
Rocky Enterprise Linux 9.2 Manual Pages on command 'tpm2_duplicate.1'

$ man tpm2_duplicate.1

tpm2_duplicate(1) General Commands Manual tpm2_duplicate(1)

NAME

 tpm2_duplicate(1) - Duplicates a loaded object so that it may be used

 in a different hierarchy.

SYNOPSIS

 tpm2_duplicate [OPTIONS]

DESCRIPTION

 tpm2_duplicate(1) - This tool duplicates a loaded object so that it may

 be used in a different hierarchy. The new parent key for the duplicate

 may be on the same or different TPM or TPM_RH_NULL.

OPTIONS

 These options control the key importation process:

 ? -G, --wrapper-algorithm=ALGORITHM:

 The symmetric algorithm to be used for the inner wrapper. Supports:

 ? aes - AES 128 in CFB mode.

 ? null - none

 ? -i, --encryptionkey-in=FILE:

 Specifies the filename of the symmetric key (128 bit data) to be used Page 1/15

 for the inner wrapper. Valid only when specified symmetric algorithm

 is not null

 ? -o, --encryptionkey-out=FILE:

 Specifies the filename to store the symmetric key (128 bit data) that

 was used for the inner wrapper. Valid only when specified symmetric

 algorithm is not null and --input-key-file is not specified. The TPM

 generates the key in this case.

 ? -C, --parent-context=OBJECT:

 The parent key object.

 ? -U, --parent-public=FILE:

 Specifies the file path to the public key of the parent object on the

 destination TPM. This should be a TPM2B_PUBLIC formatted file.

 ? -k, --private-key=FILE:

 Specifies the file path to the external private key be encrypted for

 the remote TPM. This should be a PEM format private key.

 ? -r, --private=FILE:

 Specifies the file path to save the private portion of the duplicated

 object. # Protection Details

 Objects that can move outside of TPM need to be protected (confiden?

 tiality and integrity). For instance, transient objects require that

 TPM protected data (key or seal material) be stored outside of the TPM.

 This is seen in tools like tpm2_create(1), where the -r option outputs

 this protected data. This blob contains the sensitive portions of the

 object. The sensitive portions of the object are protected by the par?

 ent object, using the parent?s symmetric encryption details to encrypt

 the sensitive data and HMAC it.

 In-depth details can be found in sections 23 of:

 ? https://trustedcomputinggroup.org/wp-content/up?

 loads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf

 Notably Figure 20, is relevant, even though it?s specifically referring

 to duplication blobs, the process is identical.

 If the output is from tpm2_duplicate(1), the output will be slightly

 different, as described fully in section 23. Page 2/15

 ? -u, --public=FILE:

 Specifies the file path to save the public portion of the duplicated

 object, if an external key is being duplicated.

 ? -s, --encrypted-seed=FILE:

 The file to save the encrypted seed of the duplicated object.

 ? -p, --auth=AUTH:

 The authorization value for the key, optional.

 ? -L, --policy=FILE:

 The input policy file, optional.

 ? -c, --key-context=OBJECT:

 The object to be duplicated.

 ? --cphash=FILE

 File path to record the hash of the command parameters. This is com?

 monly termed as cpHash. NOTE: When this option is selected, The tool

 will not actually execute the command, it simply returns a cpHash.

 References

Context Object Format

 The type of a context object, whether it is a handle or file name, is

 determined according to the following logic in-order:

 ? If the argument is a file path, then the file is loaded as a restored

 TPM transient object.

 ? If the argument is a prefix match on one of:

 ? owner: the owner hierarchy

 ? platform: the platform hierarchy

 ? endorsement: the endorsement hierarchy

 ? lockout: the lockout control persistent object

 ? If the argument argument can be loaded as a number it will be treat

 as a handle, e.g. 0x81010013 and used directly._OBJECT_.

Authorization Formatting

 Authorization for use of an object in TPM2.0 can come in 3 different

 forms: 1. Password 2. HMAC 3. Sessions

 NOTE: ?Authorizations default to the EMPTY PASSWORD when not speci?

 fied?. Page 3/15

 Passwords

 Passwords are interpreted in the following forms below using prefix

 identifiers.

 Note: By default passwords are assumed to be in the string form when

 they do not have a prefix.

 String

 A string password, specified by prefix ?str:? or it?s absence (raw

 string without prefix) is not interpreted, and is directly used for au?

 thorization.

