
Rocky Enterprise Linux 9.2 Manual Pages on command 'tcpdump.8'

$ man tcpdump.8

TCPDUMP(8) System Manager's Manual TCPDUMP(8)

NAME

 tcpdump - dump traffic on a network

SYNOPSIS

 tcpdump [-AbdDefhHIJKlLnNOpqStuUvxX#] [-B buffer_size]

 [-c count] [--count] [-C file_size]

 [-E spi@ipaddr algo:secret,...]

 [-F file] [-G rotate_seconds] [-i interface]

 [--immediate-mode] [-j tstamp_type] [-m module]

 [-M secret] [--number] [--print] [-Q in|out|inout]

 [-r file] [-s snaplen] [-T type] [--version]

 [-V file] [-w file] [-W filecount] [-y datalinktype]

 [-z postrotate-command] [-Z user]

 [--time-stamp-precision=tstamp_precision]

 [--micro] [--nano]

 [expression]

DESCRIPTION

 Tcpdump prints out a description of the contents of packets on a net? Page 1/35

 work interface that match the Boolean expression; the description is

 preceded by a time stamp, printed, by default, as hours, minutes, sec?

 onds, and fractions of a second since midnight. It can also be run

 with the -w flag, which causes it to save the packet data to a file for

 later analysis, and/or with the -r flag, which causes it to read from a

 saved packet file rather than to read packets from a network interface.

 It can also be run with the -V flag, which causes it to read a list of

 saved packet files. In all cases, only packets that match expression

 will be processed by tcpdump.

 Tcpdump will, if not run with the -c flag, continue capturing packets

 until it is interrupted by a SIGINT signal (generated, for example, by

 typing your interrupt character, typically control-C) or a SIGTERM sig?

 nal (typically generated with the kill(1) command); if run with the -c

 flag, it will capture packets until it is interrupted by a SIGINT or

 SIGTERM signal or the specified number of packets have been processed.

 When tcpdump finishes capturing packets, it will report counts of:

 packets ``captured'' (this is the number of packets that tcpdump

 has received and processed);

 packets ``received by filter'' (the meaning of this depends on

 the OS on which you're running tcpdump, and possibly on the way

 the OS was configured - if a filter was specified on the command

 line, on some OSes it counts packets regardless of whether they

 were matched by the filter expression and, even if they were

 matched by the filter expression, regardless of whether tcpdump

 has read and processed them yet, on other OSes it counts only

 packets that were matched by the filter expression regardless of

 whether tcpdump has read and processed them yet, and on other

 OSes it counts only packets that were matched by the filter ex?

 pression and were processed by tcpdump);

 packets ``dropped by kernel'' (this is the number of packets

 that were dropped, due to a lack of buffer space, by the packet

 capture mechanism in the OS on which tcpdump is running, if the

 OS reports that information to applications; if not, it will be Page 2/35

 reported as 0).

 On platforms that support the SIGINFO signal, such as most BSDs (in?

 cluding macOS) and Digital/Tru64 UNIX, it will report those counts when

 it receives a SIGINFO signal (generated, for example, by typing your

 ``status'' character, typically control-T, although on some platforms,

 such as macOS, the ``status'' character is not set by default, so you

 must set it with stty(1) in order to use it) and will continue captur?

 ing packets. On platforms that do not support the SIGINFO signal, the

 same can be achieved by using the SIGUSR1 signal.

 Using the SIGUSR2 signal along with the -w flag will forcibly flush the

 packet buffer into the output file.

 Reading packets from a network interface may require that you have spe?

 cial privileges; see the pcap(3PCAP) man page for details. Reading a

 saved packet file doesn't require special privileges.

OPTIONS

 -A Print each packet (minus its link level header) in ASCII. Handy

 for capturing web pages.

 -b Print the AS number in BGP packets in ASDOT notation rather than

 ASPLAIN notation.

 -B buffer_size

 --buffer-size=buffer_size

 Set the operating system capture buffer size to buffer_size, in

 units of KiB (1024 bytes).

 -c count

 Exit after receiving count packets.

 --count

 Print only on stderr the packet count when reading capture

 file(s) instead of parsing/printing the packets. If a filter is

 specified on the command line, tcpdump counts only packets that

 were matched by the filter expression.

 -C file_size

 Before writing a raw packet to a savefile, check whether the

 file is currently larger than file_size and, if so, close the Page 3/35

 current savefile and open a new one. Savefiles after the first

 savefile will have the name specified with the -w flag, with a

 number after it, starting at 1 and continuing upward. The units

 of file_size are millions of bytes (1,000,000 bytes, not

 1,048,576 bytes).

 Note that when used with -Z option (enabled by default), privi?

 leges are dropped before opening the first savefile.

 -d Dump the compiled packet-matching code in a human readable form

 to standard output and stop.

 Please mind that although code compilation is always DLT-spe?

 cific, typically it is impossible (and unnecessary) to specify

 which DLT to use for the dump because tcpdump uses either the

 DLT of the input pcap file specified with -r, or the default DLT

 of the network interface specified with -i, or the particular

 DLT of the network interface specified with -y and -i respec?

 tively. In these cases the dump shows the same exact code that

 would filter the input file or the network interface without -d.

 However, when neither -r nor -i is specified, specifying -d pre?

 vents tcpdump from guessing a suitable network interface (see

 -i). In this case the DLT defaults to EN10MB and can be set to

 another valid value manually with -y.

 -dd Dump packet-matching code as a C program fragment.

 -ddd Dump packet-matching code as decimal numbers (preceded with a

 count).

 -D

 --list-interfaces

 Print the list of the network interfaces available on the system

 and on which tcpdump can capture packets. For each network in?

 terface, a number and an interface name, possibly followed by a

 text description of the interface, are printed. The interface

 name or the number can be supplied to the -i flag to specify an

 interface on which to capture.

 This can be useful on systems that don't have a command to list Page 4/35

 them (e.g., Windows systems, or UNIX systems lacking ifconfig

 -a); the number can be useful on Windows 2000 and later systems,

 where the interface name is a somewhat complex string.

 The -D flag will not be supported if tcpdump was built with an

 older version of libpcap that lacks the pcap_findalldevs(3PCAP)

 function.

 -e Print the link-level header on each dump line. This can be

 used, for example, to print MAC layer addresses for protocols

 such as Ethernet and IEEE 802.11.

 -E Use spi@ipaddr algo:secret for decrypting IPsec ESP packets that

 are addressed to addr and contain Security Parameter Index value

 spi. This combination may be repeated with comma or newline sep?

 aration.

 Note that setting the secret for IPv4 ESP packets is supported

 at this time.

 Algorithms may be des-cbc, 3des-cbc, blowfish-cbc, rc3-cbc,

 cast128-cbc, or none. The default is des-cbc. The ability to

 decrypt packets is only present if tcpdump was compiled with

 cryptography enabled.

 secret is the ASCII text for ESP secret key. If preceded by 0x,

 then a hex value will be read.

