
Rocky Enterprise Linux 9.2 Manual Pages on command 'tpm2_create.1'

$ man tpm2_create.1

tpm2_create(1) General Commands Manual tpm2_create(1)

NAME

 tpm2_create(1) - Create a child object.

SYNOPSIS

 tpm2_create [OPTIONS]

DESCRIPTION

 tpm2_create(1) - Create a child object. The object can either be a key

 or a sealing object. A sealing object allows to seal user data to the

 TPM, with a maximum size of 128 bytes. Additionally it will load the

 created object if the -c is specified.

OPTIONS

 These options for creating the TPM entity:

 ? -C, --parent-context=OBJECT:

 The parent of the object to be created.

 ? -P, --parent-auth=AUTH:

 The authorization value of the parent object specified with -C.

 ? -p, --key-auth=AUTH:

 The authorization value for the created object. Page 1/14

 ? -g, --hash-algorithm=ALGORITHM:

 The hash algorithm for generating the objects name. This is optional

 and defaults to sha256 when not specified.

 ? -G, --key-algorithm=ALGORITHM:

 The key algorithm associated with this object. It defaults to ?rsa?

 if not specified.

 ? -a, --attributes=ATTRIBUTES:

 The object attributes, optional. The default for created objects is:

 TPMA_OBJECT_SIGN_ENCRYPT|TPMA_OBJECT_DECRYPT|TPMA_OBJECT_FIXEDTPM|

 TPMA_OBJECT_FIXEDPARENT|TPMA_OBJECT_SENSITIVEDATAORIGIN| TPMA_OB?

 JECT_USERWITHAUTH

 When -i is specified for sealing, TPMA_OBJECT_SIGN_ENCRYPT and TP?

 MA_OBJECT_DECRYPT are removed from the default attribute set. The

 algorithm is set in a way where the the object is only good for seal?

 ing and unsealing. I.e. one cannot use an object for sealing and

 cryptography operations.

 When -L is specified for adding policy based authorization informa?

 tion AND no string password is specified, the attribute TPMA_OB?

 JECT_USERWITHAUTH is cleared unless an explicit choice is made by

 setting of the attribute with -a option. This prevents creation of

 objects with inadvertant auth model where in user intended to enforce

 a policy but inadvertantly created an object with empty auth which

 can be used instead of policy authorization.

 ? -i, --sealing-input=FILE or STDIN:

 The data file to be sealed, optional. If file is -, read from stdin.

 When sealing data only the TPM_ALG_KEYEDHASH algorithm with a NULL

 scheme is allowed. Thus, -G cannot be specified.

 ? -L, --policy=FILE:

 The input policy file, optional.

 ? -u, --public=FILE:

 The output file which contains the public portion of the created ob?

 ject, optional.

 ? -r, --private=FILE: Page 2/14

 The output file which contains the sensitive portion of the object,

 optional. # Protection Details

 Objects that can move outside of TPM need to be protected (confiden?

 tiality and integrity). For instance, transient objects require that

 TPM protected data (key or seal material) be stored outside of the TPM.

 This is seen in tools like tpm2_create(1), where the -r option outputs

 this protected data. This blob contains the sensitive portions of the

 object. The sensitive portions of the object are protected by the par?

 ent object, using the parent?s symmetric encryption details to encrypt

 the sensitive data and HMAC it.

 In-depth details can be found in sections 23 of:

 ? https://trustedcomputinggroup.org/wp-content/up?

 loads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf

 Notably Figure 20, is relevant, even though it?s specifically referring

 to duplication blobs, the process is identical.

 If the output is from tpm2_duplicate(1), the output will be slightly

 different, as described fully in section 23.

 ? -c, --key-context=FILE:

 The output file which contains the key context, optional. The key

 context is analogous to the context file produced by tpm2_load(1),

 however is generated via a tpm2_createloaded(1) command. This option

 can be used to avoid the normal tpm2_create(1) and tpm2_load(1) com?

 mand sequences and do it all in one command, atomically.

 ? --creation-data=FILE:

 An optional file output that saves the creation data for certifica?

 tion.

 ? --template-data=FILE:

 An optional file output that saves the key template data (TPM2B_PUB?