 Examples

 foobar

 str:foobar

 Hex-string

 A hex-string password, specified by prefix ?hex:? is converted from a

 hexidecimal form into a byte array form, thus allowing passwords with

 non-printable and/or terminal un-friendly characters.

 Example

 hex:0x1122334455667788

 File

 A file based password, specified be prefix ?file:? should be the path

 of a file containing the password to be read by the tool or a ?-? to

 use stdin. Storing passwords in files prevents information leakage,

 passwords passed as options can be read from the process list or common

 shell history features.

 Examples

 # to use stdin and be prompted

 file:-

 # to use a file from a path

 file:path/to/password/file

 # to echo a password via stdin:

 echo foobar | tpm2_tool -p file:-

 # to use a bash here-string via stdin:

 tpm2_tool -p file:- <<< foobar Page 4/15

 Sessions

 When using a policy session to authorize the use of an object, prefix

 the option argument with the session keyword. Then indicate a path to

 a session file that was created with tpm2_startauthsession(1). Option?

 ally, if the session requires an auth value to be sent with the session

 handle (eg policy password), then append a + and a string as described

 in the Passwords section.

 Examples

 To use a session context file called session.ctx.

 session:session.ctx

 To use a session context file called session.ctx AND send the authvalue

 mypassword.

 session:session.ctx+mypassword

 To use a session context file called session.ctx AND send the HEX auth?

 value 0x11223344.

 session:session.ctx+hex:11223344

 PCR Authorizations

 You can satisfy a PCR policy using the ?pcr:? prefix and the PCR mini?

 language. The PCR minilanguage is as follows:

 <pcr-spec>=<raw-pcr-file>

 The PCR spec is documented in in the section ?PCR bank specifiers?.

 The raw-pcr-file is an optional argument that contains the output of

 the raw PCR contents as returned by tpm2_pcrread(1).

 PCR bank specifiers (pcr.md)

 Examples

 To satisfy a PCR policy of sha256 on banks 0, 1, 2 and 3 use a specifi?

 er of:

 pcr:sha256:0,1,2,3

 specifying AUTH.

Algorithm Specifiers

 Options that take algorithms support ?nice-names?.

 There are two major algorithm specification string classes, simple and

 complex. Only certain algorithms will be accepted by the TPM, based on Page 5/15

 usage and conditions.

 Simple specifiers

 These are strings with no additional specification data. When creating

 objects, non-specified portions of an object are assumed to defaults.

 You can find the list of known ?Simple Specifiers Below?.

 Asymmetric

 ? rsa

 ? ecc

 Symmetric

 ? aes

 ? camellia

 Hashing Algorithms

 ? sha1

 ? sha256

 ? sha384

 ? sha512

 ? sm3_256

 ? sha3_256

 ? sha3_384

 ? sha3_512

 Keyed Hash

 ? hmac

 ? xor

 Signing Schemes

 ? rsassa

 ? rsapss

 ? ecdsa

 ? ecdaa

 ? ecschnorr

 Asymmetric Encryption Schemes

 ? oaep

 ? rsaes

 ? ecdh Page 6/15

 Modes

 ? ctr

 ? ofb

 ? cbc

 ? cfb

 ? ecb

 Misc

 ? null

 Complex Specifiers

 Objects, when specified for creation by the TPM, have numerous algo?

 rithms to populate in the public data. Things like type, scheme and

 asymmetric details, key size, etc. Below is the general format for

 specifying this data: <type>:<scheme>:<symmetric-details>

 Type Specifiers

 This portion of the complex algorithm specifier is required. The re?

 maining scheme and symmetric details will default based on the type

 specified and the type of the object being created.

 ? aes - Default AES: aes128

 ? aes128<mode> - 128 bit AES with optional mode (ctr|ofb|cbc|cfb|ecb).

 If mode is not specified, defaults to null.

 ? aes192<mode> - Same as aes128<mode>, except for a 192 bit key size.

 ? aes256<mode> - Same as aes128<mode>, except for a 256 bit key size.

 ? ecc - Elliptical Curve, defaults to ecc256.

 ? ecc192 - 192 bit ECC

 ? ecc224 - 224 bit ECC

 ? ecc256 - 256 bit ECC

 ? ecc384 - 384 bit ECC

 ? ecc521 - 521 bit ECC

 ? rsa - Default RSA: rsa2048

 ? rsa1024 - RSA with 1024 bit keysize.