 The option assumes RFC2406 ESP, not RFC1827 ESP. The option is

 only for debugging purposes, and the use of this option with a

 true `secret' key is discouraged. By presenting IPsec secret

 key onto command line you make it visible to others, via ps(1)

 and other occasions.

 In addition to the above syntax, the syntax file name may be

 used to have tcpdump read the provided file in. The file is

 opened upon receiving the first ESP packet, so any special per?

 missions that tcpdump may have been given should already have

 been given up.

 -f Print `foreign' IPv4 addresses numerically rather than symboli?

 cally (this option is intended to get around serious brain dam? Page 5/35

 age in Sun's NIS server ? usually it hangs forever translating

 non-local internet numbers).

 The test for `foreign' IPv4 addresses is done using the IPv4 ad?

 dress and netmask of the interface on which capture is being

 done. If that address or netmask are not available, available,

 either because the interface on which capture is being done has

 no address or netmask or because the capture is being done on

 the Linux "any" interface, which can capture on more than one

 interface, this option will not work correctly.

 -F file

 Use file as input for the filter expression. An additional ex?

 pression given on the command line is ignored.

 -G rotate_seconds

 If specified, rotates the dump file specified with the -w option

 every rotate_seconds seconds. Savefiles will have the name

 specified by -w which should include a time format as defined by

 strftime(3). If no time format is specified, each new file will

 overwrite the previous. Whenever a generated filename is not

 unique, tcpdump will overwrite the pre-existing data; providing

 a time specification that is coarser than the capture period is

 therefore not advised.

 If used in conjunction with the -C option, filenames will take

 the form of `file<count>'.

 Note that when used with -Z option (enabled by default), privi?

 leges are dropped before opening the first savefile.

 -h

 --help Print the tcpdump and libpcap version strings, print a usage

 message, and exit.

 --version

 Print the tcpdump and libpcap version strings and exit.

 -H Attempt to detect 802.11s draft mesh headers.

 -i interface

 --interface=interface Page 6/35

 Listen, report the list of link-layer types, report the list of

 time stamp types, or report the results of compiling a filter

 expression on interface. If unspecified and if the -d flag is

 not given, tcpdump searches the system interface list for the

 lowest numbered, configured up interface (excluding loopback),

 which may turn out to be, for example, ``eth0''.

 On Linux systems with 2.2 or later kernels, an interface argu?

 ment of ``any'' can be used to capture packets from all inter?

 faces. Note that captures on the ``any'' device will not be

 done in promiscuous mode.

 If the -D flag is supported, an interface number as printed by

 that flag can be used as the interface argument, if no interface

 on the system has that number as a name.

 -I

 --monitor-mode

 Put the interface in "monitor mode"; this is supported only on

 IEEE 802.11 Wi-Fi interfaces, and supported only on some operat?

 ing systems.

 Note that in monitor mode the adapter might disassociate from

 the network with which it's associated, so that you will not be

 able to use any wireless networks with that adapter. This could

 prevent accessing files on a network server, or resolving host

 names or network addresses, if you are capturing in monitor mode

 and are not connected to another network with another adapter.

 This flag will affect the output of the -L flag. If -I isn't

 specified, only those link-layer types available when not in

 monitor mode will be shown; if -I is specified, only those link-

 layer types available when in monitor mode will be shown.

 --immediate-mode

 Capture in "immediate mode". In this mode, packets are deliv?

 ered to tcpdump as soon as they arrive, rather than being

 buffered for efficiency. This is the default when printing

 packets rather than saving packets to a ``savefile'' if the Page 7/35

 packets are being printed to a terminal rather than to a file or

 pipe.

 -j tstamp_type

 --time-stamp-type=tstamp_type

 Set the time stamp type for the capture to tstamp_type. The

 names to use for the time stamp types are given in

 pcap-tstamp(7); not all the types listed there will necessarily

 be valid for any given interface.

 -J

 --list-time-stamp-types

 List the supported time stamp types for the interface and exit.

 If the time stamp type cannot be set for the interface, no time

 stamp types are listed.

 --time-stamp-precision=tstamp_precision

 When capturing, set the time stamp precision for the capture to

 tstamp_precision. Note that availability of high precision time

 stamps (nanoseconds) and their actual accuracy is platform and

 hardware dependent. Also note that when writing captures made

 with nanosecond accuracy to a savefile, the time stamps are

 written with nanosecond resolution, and the file is written with

 a different magic number, to indicate that the time stamps are

 in seconds and nanoseconds; not all programs that read pcap

 savefiles will be able to read those captures.

 When reading a savefile, convert time stamps to the precision

 specified by timestamp_precision, and display them with that

 resolution. If the precision specified is less than the preci?

 sion of time stamps in the file, the conversion will lose preci?

 sion.

 The supported values for timestamp_precision are micro for mi?

 crosecond resolution and nano for nanosecond resolution. The

 default is microsecond resolution.

 --micro

 --nano Shorthands for --time-stamp-precision=micro or --time-stamp-pre? Page 8/35

 cision=nano, adjusting the time stamp precision accordingly.

 When reading packets from a savefile, using --micro truncates

 time stamps if the savefile was created with nanosecond preci?

 sion. In contrast, a savefile created with microsecond preci?

 sion will have trailing zeroes added to the time stamp when

 --nano is used.

 -K

 --dont-verify-checksums

 Don't attempt to verify IP, TCP, or UDP checksums. This is use?

 ful for interfaces that perform some or all of those checksum

 calculation in hardware; otherwise, all outgoing TCP checksums

 will be flagged as bad.

 -l Make stdout line buffered. Useful if you want to see the data

 while capturing it. E.g.,

 tcpdump -l | tee dat

 or

 tcpdump -l > dat & tail -f dat

 Note that on Windows,``line buffered'' means ``unbuffered'', so

 that WinDump will write each character individually if -l is

 specified.

 -U is similar to -l in its behavior, but it will cause output to

 be ``packet-buffered'', so that the output is written to stdout

 at the end of each packet rather than at the end of each line;

 this is buffered on all platforms, including Windows.

 -L

 --list-data-link-types

 List the known data link types for the interface, in the speci?

 fied mode, and exit. The list of known data link types may be

 dependent on the specified mode; for example, on some platforms,

 a Wi-Fi interface might support one set of data link types when

 not in monitor mode (for example, it might support only fake

 Ethernet headers, or might support 802.11 headers but not sup?

 port 802.11 headers with radio information) and another set of Page 9/35

 data link types when in monitor mode (for example, it might sup?

 port 802.11 headers, or 802.11 headers with radio information,

 only in monitor mode).

 -m module

 Load SMI MIB module definitions from file module. This option

 can be used several times to load several MIB modules into tcp?

 dump.

 -M secret

 Use secret as a shared secret for validating the digests found

 in TCP segments with the TCP-MD5 option (RFC 2385), if present.

 -n Don't convert host addresses to names. This can be used to

 avoid DNS lookups.