 LIC) to be used in tpm2_policytemplate.

 ? -t, --creation-ticket=FILE:

 An optional file output that saves the creation ticket for certifica?

 tion.

 ? -d, --creation-hash=FILE: Page 3/14

 An optional file output that saves the creation hash for certifica?

 tion.

 ? -q, --outside-info=HEX_STR_OR_FILE:

 An optional hex string or path to add unique data to the creation da?

 ta. Note that it does not contribute in creating statistically

 unique object.

 ? -l, --pcr-list=PCR:

 The list of PCR banks and selected PCRs? ids for each bank to be in?

 cluded in the creation data for certification.

 ? --cphash=FILE

 File path to record the hash of the command parameters. This is com?

 monly termed as cpHash. NOTE: When this option is selected, The tool

 will not actually execute the command, it simply returns a cpHash.

 ? --rphash=FILE

 File path to record the hash of the response parameters. This is

 commonly termed as rpHash.

 ? -S, --session=FILE:

 The session created using tpm2_startauthsession. Multiple of these

 can be specified. For example, you can have one session for audit?

 ing and another for encryption/decryption of the parameters.

 ? -f, --format:

 Format selection for the public key output file. `tss' (the de?

 fault) will output a binary blob according to the TPM 2.0 Specifi?

 cation. `pem' will output an OpenSSL compatible PEM encoded public

 key. `der' will output an OpenSSL compatible DER encoded public

 key. `tpmt' will output a binary blob of the TPMT_PUBLIC struct

 referenced by TPM 2.0 specs.

 Public key format.

 ? -o, --output=FILE:

 The output file path, recording the public portion of the object.

 References

Context Object Format

 The type of a context object, whether it is a handle or file name, is Page 4/14

 determined according to the following logic in-order:

 ? If the argument is a file path, then the file is loaded as a restored

 TPM transient object.

 ? If the argument is a prefix match on one of:

 ? owner: the owner hierarchy

 ? platform: the platform hierarchy

 ? endorsement: the endorsement hierarchy

 ? lockout: the lockout control persistent object

 ? If the argument argument can be loaded as a number it will be treat

 as a handle, e.g. 0x81010013 and used directly._OBJECT_.

Authorization Formatting

 Authorization for use of an object in TPM2.0 can come in 3 different

 forms: 1. Password 2. HMAC 3. Sessions

 NOTE: ?Authorizations default to the EMPTY PASSWORD when not speci?

 fied?.

 Passwords

 Passwords are interpreted in the following forms below using prefix

 identifiers.

 Note: By default passwords are assumed to be in the string form when

 they do not have a prefix.

 String

 A string password, specified by prefix ?str:? or it?s absence (raw

 string without prefix) is not interpreted, and is directly used for au?

 thorization.

 Examples

 foobar

 str:foobar

 Hex-string

 A hex-string password, specified by prefix ?hex:? is converted from a

 hexidecimal form into a byte array form, thus allowing passwords with

 non-printable and/or terminal un-friendly characters.

 Example

 hex:0x1122334455667788 Page 5/14

 File

 A file based password, specified be prefix ?file:? should be the path

 of a file containing the password to be read by the tool or a ?-? to

 use stdin. Storing passwords in files prevents information leakage,

 passwords passed as options can be read from the process list or common

 shell history features.

 Examples

 # to use stdin and be prompted

 file:-

 # to use a file from a path

 file:path/to/password/file

 # to echo a password via stdin:

 echo foobar | tpm2_tool -p file:-

 # to use a bash here-string via stdin:

 tpm2_tool -p file:- <<< foobar

 Sessions

 When using a policy session to authorize the use of an object, prefix

 the option argument with the session keyword. Then indicate a path to

 a session file that was created with tpm2_startauthsession(1). Option?

 ally, if the session requires an auth value to be sent with the session

 handle (eg policy password), then append a + and a string as described

 in the Passwords section.