 ? rsa2048 - RSA with 2048 bit keysize.

 ? rsa4096 - RSA with 4096 bit keysize.

 Scheme Specifiers Page 7/15

 Next, is an optional field, it can be skipped.

 Schemes are usually Signing Schemes or Asymmetric Encryption Schemes.

 Most signing schemes take a hash algorithm directly following the sign?

 ing scheme. If the hash algorithm is missing, it defaults to sha256.

 Some take no arguments, and some take multiple arguments.

 Hash Optional Scheme Specifiers

 These scheme specifiers are followed by a dash and a valid hash algo?

 rithm, For example: oaep-sha256.

 ? oaep

 ? ecdh

 ? rsassa

 ? rsapss

 ? ecdsa

 ? ecschnorr

 Multiple Option Scheme Specifiers

 This scheme specifier is followed by a count (max size UINT16) then

 followed by a dash(-) and a valid hash algorithm. * ecdaa For example,

 ecdaa4-sha256. If no count is specified, it defaults to 4.

 No Option Scheme Specifiers

 This scheme specifier takes NO arguments. * rsaes

 Symmetric Details Specifiers

 This field is optional, and defaults based on the type of object being

 created and it?s attributes. Generally, any valid Symmetric specifier

 from the Type Specifiers list should work. If not specified, an asym?

 metric objects symmetric details defaults to aes128cfb.

 Examples

 Create an rsa2048 key with an rsaes asymmetric encryption scheme

 tpm2_create -C parent.ctx -G rsa2048:rsaes -u key.pub -r key.priv

 Create an ecc256 key with an ecdaa signing scheme with a count of 4 and

 sha384 hash

 /tpm2_create -C parent.ctx -G ecc256:ecdaa4-sha384 -u key.pub -r

 key.priv cryptographic algorithms ALGORITHM.

COMMON OPTIONS Page 8/15

 This collection of options are common to many programs and provide in?

 formation that many users may expect.

 ? -h, --help=[man|no-man]: Display the tools manpage. By default, it

 attempts to invoke the manpager for the tool, however, on failure

 will output a short tool summary. This is the same behavior if the

 ?man? option argument is specified, however if explicit ?man? is re?

 quested, the tool will provide errors from man on stderr. If the

 ?no-man? option if specified, or the manpager fails, the short op?

 tions will be output to stdout.

 To successfully use the manpages feature requires the manpages to be

 installed or on MANPATH, See man(1) for more details.

 ? -v, --version: Display version information for this tool, supported

 tctis and exit.

 ? -V, --verbose: Increase the information that the tool prints to the

 console during its execution. When using this option the file and

 line number are printed.

 ? -Q, --quiet: Silence normal tool output to stdout.

 ? -Z, --enable-errata: Enable the application of errata fixups. Useful

 if an errata fixup needs to be applied to commands sent to the TPM.

 Defining the environment TPM2TOOLS_ENABLE_ERRATA is equivalent. in?

 formation many users may expect.

TCTI Configuration

 The TCTI or ?Transmission Interface? is the communication mechanism

 with the TPM. TCTIs can be changed for communication with TPMs across

 different mediums.

 To control the TCTI, the tools respect:

 1. The command line option -T or --tcti

 2. The environment variable: TPM2TOOLS_TCTI.

 Note: The command line option always overrides the environment vari?

 able.

 The current known TCTIs are:

 ? tabrmd - The resource manager, called tabrmd

 (https://github.com/tpm2-software/tpm2-abrmd). Note that tabrmd and Page 9/15

 abrmd as a tcti name are synonymous.

 ? mssim - Typically used for communicating to the TPM software simula?

 tor.

 ? device - Used when talking directly to a TPM device file.

 ? none - Do not initalize a connection with the TPM. Some tools allow

 for off-tpm options and thus support not using a TCTI. Tools that do

 not support it will error when attempted to be used without a TCTI

 connection. Does not support ANY options and MUST BE presented as

 the exact text of ?none?.

 The arguments to either the command line option or the environment

 variable are in the form:

 <tcti-name>:<tcti-option-config>

 Specifying an empty string for either the <tcti-name> or <tcti-op?

 tion-config> results in the default being used for that portion respec?

 tively.

