satisfy a PCR policy of sha256 on banks 0, 1, 2 and 3 use a specifi?

       er of:

              pcr:sha256:0,1,2,3

       specifying AUTH.

Algorithm Specifiers

       Options that take algorithms support ?nice-names?.

       There are two major algorithm specification string classes, simple  and

       complex.  Only certain algorithms will be accepted by the TPM, based on

       usage and conditions.

   Simple specifiers

       These are strings with no additional specification data.  When creating

       objects,  non-specified  portions of an object are assumed to defaults.

       You can find the list of known ?Simple Specifiers Below?.

   Asymmetric

       ? rsa

       ? ecc

   Symmetric

       ? aes

       ? camellia

   Hashing Algorithms

       ? sha1

       ? sha256 Page 6/13



       ? sha384

       ? sha512

       ? sm3_256

       ? sha3_256

       ? sha3_384

       ? sha3_512

   Keyed Hash

       ? hmac

       ? xor

   Signing Schemes

       ? rsassa

       ? rsapss

       ? ecdsa

       ? ecdaa

       ? ecschnorr

   Asymmetric Encryption Schemes

       ? oaep

       ? rsaes

       ? ecdh

   Modes

       ? ctr

       ? ofb

       ? cbc

       ? cfb

       ? ecb

   Misc

       ? null

   Complex Specifiers

       Objects, when specified for creation by the TPM,  have  numerous  algo?

       rithms  to  populate  in the public data.  Things like type, scheme and

       asymmetric details, key size, etc.  Below is  the  general  format  for

       specifying this data: <type>:<scheme>:<symmetric-details>

   Type Specifiers Page 7/13



       This  portion  of the complex algorithm specifier is required.  The re?

       maining scheme and symmetric details will default  based  on  the  type

       specified and the type of the object being created.

       ? aes - Default AES: aes128

       ? aes128<mode>  - 128 bit AES with optional mode (ctr|ofb|cbc|cfb|ecb).

         If mode is not specified, defaults to null.

       ? aes192<mode> - Same as aes128<mode>, except for a 192 bit key size.

       ? aes256<mode> - Same as aes128<mode>, except for a 256 bit key size.

       ? ecc - Elliptical Curve, defaults to ecc256.

       ? ecc192 - 192 bit ECC

       ? ecc224 - 224 bit ECC

       ? ecc256 - 256 bit ECC

       ? ecc384 - 384 bit ECC

       ? ecc521 - 521 bit ECC

       ? rsa - Default RSA: rsa2048

       ? rsa1024 - RSA with 1024 bit keysize.

       ? rsa2048 - RSA with 2048 bit keysize.

       ? rsa4096 - RSA with 4096 bit keysize.

   Scheme Specifiers

       Next, is an optional field, it can be skipped.

       Schemes are usually Signing Schemes or Asymmetric  Encryption  Schemes.

       Most signing schemes take a hash algorithm directly following the sign?

       ing scheme.  If the hash algorithm is missing, it defaults  to  sha256.

       Some take no arguments, and some take multiple arguments.

   Hash Optional Scheme Specifiers

       These  scheme  specifiers are followed by a dash and a valid hash algo?

       rithm, For example: oaep-sha256.

       ? oaep

       ? ecdh

       ? rsassa

       ? rsapss

       ? ecdsa

       ? ecschnorr Page 8/13



   Multiple Option Scheme Specifiers

       This scheme specifier is followed by a count  (max  size  UINT16)  then

       followed by a dash(-) and a valid hash algorithm.  * ecdaa For example,

       ecdaa4-sha256.  If no count is specified, it defaults to 4.

   No Option Scheme Specifiers

       This scheme specifier takes NO arguments.  * rsaes

   Symmetric Details Specifiers

       This field is optional, and defaults based on the type of object  being

       created  and it?s attributes.  Generally, any valid Symmetric specifier

       from the Type Specifiers list should work.  If not specified, an  asym?

       metric objects symmetric details defaults to aes128cfb.