 -nn Don't convert protocol and port numbers etc. to names either.

 -N Don't print domain name qualification of host names. E.g., if

 you give this flag then tcpdump will print ``nic'' instead of

 ``nic.ddn.mil''.

 -#

 --number

 Print an optional packet number at the beginning of the line.

 -O

 --no-optimize

 Do not run the packet-matching code optimizer. This is useful

 only if you suspect a bug in the optimizer.

 -p

 --no-promiscuous-mode

 Don't put the interface into promiscuous mode. Note that the

 interface might be in promiscuous mode for some other reason;

 hence, `-p' cannot be used as an abbreviation for `ether host

 {local-hw-addr} or ether broadcast'.

 --print

 Print parsed packet output, even if the raw packets are being

 saved to a file with the -w flag.

 -Q direction Page 10/35

 --direction=direction

 Choose send/receive direction direction for which packets should

 be captured. Possible values are `in', `out' and `inout'. Not

 available on all platforms.

 -q Quick (quiet?) output. Print less protocol information so out?

 put lines are shorter.

 -r file

 Read packets from file (which was created with the -w option or

 by other tools that write pcap or pcapng files). Standard input

 is used if file is ``-''.

 -S

 --absolute-tcp-sequence-numbers

 Print absolute, rather than relative, TCP sequence numbers.

 -s snaplen

 --snapshot-length=snaplen

 Snarf snaplen bytes of data from each packet rather than the de?

 fault of 262144 bytes. Packets truncated because of a limited

 snapshot are indicated in the output with ``[|proto]'', where

 proto is the name of the protocol level at which the truncation

 has occurred.

 Note that taking larger snapshots both increases the amount of

 time it takes to process packets and, effectively, decreases the

 amount of packet buffering. This may cause packets to be lost.

 Note also that taking smaller snapshots will discard data from

 protocols above the transport layer, which loses information

 that may be important. NFS and AFS requests and replies, for

 example, are very large, and much of the detail won't be avail?

 able if a too-short snapshot length is selected.

 If you need to reduce the snapshot size below the default, you

 should limit snaplen to the smallest number that will capture

 the protocol information you're interested in. Setting snaplen

 to 0 sets it to the default of 262144, for backwards compatibil?

 ity with recent older versions of tcpdump. Page 11/35

 -T type

 Force packets selected by "expression" to be interpreted the

 specified type. Currently known types are aodv (Ad-hoc On-de?

 mand Distance Vector protocol), carp (Common Address Redundancy

 Protocol), cnfp (Cisco NetFlow protocol), domain (Domain Name

 System), lmp (Link Management Protocol), pgm (Pragmatic General

 Multicast), pgm_zmtp1 (ZMTP/1.0 inside PGM/EPGM), ptp (Precision

 Time Protocol), radius (RADIUS), resp (REdis Serialization Pro?

 tocol), rpc (Remote Procedure Call), rtcp (Real-Time Applica?

 tions control protocol), rtp (Real-Time Applications protocol),

 snmp (Simple Network Management Protocol), someip (SOME/IP),

 tftp (Trivial File Transfer Protocol), vat (Visual Audio Tool),

 vxlan (Virtual eXtensible Local Area Network), wb (distributed

 White Board) and zmtp1 (ZeroMQ Message Transport Protocol 1.0).

 Note that the pgm type above affects UDP interpretation only,

 the native PGM is always recognised as IP protocol 113 regard?

 less. UDP-encapsulated PGM is often called "EPGM" or "PGM/UDP".

 Note that the pgm_zmtp1 type above affects interpretation of

 both native PGM and UDP at once. During the native PGM decoding

 the application data of an ODATA/RDATA packet would be decoded

 as a ZeroMQ datagram with ZMTP/1.0 frames. During the UDP de?

 coding in addition to that any UDP packet would be treated as an

 encapsulated PGM packet.

 -t Don't print a timestamp on each dump line.

 -tt Print the timestamp, as seconds since January 1, 1970, 00:00:00,

 UTC, and fractions of a second since that time, on each dump

 line.

 -ttt Print a delta (microsecond or nanosecond resolution depending on

 the --time-stamp-precision option) between current and previous

 line on each dump line. The default is microsecond resolution.

 -tttt Print a timestamp, as hours, minutes, seconds, and fractions of

 a second since midnight, preceded by the date, on each dump

 line. Page 12/35

 -ttttt Print a delta (microsecond or nanosecond resolution depending on

 the --time-stamp-precision option) between current and first

 line on each dump line. The default is microsecond resolution.

 -u Print undecoded NFS handles.

 -U

 --packet-buffered

 If the -w option is not specified, or if it is specified but the

 --print flag is also specified, make the printed packet output

 ``packet-buffered''; i.e., as the description of the contents of

 each packet is printed, it will be written to the standard out?

 put, rather than, when not writing to a terminal, being written

 only when the output buffer fills.

 If the -w option is specified, make the saved raw packet output

 ``packet-buffered''; i.e., as each packet is saved, it will be

 written to the output file, rather than being written only when

 the output buffer fills.

 The -U flag will not be supported if tcpdump was built with an

 older version of libpcap that lacks the pcap_dump_flush(3PCAP)

 function.

 -v When parsing and printing, produce (slightly more) verbose out?

 put. For example, the time to live, identification, total

 length and options in an IP packet are printed. Also enables

 additional packet integrity checks such as verifying the IP and

 ICMP header checksum.

 When writing to a file with the -w option and at the same time

 not reading from a file with the -r option, report to stderr,

 once per second, the number of packets captured. In Solaris,

 FreeBSD and possibly other operating systems this periodic up?

 date currently can cause loss of captured packets on their way

 from the kernel to tcpdump.

 -vv Even more verbose output. For example, additional fields are

 printed from NFS reply packets, and SMB packets are fully de?

 coded. Page 13/35

 -vvv Even more verbose output. For example, telnet SB ... SE options

 are printed in full. With -X Telnet options are printed in hex

 as well.

 -V file

 Read a list of filenames from file. Standard input is used if

 file is ``-''.

 -w file

 Write the raw packets to file rather than parsing and printing

 them out. They can later be printed with the -r option. Stan?

 dard output is used if file is ``-''.

 This output will be buffered if written to a file or pipe, so a

 program reading from the file or pipe may not see packets for an

 arbitrary amount of time after they are received. Use the -U

 flag to cause packets to be written as soon as they are re?

 ceived.

 The MIME type application/vnd.tcpdump.pcap has been registered

 with IANA for pcap files. The filename extension .pcap appears

 to be the most commonly used along with .cap and .dmp. Tcpdump

 itself doesn't check the extension when reading capture files

 and doesn't add an extension when writing them (it uses magic

 numbers in the file header instead). However, many operating

 systems and applications will use the extension if it is present

 and adding one (e.g. .pcap) is recommended.

 See pcap-savefile(5) for a description of the file format.

