
Rocky Enterprise Linux 9.2 Manual Pages on command 'tclsh.1'

$ man tclsh.1

tclsh(1) Tcl Applications tclsh(1)

__

NAME

 tclsh - Simple shell containing Tcl interpreter

SYNOPSIS

 tclsh ?-encoding name? ?fileName arg arg ...?

__

DESCRIPTION

 Tclsh is a shell-like application that reads Tcl commands from its

 standard input or from a file and evaluates them. If invoked with no

 arguments then it runs interactively, reading Tcl commands from stan?

 dard input and printing command results and error messages to standard

 output. It runs until the exit command is invoked or until it reaches

 end-of-file on its standard input. If there exists a file .tclshrc (or

 tclshrc.tcl on the Windows platforms) in the home directory of the

 user, interactive tclsh evaluates the file as a Tcl script just before

 reading the first command from standard input.

SCRIPT FILES Page 1/4

 If tclsh is invoked with arguments then the first few arguments specify

 the name of a script file, and, optionally, the encoding of the text

 data stored in that script file. Any additional arguments are made

 available to the script as variables (see below). Instead of reading

 commands from standard input tclsh will read Tcl commands from the

 named file; tclsh will exit when it reaches the end of the file. The

 end of the file may be marked either by the physical end of the medium,

 or by the character, ?\032? (?\u001a?, control-Z). If this character

 is present in the file, the tclsh application will read text up to but

 not including the character. An application that requires this charac?

 ter in the file may safely encode it as ?\032?, ?\x1a?, or ?\u001a?; or

 may generate it by use of commands such as format or binary. There is

 no automatic evaluation of .tclshrc when the name of a script file is

 presented on the tclsh command line, but the script file can always

 source it if desired.

 If you create a Tcl script in a file whose first line is

 #!/usr/local/bin/tclsh

 then you can invoke the script file directly from your shell if you

 mark the file as executable. This assumes that tclsh has been in?

 stalled in the default location in /usr/local/bin; if it is installed

 somewhere else then you will have to modify the above line to match.

 Many UNIX systems do not allow the #! line to exceed about 30 charac?

 ters in length, so be sure that the tclsh executable can be accessed

 with a short file name.

 An even better approach is to start your script files with the follow?

 ing three lines:

 #!/bin/sh

 # the next line restarts using tclsh \

 exec tclsh "$0" ${1+"$@"}

 This approach has three advantages over the approach in the previous

 paragraph. First, the location of the tclsh binary does not have to be

 hard-wired into the script: it can be anywhere in your shell search

 path. Second, it gets around the 30-character file name limit in the Page 2/4

 previous approach. Third, this approach will work even if tclsh is it?

 self a shell script (this is done on some systems in order to handle

 multiple architectures or operating systems: the tclsh script selects

 one of several binaries to run). The three lines cause both sh and

 tclsh to process the script, but the exec is only executed by sh. sh

 processes the script first; it treats the second line as a comment and

 executes the third line. The exec statement cause the shell to stop

 processing and instead to start up tclsh to reprocess the entire

 script. When tclsh starts up, it treats all three lines as comments,

 since the backslash at the end of the second line causes the third line

 to be treated as part of the comment on the second line.

 You should note that it is also common practice to install tclsh with

 its version number as part of the name. This has the advantage of al?

 lowing multiple versions of Tcl to exist on the same system at once,

 but also the disadvantage of making it harder to write scripts that

 start up uniformly across different versions of Tcl.

VARIABLES

 Tclsh sets the following global Tcl variables in addition to those cre?

 ated by the Tcl library itself (such as env, which maps environment

 variables such as PATH into Tcl):

 argc Contains a count of the number of arg arguments (0 if

 none), not including the name of the script file.

 argv Contains a Tcl list whose elements are the arg argu?

 ments, in order, or an empty string if there are no arg

 arguments.

 argv0 Contains fileName if it was specified. Otherwise, con?

 tains the name by which tclsh was invoked.

 tcl_interactive

 Contains 1 if tclsh is running interactively (no file?

 Name was specified and standard input is a terminal-like

 device), 0 otherwise.

PROMPTS

 When tclsh is invoked interactively it normally prompts for each com? Page 3/4

 mand with ?% ?. You can change the prompt by setting the global vari?

 ables tcl_prompt1 and tcl_prompt2. If variable tcl_prompt1 exists then

 it must consist of a Tcl script to output a prompt; instead of out?

 putting a prompt tclsh will evaluate the script in tcl_prompt1. The

 variable tcl_prompt2 is used in a similar way when a newline is typed

 but the current command is not yet complete; if tcl_prompt2 is not set

 then no prompt is output for incomplete commands.

STANDARD CHANNELS

 See Tcl_StandardChannels for more explanations.

SEE ALSO

 auto_path(n), encoding(n), env(n), fconfigure(n)

KEYWORDS

 application, argument, interpreter, prompt, script file, shell

Tcl tclsh(1)

Page 4/4

