
Rocky Enterprise Linux 9.2 Manual Pages on command 'tdelete.3'

$ man tdelete.3

TSEARCH(3) Linux Programmer's Manual TSEARCH(3)

NAME

 tsearch, tfind, tdelete, twalk, tdestroy - manage a binary search tree

SYNOPSIS

 #include <search.h>

 typedef enum { preorder, postorder, endorder, leaf } VISIT;

 void *tsearch(const void *key, void **rootp,

 int (*compar)(const void *, const void *));

 void *tfind(const void *key, void *const *rootp,

 int (*compar)(const void *, const void *));

 void *tdelete(const void *key, void **rootp,

 int (*compar)(const void *, const void *));

 void twalk(const void *root,

 void (*action)(const void *nodep, VISIT which,

 int depth));

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <search.h>

 void twalk_r(const void *root, Page 1/7

 void (*action)(const void *nodep, VISIT which,

 void *closure),

 void *closure);

 void tdestroy(void *root, void (*free_node)(void *nodep));

DESCRIPTION

 tsearch(), tfind(), twalk(), and tdelete() manage a binary search tree.

 They are generalized from Knuth (6.2.2) Algorithm T. The first field

 in each node of the tree is a pointer to the corresponding data item.

 (The calling program must store the actual data.) compar points to a

 comparison routine, which takes pointers to two items. It should re?

 turn an integer which is negative, zero, or positive, depending on

 whether the first item is less than, equal to, or greater than the sec?

 ond.

 tsearch() searches the tree for an item. key points to the item to be

 searched for. rootp points to a variable which points to the root of

 the tree. If the tree is empty, then the variable that rootp points to

 should be set to NULL. If the item is found in the tree, then

 tsearch() returns a pointer to the corresponding tree node. (In other

 words, tsearch() returns a pointer to a pointer to the data item.) If

 the item is not found, then tsearch() adds it, and returns a pointer to

 the corresponding tree node.

 tfind() is like tsearch(), except that if the item is not found, then

 tfind() returns NULL.

 tdelete() deletes an item from the tree. Its arguments are the same as

 for tsearch().

 twalk() performs depth-first, left-to-right traversal of a binary tree.

 root points to the starting node for the traversal. If that node is

 not the root, then only part of the tree will be visited. twalk()

 calls the user function action each time a node is visited (that is,

 three times for an internal node, and once for a leaf). action, in

 turn, takes three arguments. The first argument is a pointer to the

 node being visited. The structure of the node is unspecified, but it

 is possible to cast the pointer to a pointer-to-pointer-to-element in Page 2/7

 order to access the element stored within the node. The application

 must not modify the structure pointed to by this argument. The second

 argument is an integer which takes one of the values preorder, pos?

 torder, or endorder depending on whether this is the first, second, or

 third visit to the internal node, or the value leaf if this is the sin?

 gle visit to a leaf node. (These symbols are defined in <search.h>.)

 The third argument is the depth of the node; the root node has depth

 zero.

 (More commonly, preorder, postorder, and endorder are known as pre?

 order, inorder, and postorder: before visiting the children, after the

 first and before the second, and after visiting the children. Thus,

 the choice of name postorder is rather confusing.)

 twalk_r() is similar to twalk(), but instead of the depth argument, the

 closure argument pointer is passed to each invocation of the action

 callback, unchanged. This pointer can be used to pass information to

 and from the callback function in a thread-safe fashion, without re?

 sorting to global variables.

 tdestroy() removes the whole tree pointed to by root, freeing all re?

 sources allocated by the tsearch() function. For the data in each tree

 node the function free_node is called. The pointer to the data is

 passed as the argument to the function. If no such work is necessary,

 free_node must point to a function doing nothing.

RETURN VALUE

 tsearch() returns a pointer to a matching node in the tree, or to the

 newly added node, or NULL if there was insufficient memory to add the

 item. tfind() returns a pointer to the node, or NULL if no match is

 found. If there are multiple items that match the key, the item whose

 node is returned is unspecified.

 tdelete() returns a pointer to the parent of the node deleted, or NULL

 if the item was not found. If the deleted node was the root node,

 tdelete() returns a dangling pointer that must not be accessed.

 tsearch(), tfind(), and tdelete() also return NULL if rootp was NULL on

 entry. Page 3/7

VERSIONS

 twalk_r() is available in glibc since version 2.30.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?tsearch(), tfind(), ? Thread safety ? MT-Safe race:rootp ?

 ?tdelete() ? ? ?

 ???

 ?twalk() ? Thread safety ? MT-Safe race:root ?

 ???

 ?twalk_r() ? Thread safety ? MT-Safe race:root ?

 ???

 ?tdestroy() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4. The functions tdestroy() and

 twalk_r() are GNU extensions.

NOTES

 twalk() takes a pointer to the root, while the other functions take a

 pointer to a variable which points to the root.

 tdelete() frees the memory required for the node in the tree. The user

 is responsible for freeing the memory for the corresponding data.

 The example program depends on the fact that twalk() makes no further

 reference to a node after calling the user function with argument "en?

 dorder" or "leaf". This works with the GNU library implementation, but

 is not in the System V documentation.

EXAMPLES

 The following program inserts twelve random numbers into a binary tree,

 where duplicate numbers are collapsed, then prints the numbers in or?

 der. Page 4/7

 #define _GNU_SOURCE /* Expose declaration of tdestroy() */

 #include <search.h>

 #include <stddef.h>

 #include <stdlib.h>

 #include <stdio.h>

 #include <time.h>

 static void *root = NULL;

 static void *

 xmalloc(size_t n)

 {

 void *p;

 p = malloc(n);

 if (p)

 return p;

 fprintf(stderr, "insufficient memory\n");

 exit(EXIT_FAILURE);

 }

 static int

 compare(const void *pa, const void *pb)

 {

 if (*(int *) pa < *(int *) pb)

 return -1;

 if (*(int *) pa > *(int *) pb)

 return 1;

 return 0;

 }

 static void

 action(const void *nodep, VISIT which, int depth)

 {

 int *datap;

 switch (which) {

 case preorder:

 break; Page 5/7

 case postorder:

 datap = *(int **) nodep;

 printf("%6d\n", *datap);

 break;

 case endorder:

 break;

 case leaf:

 datap = *(int **) nodep;

 printf("%6d\n", *datap);

 break;

 }

 }

 int

 main(void)

 {

 int **val;

 srand(time(NULL));

 for (int i = 0; i < 12; i++) {

 int *ptr = xmalloc(sizeof(*ptr));

 *ptr = rand() & 0xff;

 val = tsearch(ptr, &root, compare);

 if (val == NULL)

 exit(EXIT_FAILURE);

 else if (*val != ptr)

 free(ptr);

 }

 twalk(root, action);

 tdestroy(root, free);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 bsearch(3), hsearch(3), lsearch(3), qsort(3)

COLOPHON Page 6/7

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 TSEARCH(3)

Page 7/7