 TCTI Defaults

 When a TCTI is not specified, the default TCTI is searched for using

 dlopen(3) semantics. The tools will search for tabrmd, device and

 mssim TCTIs IN THAT ORDER and USE THE FIRST ONE FOUND. You can query

 what TCTI will be chosen as the default by using the -v option to print

 the version information. The ?default-tcti? key-value pair will indi?

 cate which of the aforementioned TCTIs is the default.

 Custom TCTIs

 Any TCTI that implements the dynamic TCTI interface can be loaded. The

 tools internally use dlopen(3), and the raw tcti-name value is used for

 the lookup. Thus, this could be a path to the shared library, or a li?

 brary name as understood by dlopen(3) semantics.

TCTI OPTIONS

 This collection of options are used to configure the various known TCTI

 modules available:

 ? device: For the device TCTI, the TPM character device file for use by

 the device TCTI can be specified. The default is /dev/tpm0.

 Example: -T device:/dev/tpm0 or export TPM2TOOLS_TCTI=?de? Page 10/15

 vice:/dev/tpm0?

 ? mssim: For the mssim TCTI, the domain name or IP address and port

 number used by the simulator can be specified. The default are

 127.0.0.1 and 2321.

 Example: -T mssim:host=localhost,port=2321 or export TPM2TOOLS_TC?

 TI=?mssim:host=localhost,port=2321?

 ? abrmd: For the abrmd TCTI, the configuration string format is a se?

 ries of simple key value pairs separated by a `,' character. Each

 key and value string are separated by a `=' character.

 ? TCTI abrmd supports two keys:

 1. `bus_name' : The name of the tabrmd service on the bus (a

 string).

 2. `bus_type' : The type of the dbus instance (a string) limited to

 `session' and `system'.

 Specify the tabrmd tcti name and a config string of bus_name=com.ex?

 ample.FooBar:

 \--tcti=tabrmd:bus_name=com.example.FooBar

 Specify the default (abrmd) tcti and a config string of bus_type=ses?

 sion:

 \--tcti:bus_type=session

 NOTE: abrmd and tabrmd are synonymous. the various known TCTI mod?

 ules.

EXAMPLES

 To duplicate a key, one needs the key to duplicate, created with a pol?

 icy that

 allows duplication and a new parent:

 tpm2_startauthsession -S session.dat

 tpm2_policycommandcode -S session.dat -L policy.dat TPM2_CC_Duplicate

 tpm2_flushcontext session.dat

 tpm2_createprimary -C o -g sha256 -G rsa -c primary.ctxt

 tpm2_create -C primary.ctxt -g sha256 -G rsa -r key.prv -u key.pub \

 -L policy.dat -a "sensitivedataorigin"

 tpm2_loadexternal -C o -u new_parent.pub -c new_parent.ctxt Page 11/15

 tpm2_startauthsession \--policy-session -S session.dat

 tpm2_policycommandcode -S session.dat -L policy.dat TPM2_CC_Duplicate

 tpm2_duplicate -C new_parent.ctxt -c key.ctxt -G null -p "session:session.dat" \

 -r duprv.bin -s seed.dat

 tpm2_flushcontext session.dat

 As an end-to-end example, the following will transfer an RSA key gener?

 ated on TPM-A to TPM-B

 On TPM-B

 Create a parent object that will be used to wrap/transfer the key.

 tpm2_createprimary -C o -g sha256 -G rsa -c primary.ctx

 tpm2_create -C primary.ctx -g sha256 -G rsa \

 -r new_parent.prv -u new_parent.pub \

 -a "restricted|sensitivedataorigin|decrypt|userwithauth"

 Copy new_parent.pub to TPM-A.

 On TPM-A

 Create root object and auth policy allows duplication only

 tpm2_createprimary -C o -g sha256 -G rsa -c primary.ctx

 tpm2_startauthsession -S session.dat

 tpm2_policycommandcode -S session.dat -L dpolicy.dat TPM2_CC_Duplicate

 tpm2_flushcontext session.dat

 rm session.dat

 Generate an RSA keypair on TPM-A that will be duplicated (note the

 passphrase is `foo')

 tpm2_create -C primary.ctx -g sha256 -G rsa -p foo -r key.prv \

 -u key.pub -L dpolicy.dat -a "sensitivedataorigin|userwithauth|decrypt|sign"

 tpm2_load -C primary.ctx -r key.prv -u key.pub -c key.ctx

 tpm2_readpublic -c key.ctx -o dup.pub

 Test sign and encryption locally (so we can compare later that the same

 key was transferred).