 -W filecount

 Used in conjunction with the -C option, this will limit the num?

 ber of files created to the specified number, and begin over?

 writing files from the beginning, thus creating a 'rotating'

 buffer. In addition, it will name the files with enough leading

 0s to support the maximum number of files, allowing them to sort

 correctly.

 Used in conjunction with the -G option, this will limit the num?

 ber of rotated dump files that get created, exiting with status Page 14/35

 0 when reaching the limit.

 If used in conjunction with both -C and -G, the -W option will

 currently be ignored, and will only affect the file name.

 -x When parsing and printing, in addition to printing the headers

 of each packet, print the data of each packet (minus its link

 level header) in hex. The smaller of the entire packet or

 snaplen bytes will be printed. Note that this is the entire

 link-layer packet, so for link layers that pad (e.g. Ethernet),

 the padding bytes will also be printed when the higher layer

 packet is shorter than the required padding. In the current im?

 plementation this flag may have the same effect as -xx if the

 packet is truncated.

 -xx When parsing and printing, in addition to printing the headers

 of each packet, print the data of each packet, including its

 link level header, in hex.

 -X When parsing and printing, in addition to printing the headers

 of each packet, print the data of each packet (minus its link

 level header) in hex and ASCII. This is very handy for

 analysing new protocols. In the current implementation this

 flag may have the same effect as -XX if the packet is truncated.

 -XX When parsing and printing, in addition to printing the headers

 of each packet, print the data of each packet, including its

 link level header, in hex and ASCII.

 -y datalinktype

 --linktype=datalinktype

 Set the data link type to use while capturing packets (see -L)

 or just compiling and dumping packet-matching code (see -d) to

 datalinktype.

 -z postrotate-command

 Used in conjunction with the -C or -G options, this will make

 tcpdump run " postrotate-command file " where file is the save?

 file being closed after each rotation. For example, specifying

 -z gzip or -z bzip2 will compress each savefile using gzip or Page 15/35

 bzip2.

 Note that tcpdump will run the command in parallel to the cap?

 ture, using the lowest priority so that this doesn't disturb the

 capture process.

 And in case you would like to use a command that itself takes

 flags or different arguments, you can always write a shell

 script that will take the savefile name as the only argument,

 make the flags & arguments arrangements and execute the command

 that you want.

 -Z user

 --relinquish-privileges=user

 If tcpdump is running as root, after opening the capture device

 or input savefile, but before opening any savefiles for output,

 change the user ID to user and the group ID to the primary group

 of user.

 This behavior is enabled by default (-Z tcpdump), and can be

 disabled by -Z root.

 expression

 selects which packets will be dumped. If no expression is

 given, all packets on the net will be dumped. Otherwise, only

 packets for which expression is `true' will be dumped.

 For the expression syntax, see pcap-filter(7).

 The expression argument can be passed to tcpdump as either a

 single Shell argument, or as multiple Shell arguments, whichever

 is more convenient. Generally, if the expression contains Shell

 metacharacters, such as backslashes used to escape protocol

 names, it is easier to pass it as a single, quoted argument

 rather than to escape the Shell metacharacters. Multiple argu?

 ments are concatenated with spaces before being parsed.

EXAMPLES

 To print all packets arriving at or departing from sundown:

 tcpdump host sundown

 To print traffic between helios and either hot or ace: Page 16/35

 tcpdump host helios and \(hot or ace \)

 To print all IP packets between ace and any host except helios:

 tcpdump ip host ace and not helios

 To print all traffic between local hosts and hosts at Berkeley:

 tcpdump net ucb-ether

 To print all ftp traffic through internet gateway snup: (note that the

 expression is quoted to prevent the shell from (mis-)interpreting the

 parentheses):

 tcpdump 'gateway snup and (port ftp or ftp-data)'

 To print traffic neither sourced from nor destined for local hosts (if

 you gateway to one other net, this stuff should never make it onto your

 local net).

 tcpdump ip and not net localnet

 To print the start and end packets (the SYN and FIN packets) of each

 TCP conversation that involves a non-local host.

 tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet'

 To print the TCP packets with flags RST and ACK both set. (i.e. select

 only the RST and ACK flags in the flags field, and if the result is

 "RST and ACK both set", match)

 tcpdump 'tcp[tcpflags] & (tcp-rst|tcp-ack) == (tcp-rst|tcp-ack)'

 To print all IPv4 HTTP packets to and from port 80, i.e. print only

 packets that contain data, not, for example, SYN and FIN packets and

 ACK-only packets. (IPv6 is left as an exercise for the reader.)

 tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)'

 To print IP packets longer than 576 bytes sent through gateway snup:

 tcpdump 'gateway snup and ip[2:2] > 576'

 To print IP broadcast or multicast packets that were not sent via Eth?

 ernet broadcast or multicast:

 tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'

 To print all ICMP packets that are not echo requests/replies (i.e., not

 ping packets):

 tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'

OUTPUT FORMAT Page 17/35

 The output of tcpdump is protocol dependent. The following gives a

 brief description and examples of most of the formats.

 Timestamps

 By default, all output lines are preceded by a timestamp. The time?

 stamp is the current clock time in the form

 hh:mm:ss.frac

 and is as accurate as the kernel's clock. The timestamp reflects the

 time the kernel applied a time stamp to the packet. No attempt is made

 to account for the time lag between when the network interface finished

 receiving the packet from the network and when the kernel applied a

 time stamp to the packet; that time lag could include a delay between

 the time when the network interface finished receiving a packet from

 the network and the time when an interrupt was delivered to the kernel

 to get it to read the packet and a delay between the time when the ker?

 nel serviced the `new packet' interrupt and the time when it applied a

 time stamp to the packet.

 Link Level Headers

 If the '-e' option is given, the link level header is printed out. On

 Ethernets, the source and destination addresses, protocol, and packet

 length are printed.

 On FDDI networks, the '-e' option causes tcpdump to print the `frame

 control' field, the source and destination addresses, and the packet

 length. (The `frame control' field governs the interpretation of the

 rest of the packet. Normal packets (such as those containing IP data?

 grams) are `async' packets, with a priority value between 0 and 7; for

 example, `async4'. Such packets are assumed to contain an 802.2 Logi?

 cal Link Control (LLC) packet; the LLC header is printed if it is not

 an ISO datagram or a so-called SNAP packet.

 On Token Ring networks, the '-e' option causes tcpdump to print the

 `access control' and `frame control' fields, the source and destination

 addresses, and the packet length. As on FDDI networks, packets are as?

 sumed to contain an LLC packet. Regardless of whether the '-e' option

 is specified or not, the source routing information is printed for Page 18/35

 source-routed packets.

 On 802.11 networks, the '-e' option causes tcpdump to print the `frame

 control' fields, all of the addresses in the 802.11 header, and the

 packet length. As on FDDI networks, packets are assumed to contain an

 LLC packet.

 (N.B.: The following description assumes familiarity with the SLIP com?

 pression algorithm described in RFC-1144.)