 Examples

 To use a session context file called session.ctx.

 session:session.ctx

 To use a session context file called session.ctx AND send the authvalue

 mypassword.

 session:session.ctx+mypassword

 To use a session context file called session.ctx AND send the HEX auth?

 value 0x11223344.

 session:session.ctx+hex:11223344

 PCR Authorizations

 You can satisfy a PCR policy using the ?pcr:? prefix and the PCR mini? Page 6/14

 language. The PCR minilanguage is as follows:

 <pcr-spec>=<raw-pcr-file>

 The PCR spec is documented in in the section ?PCR bank specifiers?.

 The raw-pcr-file is an optional argument that contains the output of

 the raw PCR contents as returned by tpm2_pcrread(1).

 PCR bank specifiers (pcr.md)

 Examples

 To satisfy a PCR policy of sha256 on banks 0, 1, 2 and 3 use a specifi?

 er of:

 pcr:sha256:0,1,2,3

 specifying AUTH.

Algorithm Specifiers

 Options that take algorithms support ?nice-names?.

 There are two major algorithm specification string classes, simple and

 complex. Only certain algorithms will be accepted by the TPM, based on

 usage and conditions.

 Simple specifiers

 These are strings with no additional specification data. When creating

 objects, non-specified portions of an object are assumed to defaults.

 You can find the list of known ?Simple Specifiers Below?.

 Asymmetric

 ? rsa

 ? ecc

 Symmetric

 ? aes

 ? camellia

 Hashing Algorithms

 ? sha1

 ? sha256

 ? sha384

 ? sha512

 ? sm3_256

 ? sha3_256 Page 7/14

 ? sha3_384

 ? sha3_512

 Keyed Hash

 ? hmac

 ? xor

 Signing Schemes

 ? rsassa

 ? rsapss

 ? ecdsa

 ? ecdaa

 ? ecschnorr

 Asymmetric Encryption Schemes

 ? oaep

 ? rsaes

 ? ecdh

 Modes

 ? ctr

 ? ofb

 ? cbc

 ? cfb

 ? ecb

 Misc

 ? null

 Complex Specifiers

 Objects, when specified for creation by the TPM, have numerous algo?

 rithms to populate in the public data. Things like type, scheme and

 asymmetric details, key size, etc. Below is the general format for

 specifying this data: <type>:<scheme>:<symmetric-details>

 Type Specifiers

 This portion of the complex algorithm specifier is required. The re?

 maining scheme and symmetric details will default based on the type

 specified and the type of the object being created.

 ? aes - Default AES: aes128 Page 8/14

 ? aes128<mode> - 128 bit AES with optional mode (ctr|ofb|cbc|cfb|ecb).

 If mode is not specified, defaults to null.

 ? aes192<mode> - Same as aes128<mode>, except for a 192 bit key size.

 ? aes256<mode> - Same as aes128<mode>, except for a 256 bit key size.

 ? ecc - Elliptical Curve, defaults to ecc256.

 ? ecc192 - 192 bit ECC

 ? ecc224 - 224 bit ECC

 ? ecc256 - 256 bit ECC

 ? ecc384 - 384 bit ECC

 ? ecc521 - 521 bit ECC

 ? rsa - Default RSA: rsa2048

 ? rsa1024 - RSA with 1024 bit keysize.

 ? rsa2048 - RSA with 2048 bit keysize.

 ? rsa4096 - RSA with 4096 bit keysize.

 Scheme Specifiers

 Next, is an optional field, it can be skipped.

 Schemes are usually Signing Schemes or Asymmetric Encryption Schemes.

 Most signing schemes take a hash algorithm directly following the sign?

 ing scheme. If the hash algorithm is missing, it defaults to sha256.

 Some take no arguments, and some take multiple arguments.

 Hash Optional Scheme Specifiers

 These scheme specifiers are followed by a dash and a valid hash algo?

 rithm, For example: oaep-sha256.

 ? oaep

 ? ecdh

 ? rsassa

 ? rsapss

 ? ecdsa

 ? ecschnorr

 Multiple Option Scheme Specifiers

 This scheme specifier is followed by a count (max size UINT16) then

 followed by a dash(-) and a valid hash algorithm. * ecdaa For example,

 ecdaa4-sha256. If no count is specified, it defaults to 4. Page 9/14

 No Option Scheme Specifiers

 This scheme specifier takes NO arguments. * rsaes

 Symmetric Details Specifiers

 This field is optional, and defaults based on the type of object being

 created and it?s attributes. Generally, any valid Symmetric specifier

 from the Type Specifiers list should work. If not specified, an asym?

 metric objects symmetric details defaults to aes128cfb.

