
Rocky Enterprise Linux 9.2 Manual Pages on command 'time_namespaces.7'

$ man time_namespaces.7

TIME_NAMESPACES(7) Linux Programmer's Manual TIME_NAMESPACES(7)

NAME

 time_namespaces - overview of Linux time namespaces

DESCRIPTION

 Time namespaces virtualize the values of two system clocks:

 ? CLOCK_MONOTONIC (and likewise CLOCK_MONOTONIC_COARSE and CLOCK_MONO?

 TONIC_RAW), a nonsettable clock that represents monotonic time

 since?as described by POSIX?"some unspecified point in the past".

 ? CLOCK_BOOTTIME (and likewise CLOCK_BOOTTIME_ALARM), a nonsettable

 clock that is identical to CLOCK_MONOTONIC, except that it also in?

 cludes any time that the system is suspended.

 Thus, the processes in a time namespace share per-namespace values for

 these clocks. This affects various APIs that measure against these

 clocks, including: clock_gettime(2), clock_nanosleep(2), nanosleep(2),

 timer_settime(2), timerfd_settime(2), and /proc/uptime.

 Currently, the only way to create a time namespace is by calling un?

 share(2) with the CLONE_NEWTIME flag. This call creates a new time

 namespace but does not place the calling process in the new namespace. Page 1/6

 Instead, the calling process's subsequently created children are placed

 in the new namespace. This allows clock offsets (see below) for the

 new namespace to be set before the first process is placed in the name?

 space. The /proc/[pid]/ns/time_for_children symbolic link shows the

 time namespace in which the children of a process will be created. (A

 process can use a file descriptor opened on this symbolic link in a

 call to setns(2) in order to move into the namespace.)

 /proc/PID/timens_offsets

 Associated with each time namespace are offsets, expressed with respect

 to the initial time namespace, that define the values of the monotonic

 and boot-time clocks in that namespace. These offsets are exposed via

 the file /proc/PID/timens_offsets. Within this file, the offsets are

 expressed as lines consisting of three space-delimited fields:

 <clock-id> <offset-secs> <offset-nanosecs>

 The clock-id is a string that identifies the clock whose offsets are

 being shown. This field is either monotonic, for CLOCK_MONOTONIC, or

 boottime, for CLOCK_BOOTTIME. The remaining fields express the offset

 (seconds plus nanoseconds) for the clock in this time namespace. These

 offsets are expressed relative to the clock values in the initial time

 namespace. The offset-secs value can be negative, subject to restric?

 tions noted below; offset-nanosecs is an unsigned value.

 In the initial time namespace, the contents of the timens_offsets file

 are as follows:

 $ cat /proc/self/timens_offsets

 monotonic 0 0

 boottime 0 0

 In a new time namespace that has had no member processes, the clock

 offsets can be modified by writing newline-terminated records of the

 same form to the timens_offsets file. The file can be written to mul?

 tiple times, but after the first process has been created in or has en?

 tered the namespace, write(2)s on this file fail with the error EACCES.

 In order to write to the timens_offsets file, a process must have the

 CAP_SYS_TIME capability in the user namespace that owns the time name? Page 2/6

 space.

 Writes to the timens_offsets file can fail with the following errors:

 EINVAL An offset-nanosecs value is greater than 999,999,999.

 EINVAL A clock-id value is not valid.

 EPERM The caller does not have the CAP_SYS_TIME capability.

 ERANGE An offset-secs value is out of range. In particular;

 ? offset-secs can't be set to a value which would make the cur?

 rent time on the corresponding clock inside the namespace a

 negative value; and

 ? offset-secs can't be set to a value such that the time on the

 corresponding clock inside the namespace would exceed half of

 the value of the kernel constant KTIME_SEC_MAX (this limits

 the clock value to a maximum of approximately 146 years).

 In a new time namespace created by unshare(2), the contents of the

 timens_offsets file are inherited from the time namespace of the creat?

 ing process.

NOTES

 Use of time namespaces requires a kernel that is configured with the

 CONFIG_TIME_NS option.

 Note that time namespaces do not virtualize the CLOCK_REALTIME clock.

 Virtualization of this clock was avoided for reasons of complexity and

 overhead within the kernel.