 On SLIP links, a direction indicator (``I'' for inbound, ``O'' for out?

 bound), packet type, and compression information are printed out. The

 packet type is printed first. The three types are ip, utcp, and ctcp.

 No further link information is printed for ip packets. For TCP pack?

 ets, the connection identifier is printed following the type. If the

 packet is compressed, its encoded header is printed out. The special

 cases are printed out as *S+n and *SA+n, where n is the amount by which

 the sequence number (or sequence number and ack) has changed. If it is

 not a special case, zero or more changes are printed. A change is in?

 dicated by U (urgent pointer), W (window), A (ack), S (sequence num?

 ber), and I (packet ID), followed by a delta (+n or -n), or a new value

 (=n). Finally, the amount of data in the packet and compressed header

 length are printed.

 For example, the following line shows an outbound compressed TCP

 packet, with an implicit connection identifier; the ack has changed by

 6, the sequence number by 49, and the packet ID by 6; there are 3 bytes

 of data and 6 bytes of compressed header:

 O ctcp * A+6 S+49 I+6 3 (6)

 ARP/RARP Packets

 ARP/RARP output shows the type of request and its arguments. The for?

 mat is intended to be self explanatory. Here is a short sample taken

 from the start of an `rlogin' from host rtsg to host csam:

 arp who-has csam tell rtsg

 arp reply csam is-at CSAM

 The first line says that rtsg sent an ARP packet asking for the Ether?

 net address of internet host csam. Csam replies with its Ethernet ad? Page 19/35

 dress (in this example, Ethernet addresses are in caps and internet ad?

 dresses in lower case).

 This would look less redundant if we had done tcpdump -n:

 arp who-has 128.3.254.6 tell 128.3.254.68

 arp reply 128.3.254.6 is-at 02:07:01:00:01:c4

 If we had done tcpdump -e, the fact that the first packet is broadcast

 and the second is point-to-point would be visible:

 RTSG Broadcast 0806 64: arp who-has csam tell rtsg

 CSAM RTSG 0806 64: arp reply csam is-at CSAM

 For the first packet this says the Ethernet source address is RTSG, the

 destination is the Ethernet broadcast address, the type field contained

 hex 0806 (type ETHER_ARP) and the total length was 64 bytes.

 IPv4 Packets

 If the link-layer header is not being printed, for IPv4 packets, IP is

 printed after the time stamp.

 If the -v flag is specified, information from the IPv4 header is shown

 in parentheses after the IP or the link-layer header. The general for?

 mat of this information is:

 tos tos, ttl ttl, id id, offset offset, flags [flags], proto proto, length length, options (options)

 tos is the type of service field; if the ECN bits are non-zero, those

 are reported as ECT(1), ECT(0), or CE. ttl is the time-to-live; it is

 not reported if it is zero. id is the IP identification field. offset

 is the fragment offset field; it is printed whether this is part of a

 fragmented datagram or not. flags are the MF and DF flags; + is re?

 ported if MF is set, and DF is reported if F is set. If neither are

 set, . is reported. proto is the protocol ID field. length is the to?

 tal length field. options are the IP options, if any.

 Next, for TCP and UDP packets, the source and destination IP addresses

 and TCP or UDP ports, with a dot between each IP address and its corre?

 sponding port, will be printed, with a > separating the source and des?

 tination. For other protocols, the addresses will be printed, with a >

 separating the source and destination. Higher level protocol informa?

 tion, if any, will be printed after that. Page 20/35

 For fragmented IP datagrams, the first fragment contains the higher

 level protocol header; fragments after the first contain no higher

 level protocol header. Fragmentation information will be printed only

 with the -v flag, in the IP header information, as described above.

 TCP Packets

 (N.B.:The following description assumes familiarity with the TCP proto?

 col described in RFC-793. If you are not familiar with the protocol,

 this description will not be of much use to you.)

 The general format of a TCP protocol line is:

 src > dst: Flags [tcpflags], seq data-seqno, ack ackno, win window, urg urgent, options [opts], length len

 Src and dst are the source and destination IP addresses and ports.

 Tcpflags are some combination of S (SYN), F (FIN), P (PUSH), R (RST), U

 (URG), W (ECN CWR), E (ECN-Echo) or `.' (ACK), or `none' if no flags

 are set. Data-seqno describes the portion of sequence space covered by

 the data in this packet (see example below). Ackno is sequence number

 of the next data expected the other direction on this connection. Win?

 dow is the number of bytes of receive buffer space available the other

 direction on this connection. Urg indicates there is `urgent' data in

 the packet. Opts are TCP options (e.g., mss 1024). Len is the length

 of payload data.

 Iptype, Src, dst, and flags are always present. The other fields de?

 pend on the contents of the packet's TCP protocol header and are output

 only if appropriate.

 Here is the opening portion of an rlogin from host rtsg to host csam.

 IP rtsg.1023 > csam.login: Flags [S], seq 768512:768512, win 4096, opts [mss 1024]

 IP csam.login > rtsg.1023: Flags [S.], seq, 947648:947648, ack 768513, win 4096, opts [mss 1024]

 IP rtsg.1023 > csam.login: Flags [.], ack 1, win 4096

 IP rtsg.1023 > csam.login: Flags [P.], seq 1:2, ack 1, win 4096, length 1

 IP csam.login > rtsg.1023: Flags [.], ack 2, win 4096

 IP rtsg.1023 > csam.login: Flags [P.], seq 2:21, ack 1, win 4096, length 19

 IP csam.login > rtsg.1023: Flags [P.], seq 1:2, ack 21, win 4077, length 1

 IP csam.login > rtsg.1023: Flags [P.], seq 2:3, ack 21, win 4077, urg 1, length 1

 IP csam.login > rtsg.1023: Flags [P.], seq 3:4, ack 21, win 4077, urg 1, length 1 Page 21/35

 The first line says that TCP port 1023 on rtsg sent a packet to port

 login on csam. The S indicates that the SYN flag was set. The packet

 sequence number was 768512 and it contained no data. (The notation is

 `first:last' which means `sequence numbers first up to but not includ?

 ing last'.) There was no piggy-backed ACK, the available receive win?

 dow was 4096 bytes and there was a max-segment-size option requesting

 an MSS of 1024 bytes.

 Csam replies with a similar packet except it includes a piggy-backed

 ACK for rtsg's SYN. Rtsg then ACKs csam's SYN. The `.' means the ACK

 flag was set. The packet contained no data so there is no data se?

 quence number or length. Note that the ACK sequence number is a small

 integer (1). The first time tcpdump sees a TCP `conversation', it

 prints the sequence number from the packet. On subsequent packets of

 the conversation, the difference between the current packet's sequence

 number and this initial sequence number is printed. This means that

 sequence numbers after the first can be interpreted as relative byte

 positions in the conversation's data stream (with the first data byte

 each direction being `1'). `-S' will override this feature, causing

 the original sequence numbers to be output.