 Examples

 Create an rsa2048 key with an rsaes asymmetric encryption scheme

 tpm2_create -C parent.ctx -G rsa2048:rsaes -u key.pub -r key.priv

 Create an ecc256 key with an ecdaa signing scheme with a count of 4 and

 sha384 hash

 /tpm2_create -C parent.ctx -G ecc256:ecdaa4-sha384 -u key.pub -r

 key.priv cryptographic algorithms ALGORITHM.

Object Attributes

 Object Attributes are used to control various properties of created ob?

 jects. When specified as an option, either the raw bitfield mask or

 ?nice-names? may be used. The values can be found in Table 31 Part 2

 of the TPM2.0 specification, which can be found here:

 <https://trustedcomputinggroup.org/wp-content/uploads/TPM-

 Rev-2.0-Part-2-Structures-01.38.pdf>

 Nice names are calculated by taking the name field of table 31 and re?

 moving the prefix TPMA_OBJECT_ and lowercasing the result. Thus, TP?

 MA_OBJECT_FIXEDTPM becomes fixedtpm. Nice names can be joined using

 the bitwise or ?|? symbol.

 For instance, to set The fields TPMA_OBJECT_FIXEDTPM, TPMA_OBJECT_NODA,

 and TPMA_OBJECT_SIGN_ENCRYPT, the argument would be:

 fixedtpm|noda|sign specifying the object attributes ATTRIBUTES.

COMMON OPTIONS

 This collection of options are common to many programs and provide in?

 formation that many users may expect.

 ? -h, --help=[man|no-man]: Display the tools manpage. By default, it

 attempts to invoke the manpager for the tool, however, on failure Page 10/14

 will output a short tool summary. This is the same behavior if the

 ?man? option argument is specified, however if explicit ?man? is re?

 quested, the tool will provide errors from man on stderr. If the

 ?no-man? option if specified, or the manpager fails, the short op?

 tions will be output to stdout.

 To successfully use the manpages feature requires the manpages to be

 installed or on MANPATH, See man(1) for more details.

 ? -v, --version: Display version information for this tool, supported

 tctis and exit.

 ? -V, --verbose: Increase the information that the tool prints to the

 console during its execution. When using this option the file and

 line number are printed.

 ? -Q, --quiet: Silence normal tool output to stdout.

 ? -Z, --enable-errata: Enable the application of errata fixups. Useful

 if an errata fixup needs to be applied to commands sent to the TPM.

 Defining the environment TPM2TOOLS_ENABLE_ERRATA is equivalent. in?

 formation many users may expect.

TCTI Configuration

 The TCTI or ?Transmission Interface? is the communication mechanism

 with the TPM. TCTIs can be changed for communication with TPMs across

 different mediums.

 To control the TCTI, the tools respect:

 1. The command line option -T or --tcti

 2. The environment variable: TPM2TOOLS_TCTI.

 Note: The command line option always overrides the environment vari?

 able.

 The current known TCTIs are:

 ? tabrmd - The resource manager, called tabrmd

 (https://github.com/tpm2-software/tpm2-abrmd). Note that tabrmd and

 abrmd as a tcti name are synonymous.

 ? mssim - Typically used for communicating to the TPM software simula?

 tor.

 ? device - Used when talking directly to a TPM device file. Page 11/14

 ? none - Do not initalize a connection with the TPM. Some tools allow

 for off-tpm options and thus support not using a TCTI. Tools that do

 not support it will error when attempted to be used without a TCTI

 connection. Does not support ANY options and MUST BE presented as

 the exact text of ?none?.

 The arguments to either the command line option or the environment

 variable are in the form:

 <tcti-name>:<tcti-option-config>

 Specifying an empty string for either the <tcti-name> or <tcti-op?

 tion-config> results in the default being used for that portion respec?

 tively.