   Examples

   Create an rsa2048 key with an rsaes asymmetric encryption scheme

       tpm2_create -C parent.ctx -G rsa2048:rsaes -u key.pub -r key.priv

   Create  an  ecc256  key  with an ecdaa signing scheme with a count of 4 and

       sha384 hash

       /tpm2_create  -C  parent.ctx  -G  ecc256:ecdaa4-sha384  -u  key.pub  -r

       key.priv cryptographic algorithms ALGORITHM.

Object Attributes

       Object Attributes are used to control various properties of created ob?

       jects.  When specified as an option, either the raw  bitfield  mask  or

       ?nice-names?  may  be used.  The values can be found in Table 31 Part 2

       of the TPM2.0 specification, which can be found here:

       <https://trustedcomputinggroup.org/wp-content/uploads/TPM-

       Rev-2.0-Part-2-Structures-01.38.pdf>

       Nice  names are calculated by taking the name field of table 31 and re?

       moving the prefix TPMA_OBJECT_ and lowercasing the result.   Thus,  TP?

       MA_OBJECT_FIXEDTPM  becomes  fixedtpm.   Nice names can be joined using

       the bitwise or ?|? symbol.

       For instance, to set The fields TPMA_OBJECT_FIXEDTPM, TPMA_OBJECT_NODA,

       and TPMA_OBJECT_SIGN_ENCRYPT, the argument would be:

       fixedtpm|noda|sign specifying the object attributes ATTRIBUTES.

COMMON OPTIONS Page 9/13



       This  collection of options are common to many programs and provide in?

       formation that many users may expect.

       ? -h, --help=[man|no-man]: Display the tools manpage.  By  default,  it

         attempts  to  invoke  the  manpager for the tool, however, on failure

         will output a short tool summary.  This is the same behavior  if  the

         ?man?  option argument is specified, however if explicit ?man? is re?

         quested, the tool will provide errors from man  on  stderr.   If  the

         ?no-man?  option  if  specified, or the manpager fails, the short op?

         tions will be output to stdout.

         To successfully use the manpages feature requires the manpages to  be

         installed or on MANPATH, See man(1) for more details.

       ? -v,  --version:  Display version information for this tool, supported

         tctis and exit.

       ? -V, --verbose: Increase the information that the tool prints  to  the

         console  during  its  execution.  When using this option the file and

         line number are printed.

       ? -Q, --quiet: Silence normal tool output to stdout.

       ? -Z, --enable-errata: Enable the application of errata fixups.  Useful

         if  an  errata fixup needs to be applied to commands sent to the TPM.

         Defining the environment TPM2TOOLS_ENABLE_ERRATA is equivalent.   in?

         formation many users may expect.

TCTI Configuration

       The  TCTI  or  ?Transmission  Interface? is the communication mechanism

       with the TPM.  TCTIs can be changed for communication with TPMs  across

       different mediums.

       To control the TCTI, the tools respect:

       1. The command line option -T or --tcti

       2. The environment variable: TPM2TOOLS_TCTI.

       Note:  The  command  line option always overrides the environment vari?

       able.

       The current known TCTIs are:

       ? tabrmd     -     The     resource     manager,     called      tabrmd

         (https://github.com/tpm2-software/tpm2-abrmd).   Note that tabrmd and Page 10/13



         abrmd as a tcti name are synonymous.

       ? mssim - Typically used for communicating to the TPM software  simula?

         tor.

       ? device - Used when talking directly to a TPM device file.

       ? none  - Do not initalize a connection with the TPM.  Some tools allow

         for off-tpm options and thus support not using a TCTI.  Tools that do

         not  support  it  will error when attempted to be used without a TCTI

         connection.  Does not support ANY options and MUST  BE  presented  as

         the exact text of ?none?.

       The  arguments  to  either  the  command line option or the environment

       variable are in the form:

       <tcti-name>:<tcti-option-config>

       Specifying an empty string for  either  the  <tcti-name>  or  <tcti-op?

       tion-config> results in the default being used for that portion respec?

       tively.