 On the 6th line, rtsg sends csam 19 bytes of data (bytes 2 through 20

 in the rtsg ? csam side of the conversation). The PUSH flag is set in

 the packet. On the 7th line, csam says it's received data sent by rtsg

 up to but not including byte 21. Most of this data is apparently sit?

 ting in the socket buffer since csam's receive window has gotten 19

 bytes smaller. Csam also sends one byte of data to rtsg in this

 packet. On the 8th and 9th lines, csam sends two bytes of urgent,

 pushed data to rtsg.

 If the snapshot was small enough that tcpdump didn't capture the full

 TCP header, it interprets as much of the header as it can and then re?

 ports ``[|tcp]'' to indicate the remainder could not be interpreted.

 If the header contains a bogus option (one with a length that's either

 too small or beyond the end of the header), tcpdump reports it as

 ``[bad opt]'' and does not interpret any further options (since it's Page 22/35

 impossible to tell where they start). If the header length indicates

 options are present but the IP datagram length is not long enough for

 the options to actually be there, tcpdump reports it as ``[bad hdr

 length]''.

 Capturing TCP packets with particular flag combinations (SYN-ACK, URG-

 ACK, etc.)

 There are 8 bits in the control bits section of the TCP header:

 CWR | ECE | URG | ACK | PSH | RST | SYN | FIN

 Let's assume that we want to watch packets used in establishing a TCP

 connection. Recall that TCP uses a 3-way handshake protocol when it

 initializes a new connection; the connection sequence with regard to

 the TCP control bits is

 1) Caller sends SYN

 2) Recipient responds with SYN, ACK

 3) Caller sends ACK

 Now we're interested in capturing packets that have only the SYN bit

 set (Step 1). Note that we don't want packets from step 2 (SYN-ACK),

 just a plain initial SYN. What we need is a correct filter expression

 for tcpdump.

 Recall the structure of a TCP header without options:

 0 15 31

 | source port | destination port |

 | sequence number |

 | acknowledgment number |

 | HL | rsvd |C|E|U|A|P|R|S|F| window size |

 | TCP checksum | urgent pointer |

 A TCP header usually holds 20 octets of data, unless options are Page 23/35

 present. The first line of the graph contains octets 0 - 3, the second

 line shows octets 4 - 7 etc.

 Starting to count with 0, the relevant TCP control bits are contained

 in octet 13:

 0 7| 15| 23| 31

 ----------------|---------------|---------------|----------------

 | HL | rsvd |C|E|U|A|P|R|S|F| window size |

 ----------------|---------------|---------------|----------------

 | | 13th octet | | |

 Let's have a closer look at octet no. 13:

 | |

 |---------------|

 |C|E|U|A|P|R|S|F|

 |---------------|

 |7 5 3 0|

 These are the TCP control bits we are interested in. We have numbered

 the bits in this octet from 0 to 7, right to left, so the PSH bit is

 bit number 3, while the URG bit is number 5.

 Recall that we want to capture packets with only SYN set. Let's see

 what happens to octet 13 if a TCP datagram arrives with the SYN bit set

 in its header:

 |C|E|U|A|P|R|S|F|

 |---------------|

 |0 0 0 0 0 0 1 0|

 |---------------|

 |7 6 5 4 3 2 1 0|

 Looking at the control bits section we see that only bit number 1 (SYN)

 is set.

 Assuming that octet number 13 is an 8-bit unsigned integer in network

 byte order, the binary value of this octet is

 00000010

 and its decimal representation is

 7 6 5 4 3 2 1 0 Page 24/35

 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 1*2 + 0*2 = 2

 We're almost done, because now we know that if only SYN is set, the

 value of the 13th octet in the TCP header, when interpreted as a 8-bit

 unsigned integer in network byte order, must be exactly 2.

 This relationship can be expressed as

 tcp[13] == 2

 We can use this expression as the filter for tcpdump in order to watch

 packets which have only SYN set:

 tcpdump -i xl0 tcp[13] == 2

 The expression says "let the 13th octet of a TCP datagram have the dec?

 imal value 2", which is exactly what we want.

 Now, let's assume that we need to capture SYN packets, but we don't

 care if ACK or any other TCP control bit is set at the same time.

 Let's see what happens to octet 13 when a TCP datagram with SYN-ACK set

 arrives:

 |C|E|U|A|P|R|S|F|

 |---------------|

 |0 0 0 1 0 0 1 0|

 |---------------|

 |7 6 5 4 3 2 1 0|

 Now bits 1 and 4 are set in the 13th octet. The binary value of octet

 13 is

 00010010

 which translates to decimal

 7 6 5 4 3 2 1 0

 0*2 + 0*2 + 0*2 + 1*2 + 0*2 + 0*2 + 1*2 + 0*2 = 18

 Now we can't just use 'tcp[13] == 18' in the tcpdump filter expression,

 because that would select only those packets that have SYN-ACK set, but

 not those with only SYN set. Remember that we don't care if ACK or any

 other control bit is set as long as SYN is set.

 In order to achieve our goal, we need to logically AND the binary value

 of octet 13 with some other value to preserve the SYN bit. We know

 that we want SYN to be set in any case, so we'll logically AND the Page 25/35

 value in the 13th octet with the binary value of a SYN:

 00010010 SYN-ACK 00000010 SYN

 AND 00000010 (we want SYN) AND 00000010 (we want SYN)

 -------- --------

 = 00000010 = 00000010

 We see that this AND operation delivers the same result regardless

 whether ACK or another TCP control bit is set. The decimal representa?

 tion of the AND value as well as the result of this operation is 2 (bi?

 nary 00000010), so we know that for packets with SYN set the following

 relation must hold true:

 ((value of octet 13) AND (2)) == (2)

 This points us to the tcpdump filter expression

 tcpdump -i xl0 'tcp[13] & 2 == 2'

 Some offsets and field values may be expressed as names rather than as

 numeric values. For example tcp[13] may be replaced with tcp[tcpflags].

 The following TCP flag field values are also available: tcp-fin, tcp-

 syn, tcp-rst, tcp-push, tcp-ack, tcp-urg.

 This can be demonstrated as:

 tcpdump -i xl0 'tcp[tcpflags] & tcp-push != 0'

 Note that you should use single quotes or a backslash in the expression

 to hide the AND ('&') special character from the shell.

 UDP Packets

 UDP format is illustrated by this rwho packet:

 actinide.who > broadcast.who: udp 84

 This says that port who on host actinide sent a UDP datagram to port

 who on host broadcast, the Internet broadcast address. The packet con?

 tained 84 bytes of user data.

 Some UDP services are recognized (from the source or destination port

 number) and the higher level protocol information printed. In particu?

 lar, Domain Name service requests (RFC-1034/1035) and Sun RPC calls

 (RFC-1050) to NFS.

 UDP Name Server Requests

 (N.B.:The following description assumes familiarity with the Domain Page 26/35

 Service protocol described in RFC-1035. If you are not familiar with

 the protocol, the following description will appear to be written in

 Greek.)