 TCTI Defaults

 When a TCTI is not specified, the default TCTI is searched for using

 dlopen(3) semantics. The tools will search for tabrmd, device and

 mssim TCTIs IN THAT ORDER and USE THE FIRST ONE FOUND. You can query

 what TCTI will be chosen as the default by using the -v option to print

 the version information. The ?default-tcti? key-value pair will indi?

 cate which of the aforementioned TCTIs is the default.

 Custom TCTIs

 Any TCTI that implements the dynamic TCTI interface can be loaded. The

 tools internally use dlopen(3), and the raw tcti-name value is used for

 the lookup. Thus, this could be a path to the shared library, or a li?

 brary name as understood by dlopen(3) semantics.

TCTI OPTIONS

 This collection of options are used to configure the various known TCTI

 modules available:

 ? device: For the device TCTI, the TPM character device file for use by

 the device TCTI can be specified. The default is /dev/tpm0.

 Example: -T device:/dev/tpm0 or export TPM2TOOLS_TCTI=?de?

 vice:/dev/tpm0?

 ? mssim: For the mssim TCTI, the domain name or IP address and port

 number used by the simulator can be specified. The default are

 127.0.0.1 and 2321. Page 12/14

 Example: -T mssim:host=localhost,port=2321 or export TPM2TOOLS_TC?

 TI=?mssim:host=localhost,port=2321?

 ? abrmd: For the abrmd TCTI, the configuration string format is a se?

 ries of simple key value pairs separated by a `,' character. Each

 key and value string are separated by a `=' character.

 ? TCTI abrmd supports two keys:

 1. `bus_name' : The name of the tabrmd service on the bus (a

 string).

 2. `bus_type' : The type of the dbus instance (a string) limited to

 `session' and `system'.

 Specify the tabrmd tcti name and a config string of bus_name=com.ex?

 ample.FooBar:

 \--tcti=tabrmd:bus_name=com.example.FooBar

 Specify the default (abrmd) tcti and a config string of bus_type=ses?

 sion:

 \--tcti:bus_type=session

 NOTE: abrmd and tabrmd are synonymous. the various known TCTI mod?

 ules.

EXAMPLES

 Setup

 In order to create an object, we must first create a primary key as

 it?s parent.

 tpm2_createprimary -c primary.ctx

 Create an Object

 This will create an object using all the default values and store the

 TPM sealed private and public portions to the paths specified via -u

 and -r respectively. The tool defaults to an RSA key.

 tpm2_create -C primary.ctx -u obj.pub -r obj.priv

 Seal Data to the TPM

 Outside of key objects, the TPM allows for small amounts of user speci?

 fied data to be sealed to the TPM.

 echo "my sealed data" > seal.dat

 tpm2_create -C primary.ctx -i seal.dat -u obj.pub -r obj.priv Page 13/14

 Create an EC Key Object and Load it to the TPM

 Normally, when creating an object, only the public and private portions

 of the object are returned and the caller needs to use tpm2_load(1) to

 load those public and private portions to the TPM before being able to

 use the object. However, this can be accomplished within this command

 as well, when supported by the TPM. You can verify your TPM supports

 this feature by checking that tpm2_getcap(1) commands returns

 TPM2_CC_CreateLoaded in the command set. If your TPM does not support

 TPM2_CC_CreateLoaded an unsuported command code error will be returned.

 If it?s not supported one must use tpm2_load(1). See that manpage for

 details on its usage.

 tpm2_create -C primary.ctx -G ecc -u obj.pub -r obj.priv -c ecc.ctx

 Create an Object and get the public key as a PEM file

 This will create an object using all the default values but also output

 the public key as a PEM file compatible with tools like OpenSSL and

 whatever supports PEM files.

 tpm2_create -C primary.ctx -u obj.pub -r obj.priv -f pem -o obj.pem

Returns

 Tools can return any of the following codes:

 ? 0 - Success.

 ? 1 - General non-specific error.

 ? 2 - Options handling error.

 ? 3 - Authentication error.

 ? 4 - TCTI related error.

 ? 5 - Non supported scheme. Applicable to tpm2_testparams.

BUGS

 Github Issues (https://github.com/tpm2-software/tpm2-tools/issues)

HELP

 See the Mailing List (https://lists.01.org/mailman/listinfo/tpm2)

tpm2-tools tpm2_create(1)

Page 14/14