 echo "meet me at.." >file.txt

 tpm2_rsaencrypt -c key.ctx -o data.encrypted file.txt

 tpm2_sign -c key.ctx -g sha256 -f plain -p foo -o sign.raw file.txt

 Compare the signature hash (we will use this later to confirm the key Page 12/15

 was transferred to TPM-B):

 sha256sum sign.raw

 a1b4e3fbaa29e6e46d95cff498150b6b8e7d9fd21182622e8f5a3ddde257879e

 Start an auth session and policy command to allow duplication

 tpm2_startauthsession --policy-session -S session.dat

 tpm2_policycommandcode -S session.dat -L dpolicy.dat TPM2_CC_Duplicate

 Load the new_parent.pub file transferred from TPM-B

 tpm2_loadexternal -C o -u new_parent.pub -c new_parent.ctx

 Start the duplication

 tpm2_duplicate -C new_parent.ctx -c key.ctx -G null \

 -p "session:session.dat" -r dup.dpriv -s dup.seed

 Copy the following files to TPM-B: * dup.pub * dup.dpriv * dup.seed *

 (optionally data.encrypted just to test decryption)

 On TPM-B

 Start an auth,policy session

 tpm2_startauthsession --policy-session -S session.dat

 tpm2_policycommandcode -S session.dat -L dpolicy.dat TPM2_CC_Duplicate

 Load the context we used to transfer

 tpm2_flushcontext --transient-object

 tpm2_load -C primary.ctx -u new_parent.pub -r new_parent.prv -c new_parent.ctx

 Import the duplicated context against the parent we used

 tpm2_import -C new_parent.ctx -u dup.pub -i dup.dpriv \

 -r dup.prv -s dup.seed -L dpolicy.dat

 Load the duplicated key context

 tpm2_flushcontext --transient-object

 tpm2_load -C new_parent.ctx -u dup.pub -r dup.prv -c dup.ctx

 Test the imported key matches

 ? Sign

 echo "meet me at.." >file.txt

 tpm2_sign -c dup.ctx -g sha256 -o sig.rss -p foo file.txt

 dd if=sig.rss of=sign.raw bs=1 skip=6 count=256

 Compare the signature file hash:

 $ sha256sum sign.raw Page 13/15

 a1b4e3fbaa29e6e46d95cff498150b6b8e7d9fd21182622e8f5a3ddde257879e

 ? Decryption

 tpm2_flushcontext --transient-object

 tpm2_rsadecrypt -p foo -c dup.ctx -o data.ptext data.encrypted

 # cat data.ptext

 meet me at..

 Exporting an OpenSSL RSA key for a remote TPM

 To securely send an OpenSSL generated RSA key to a remote TPM such that

 only that remote TPM will be able to load it, and without exposing the

 private key to the host operating system on the remote machine:

 ? On the destination TPM-B, create a primary context and read its pub?

 lic key, then send primary.pub to the source machine:

 tpm2_createprimary -c primary.ctx

 tpm2_readpublic -c primary.ctx -o primary.pub

 ? On the source machine create the RSA private key and wrap it for the

 destination TPM?s public key. Similar to tpm2_makecredential, this

 step should not require a TPM.

 openssl genrsa -out rsa.pem

 tpm2_duplicate -U primary.pub -G rsa -k rsa.pem -u rsa.pub -r rsa.dpriv -s rsa.seed

 ? Send the rsa.pub, rsa.dpriv and rsa.seed to the destination TPM-B and

 import the files, which will decrypt them using the primary.ctx to

 produce rsa.priv, which can then be loaded and used as a TPM key:

 tpm2_import -C primary.ctx -G rsa -i rsa.dpriv -s rsa.seed -u rsa.pub -r rsa.priv

 tpm2_load -C primary.ctx -c rsa.ctx -u rsa.pub -r rsa.priv

Returns

 Tools can return any of the following codes:

 ? 0 - Success.

 ? 1 - General non-specific error.

 ? 2 - Options handling error.

 ? 3 - Authentication error.

 ? 4 - TCTI related error.

 ? 5 - Non supported scheme. Applicable to tpm2_testparams.

BUGS Page 14/15

 Github Issues (https://github.com/tpm2-software/tpm2-tools/issues)

HELP

 See the Mailing List (https://lists.01.org/mailman/listinfo/tpm2)

tpm2-tools tpm2_duplicate(1)

Page 15/15