 Name server requests are formatted as

 src > dst: id op? flags qtype qclass name (len)

 h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)

 Host h2opolo asked the domain server on helios for an address record

 (qtype=A) associated with the name ucbvax.berkeley.edu. The query id

 was `3'. The `+' indicates the recursion desired flag was set. The

 query length was 37 bytes, not including the UDP and IP protocol head?

 ers. The query operation was the normal one, Query, so the op field

 was omitted. If the op had been anything else, it would have been

 printed between the `3' and the `+'. Similarly, the qclass was the

 normal one, C_IN, and omitted. Any other qclass would have been

 printed immediately after the `A'.

 A few anomalies are checked and may result in extra fields enclosed in

 square brackets: If a query contains an answer, authority records or

 additional records section, ancount, nscount, or arcount are printed as

 `[na]', `[nn]' or `[nau]' where n is the appropriate count. If any of

 the response bits are set (AA, RA or rcode) or any of the `must be

 zero' bits are set in bytes two and three, `[b2&3=x]' is printed, where

 x is the hex value of header bytes two and three.

 UDP Name Server Responses

 Name server responses are formatted as

 src > dst: id op rcode flags a/n/au type class data (len)

 helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)

 helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)

 In the first example, helios responds to query id 3 from h2opolo with 3

 answer records, 3 name server records and 7 additional records. The

 first answer record is type A (address) and its data is internet ad?

 dress 128.32.137.3. The total size of the response was 273 bytes, ex?

 cluding UDP and IP headers. The op (Query) and response code (NoError)

 were omitted, as was the class (C_IN) of the A record. Page 27/35

 In the second example, helios responds to query 2 with a response code

 of non-existent domain (NXDomain) with no answers, one name server and

 no authority records. The `*' indicates that the authoritative answer

 bit was set. Since there were no answers, no type, class or data were

 printed.

 Other flag characters that might appear are `-' (recursion available,

 RA, not set) and `|' (truncated message, TC, set). If the `question'

 section doesn't contain exactly one entry, `[nq]' is printed.

 SMB/CIFS decoding

 tcpdump now includes fairly extensive SMB/CIFS/NBT decoding for data on

 UDP/137, UDP/138 and TCP/139. Some primitive decoding of IPX and Net?

 BEUI SMB data is also done.

 By default a fairly minimal decode is done, with a much more detailed

 decode done if -v is used. Be warned that with -v a single SMB packet

 may take up a page or more, so only use -v if you really want all the

 gory details.

 For information on SMB packet formats and what all the fields mean see

 www.cifs.org or the pub/samba/specs/ directory on your favorite

 samba.org mirror site. The SMB patches were written by Andrew Tridgell

 (tridge@samba.org).

 NFS Requests and Replies

 Sun NFS (Network File System) requests and replies are printed as:

 src.sport > dst.nfs: NFS request xid xid len op args

 src.nfs > dst.dport: NFS reply xid xid reply stat len op results

 sushi.1023 > wrl.nfs: NFS request xid 26377

 112 readlink fh 21,24/10.73165

 wrl.nfs > sushi.1023: NFS reply xid 26377

 reply ok 40 readlink "../var"

 sushi.1022 > wrl.nfs: NFS request xid 8219

 144 lookup fh 9,74/4096.6878 "xcolors"

 wrl.nfs > sushi.1022: NFS reply xid 8219

 reply ok 128 lookup fh 9,74/4134.3150

 In the first line, host sushi sends a transaction with id 26377 to wrl. Page 28/35

 The request was 112 bytes, excluding the UDP and IP headers. The oper?

 ation was a readlink (read symbolic link) on file handle (fh)

 21,24/10.731657119. (If one is lucky, as in this case, the file handle

 can be interpreted as a major,minor device number pair, followed by the

 inode number and generation number.) In the second line, wrl replies

 `ok' with the same transaction id and the contents of the link.

 In the third line, sushi asks (using a new transaction id) wrl to

 lookup the name `xcolors' in directory file 9,74/4096.6878. In the

 fourth line, wrl sends a reply with the respective transaction id.

 Note that the data printed depends on the operation type. The format

 is intended to be self explanatory if read in conjunction with an NFS

 protocol spec. Also note that older versions of tcpdump printed NFS

 packets in a slightly different format: the transaction id (xid) would

 be printed instead of the non-NFS port number of the packet.

 If the -v (verbose) flag is given, additional information is printed.

 For example:

 sushi.1023 > wrl.nfs: NFS request xid 79658

 148 read fh 21,11/12.195 8192 bytes @ 24576

 wrl.nfs > sushi.1023: NFS reply xid 79658

 reply ok 1472 read REG 100664 ids 417/0 sz 29388

 (-v also prints the IP header TTL, ID, length, and fragmentation

 fields, which have been omitted from this example.) In the first line,

 sushi asks wrl to read 8192 bytes from file 21,11/12.195, at byte off?

 set 24576. Wrl replies `ok'; the packet shown on the second line is

 the first fragment of the reply, and hence is only 1472 bytes long (the

 other bytes will follow in subsequent fragments, but these fragments do

 not have NFS or even UDP headers and so might not be printed, depending

 on the filter expression used). Because the -v flag is given, some of

 the file attributes (which are returned in addition to the file data)

 are printed: the file type (``REG'', for regular file), the file mode

 (in octal), the UID and GID, and the file size.

 If the -v flag is given more than once, even more details are printed.

 NFS reply packets do not explicitly identify the RPC operation. In? Page 29/35

 stead, tcpdump keeps track of ``recent'' requests, and matches them to

 the replies using the transaction ID. If a reply does not closely fol?

 low the corresponding request, it might not be parsable.

 AFS Requests and Replies

 Transarc AFS (Andrew File System) requests and replies are printed as:

 src.sport > dst.dport: rx packet-type

 src.sport > dst.dport: rx packet-type service call call-name args

 src.sport > dst.dport: rx packet-type service reply call-name args

 elvis.7001 > pike.afsfs:

 rx data fs call rename old fid 536876964/1/1 ".newsrc.new"

 new fid 536876964/1/1 ".newsrc"

 pike.afsfs > elvis.7001: rx data fs reply rename

 In the first line, host elvis sends a RX packet to pike. This was a RX

 data packet to the fs (fileserver) service, and is the start of an RPC

 call. The RPC call was a rename, with the old directory file id of

 536876964/1/1 and an old filename of `.newsrc.new', and a new directory

 file id of 536876964/1/1 and a new filename of `.newsrc'. The host

 pike responds with a RPC reply to the rename call (which was success?

 ful, because it was a data packet and not an abort packet).

 In general, all AFS RPCs are decoded at least by RPC call name. Most

 AFS RPCs have at least some of the arguments decoded (generally only

 the `interesting' arguments, for some definition of interesting).