   TCTI Defaults

       When a TCTI is not specified, the default TCTI is  searched  for  using

       dlopen(3)  semantics.   The  tools  will  search for tabrmd, device and

       mssim TCTIs IN THAT ORDER and USE THE FIRST ONE FOUND.  You  can  query

       what TCTI will be chosen as the default by using the -v option to print

       the version information.  The ?default-tcti? key-value pair will  indi?

       cate which of the aforementioned TCTIs is the default.

   Custom TCTIs

       Any TCTI that implements the dynamic TCTI interface can be loaded.  The

       tools internally use dlopen(3), and the raw tcti-name value is used for

       the lookup.  Thus, this could be a path to the shared library, or a li?

       brary name as understood by dlopen(3) semantics.

TCTI OPTIONS

       This collection of options are used to configure the various known TCTI

       modules available:

       ? device: For the device TCTI, the TPM character device file for use by

         the device TCTI can be specified.  The default is /dev/tpm0.

         Example:   -T   device:/dev/tpm0   or   export    TPM2TOOLS_TCTI=?de? Page 11/13



         vice:/dev/tpm0?

       ? mssim:  For  the  mssim  TCTI, the domain name or IP address and port

         number used by the simulator  can  be  specified.   The  default  are

         127.0.0.1 and 2321.

         Example:  -T  mssim:host=localhost,port=2321  or export TPM2TOOLS_TC?

         TI=?mssim:host=localhost,port=2321?

       ? abrmd: For the abrmd TCTI, the configuration string format is  a  se?

         ries  of  simple  key value pairs separated by a `,' character.  Each

         key and value string are separated by a `=' character.

         ? TCTI abrmd supports two keys:

           1. `bus_name' : The name of  the  tabrmd  service  on  the  bus  (a

              string).

           2. `bus_type' : The type of the dbus instance (a string) limited to

              `session' and `system'.

         Specify the tabrmd tcti name and a config string of  bus_name=com.ex?

         ample.FooBar:

                \--tcti=tabrmd:bus_name=com.example.FooBar

         Specify the default (abrmd) tcti and a config string of bus_type=ses?

         sion:

                \--tcti:bus_type=session

         NOTE: abrmd and tabrmd are synonymous.  the various known  TCTI  mod?

         ules.

EXAMPLES

   To import a key, one needs to have a parent key

              tpm2_createprimary -Grsa2048:aes128cfb -C o -c parent.ctx

       Create your key and and import it.  If you already have a key, just use

       that and skip creating it.

   Import an AES 128 key

              dd if=/dev/urandom of=sym.key bs=1 count=16

              tpm2_import -C parent.ctx -G aes -i sym.key -u key.pub -r key.priv

   Import an RSA key

              openssl genrsa -out private.pem 2048

              tpm2_import -C parent.ctx -G rsa -i private.pem -u key.pub -r key.priv Page 12/13



   Import an ECC key

              openssl ecparam -name prime256v1 -genkey -noout -out private.ecc.pem

              tpm2_import -C parent.ctx -G ecc -i private.ecc.pem -u key.pub -r key.priv

   Import a duplicated key

              tpm2_import -C parent.ctx -i key.dup -u key.pub -r key.priv -L policy.dat

LIMITATIONS

       ? The TPM requires that the name algorithm of the child be smaller than

         the parent.

Returns

       Tools can return any of the following codes:

       ? 0 - Success.

       ? 1 - General non-specific error.

       ? 2 - Options handling error.

       ? 3 - Authentication error.

       ? 4 - TCTI related error.

       ? 5 - Non supported scheme.  Applicable to tpm2_testparams.

BUGS

       Github Issues (https://github.com/tpm2-software/tpm2-tools/issues)

HELP

       See the Mailing List (https://lists.01.org/mailman/listinfo/tpm2)

tpm2-tools                                                      tpm2_import(1)

Page 13/13