 For compatibility with the initial implementation, when writing a

 clock-id to the /proc/[pid]/timens_offsets file, the numerical values

 of the IDs can be written instead of the symbolic names show above;

 i.e., 1 instead of monotonic, and 7 instead of boottime. For redabil?

 ity, the use of the symbolic names over the numbers is preferred.

 The motivation for adding time namespaces was to allow the monotonic

 and boot-time clocks to maintain consistent values during container mi?

 gration and checkpoint/restore.

EXAMPLES

 The following shell session demonstrates the operation of time name?

 spaces. We begin by displaying the inode number of the time namespace Page 3/6

 of a shell in the initial time namespace:

 $ readlink /proc/$$/ns/time

 time:[4026531834]

 Continuing in the initial time namespace, we display the system uptime

 using uptime(1) and use the clock_times example program shown in

 clock_getres(2) to display the values of various clocks:

 $ uptime --pretty

 up 21 hours, 17 minutes

 $./clock_times

 CLOCK_REALTIME : 1585989401.971 (18356 days + 8h 36m 41s)

 CLOCK_TAI : 1585989438.972 (18356 days + 8h 37m 18s)

 CLOCK_MONOTONIC: 56338.247 (15h 38m 58s)

 CLOCK_BOOTTIME : 76633.544 (21h 17m 13s)

 We then use unshare(1) to create a time namespace and execute a bash(1)

 shell. From the new shell, we use the built-in echo command to write

 records to the timens_offsets file adjusting the offset for the

 CLOCK_MONOTONIC clock forward 2 days and the offset for the CLOCK_BOOT?

 TIME clock forward 7 days:

 $ PS1="ns2# " sudo unshare -T -- bash --norc

 ns2# echo "monotonic $((2*24*60*60)) 0" > /proc/$$/timens_offsets

 ns2# echo "boottime $((7*24*60*60)) 0" > /proc/$$/timens_offsets

 Above, we started the bash(1) shell with the --norc options so that no

 start-up scripts were executed. This ensures that no child processes

 are created from the shell before we have a chance to update the

 timens_offsets file.

 We then use cat(1) to display the contents of the timens_offsets file.

 The execution of cat(1) creates the first process in the new time name?

 space, after which further attempts to update the timens_offsets file

 produce an error.

 ns2# cat /proc/$$/timens_offsets

 monotonic 172800 0

 boottime 604800 0

 ns2# echo "boottime $((9*24*60*60)) 0" > /proc/$$/timens_offsets Page 4/6

 bash: echo: write error: Permission denied

 Continuing in the new namespace, we execute uptime(1) and the

 clock_times example program:

 ns2# uptime --pretty

 up 1 week, 21 hours, 18 minutes

 ns2# ./clock_times

 CLOCK_REALTIME : 1585989457.056 (18356 days + 8h 37m 37s)

 CLOCK_TAI : 1585989494.057 (18356 days + 8h 38m 14s)

 CLOCK_MONOTONIC: 229193.332 (2 days + 15h 39m 53s)

 CLOCK_BOOTTIME : 681488.629 (7 days + 21h 18m 8s)

 From the above output, we can see that the monotonic and boot-time

 clocks have different values in the new time namespace.

 Examining the /proc/[pid]/ns/time and /proc/[pid]/ns/time_for_children

 symbolic links, we see that the shell is a member of the initial time

 namespace, but its children are created in the new namespace.

 ns2# readlink /proc/$$/ns/time

 time:[4026531834]

 ns2# readlink /proc/$$/ns/time_for_children

 time:[4026532900]

 ns2# readlink /proc/self/ns/time # Creates a child process

 time:[4026532900]

 Returning to the shell in the initial time namespace, we see that the

 monotonic and boot-time clocks are unaffected by the timens_offsets

 changes that were made in the other time namespace:

 $ uptime --pretty

 up 21 hours, 19 minutes

 $./clock_times

 CLOCK_REALTIME : 1585989401.971 (18356 days + 8h 38m 51s)

 CLOCK_TAI : 1585989438.972 (18356 days + 8h 39m 28s)

 CLOCK_MONOTONIC: 56338.247 (15h 41m 8s)

 CLOCK_BOOTTIME : 76633.544 (21h 19m 23s)

SEE ALSO

 nsenter(1), unshare(1), clock_settime(2), setns(2), unshare(2), name? Page 5/6

 spaces(7), time(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 TIME_NAMESPACES(7)

Page 6/6