 The format is intended to be self-describing, but it will probably not

 be useful to people who are not familiar with the workings of AFS and

 RX.

 If the -v (verbose) flag is given twice, acknowledgement packets and

 additional header information is printed, such as the RX call ID, call

 number, sequence number, serial number, and the RX packet flags.

 If the -v flag is given twice, additional information is printed, such

 as the RX call ID, serial number, and the RX packet flags. The MTU ne?

 gotiation information is also printed from RX ack packets.

 If the -v flag is given three times, the security index and service id

 are printed. Page 30/35

 Error codes are printed for abort packets, with the exception of Ubik

 beacon packets (because abort packets are used to signify a yes vote

 for the Ubik protocol).

 AFS reply packets do not explicitly identify the RPC operation. In?

 stead, tcpdump keeps track of ``recent'' requests, and matches them to

 the replies using the call number and service ID. If a reply does not

 closely follow the corresponding request, it might not be parsable.

 KIP AppleTalk (DDP in UDP)

 AppleTalk DDP packets encapsulated in UDP datagrams are de-encapsulated

 and dumped as DDP packets (i.e., all the UDP header information is dis?

 carded). The file /etc/atalk.names is used to translate AppleTalk net

 and node numbers to names. Lines in this file have the form

 number name

 1.254 ether

 16.1 icsd-net

 1.254.110 ace

 The first two lines give the names of AppleTalk networks. The third

 line gives the name of a particular host (a host is distinguished from

 a net by the 3rd octet in the number - a net number must have two

 octets and a host number must have three octets.) The number and name

 should be separated by whitespace (blanks or tabs). The

 /etc/atalk.names file may contain blank lines or comment lines (lines

 starting with a `#').

 AppleTalk addresses are printed in the form

 net.host.port

 144.1.209.2 > icsd-net.112.220

 office.2 > icsd-net.112.220

 jssmag.149.235 > icsd-net.2

 (If the /etc/atalk.names doesn't exist or doesn't contain an entry for

 some AppleTalk host/net number, addresses are printed in numeric form.)

 In the first example, NBP (DDP port 2) on net 144.1 node 209 is sending

 to whatever is listening on port 220 of net icsd node 112. The second

 line is the same except the full name of the source node is known (`of? Page 31/35

 fice'). The third line is a send from port 235 on net jssmag node 149

 to broadcast on the icsd-net NBP port (note that the broadcast address

 (255) is indicated by a net name with no host number - for this reason

 it's a good idea to keep node names and net names distinct in

 /etc/atalk.names).

 NBP (name binding protocol) and ATP (AppleTalk transaction protocol)

 packets have their contents interpreted. Other protocols just dump the

 protocol name (or number if no name is registered for the protocol) and

 packet size.

 NBP packets are formatted like the following examples:

 icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"

 jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250

 techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186

 The first line is a name lookup request for laserwriters sent by net

 icsd host 112 and broadcast on net jssmag. The nbp id for the lookup

 is 190. The second line shows a reply for this request (note that it

 has the same id) from host jssmag.209 saying that it has a laserwriter

 resource named "RM1140" registered on port 250. The third line is an?

 other reply to the same request saying host techpit has laserwriter

 "techpit" registered on port 186.

 ATP packet formatting is demonstrated by the following example:

 jssmag.209.165 > helios.132: atp-req 12266<0-7> 0xae030001

 helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000

 jssmag.209.165 > helios.132: atp-req 12266<3,5> 0xae030001

 helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

 helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000 Page 32/35

 jssmag.209.165 > helios.132: atp-rel 12266<0-7> 0xae030001

 jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002

 Jssmag.209 initiates transaction id 12266 with host helios by request?

 ing up to 8 packets (the `<0-7>'). The hex number at the end of the

 line is the value of the `userdata' field in the request.

 Helios responds with 8 512-byte packets. The `:digit' following the

 transaction id gives the packet sequence number in the transaction and

 the number in parens is the amount of data in the packet, excluding the

 ATP header. The `*' on packet 7 indicates that the EOM bit was set.

 Jssmag.209 then requests that packets 3 & 5 be retransmitted. Helios

 resends them then jssmag.209 releases the transaction. Finally, jss?

 mag.209 initiates the next request. The `*' on the request indicates

 that XO (`exactly once') was not set.

SEE ALSO

 stty(1), pcap(3PCAP), bpf(4), nit(4P), pcap-savefile(5),

 pcap-filter(7), pcap-tstamp(7)

 https://www.iana.org/assignments/media-types/applica?

 tion/vnd.tcpdump.pcap

AUTHORS

 The original authors are:

 Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence

 Berkeley National Laboratory, University of California, Berkeley, CA.

 It is currently being maintained by tcpdump.org.

 The current version is available via HTTPS:

 https://www.tcpdump.org/

 The original distribution is available via anonymous ftp:

 ftp://ftp.ee.lbl.gov/old/tcpdump.tar.Z

 IPv6/IPsec support is added by WIDE/KAME project. This program uses

 OpenSSL/LibreSSL, under specific configurations.

BUGS

 To report a security issue please send an e-mail to

 security@tcpdump.org.

 To report bugs and other problems, contribute patches, request a fea? Page 33/35

 ture, provide generic feedback etc. please see the file CONTRIBUTING in

 the tcpdump source tree root.

 NIT doesn't let you watch your own outbound traffic, BPF will. We rec?

 ommend that you use the latter.

 On Linux systems with 2.0[.x] kernels:

 packets on the loopback device will be seen twice;

 packet filtering cannot be done in the kernel, so that all pack?

 ets must be copied from the kernel in order to be filtered in

 user mode;

 all of a packet, not just the part that's within the snapshot

 length, will be copied from the kernel (the 2.0[.x] packet cap?

 ture mechanism, if asked to copy only part of a packet to

 userspace, will not report the true length of the packet; this

 would cause most IP packets to get an error from tcpdump);

 capturing on some PPP devices won't work correctly.

 We recommend that you upgrade to a 2.2 or later kernel.

 Some attempt should be made to reassemble IP fragments or, at least to

 compute the right length for the higher level protocol.

 Name server inverse queries are not dumped correctly: the (empty) ques?

 tion section is printed rather than real query in the answer section.

 Some believe that inverse queries are themselves a bug and prefer to

 fix the program generating them rather than tcpdump.

 A packet trace that crosses a daylight savings time change will give

 skewed time stamps (the time change is ignored).

 Filter expressions on fields other than those in Token Ring headers

 will not correctly handle source-routed Token Ring packets.

 Filter expressions on fields other than those in 802.11 headers will

 not correctly handle 802.11 data packets with both To DS and From DS

 set.

 ip6 proto should chase header chain, but at this moment it does not.

 ip6 protochain is supplied for this behavior.

 Arithmetic expression against transport layer headers, like tcp[0],

 does not work against IPv6 packets. It only looks at IPv4 packets. Page 34/35

 21 December 2020 TCPDUMP(8)

Page 35/35

