
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-hfsc.7'

$ man tc-hfsc.7

TC-HFSC(7) Linux TC-HFSC(7)

NAME

 tc-hfcs - Hierarchical Fair Service Curve

HISTORY & INTRODUCTION

 HFSC (Hierarchical Fair Service Curve) is a network packet scheduling

 algorithm that was first presented at SIGCOMM'97. Developed as a part

 of ALTQ (ALTernative Queuing) on NetBSD, found its way quickly to other

 BSD systems, and then a few years ago became part of the linux kernel.

 Still, it's not the most popular scheduling algorithm - especially if

 compared to HTB - and it's not well documented for the enduser. This

 introduction aims to explain how HFSC works without using too much math

 (although some math it will be inevitable).

 In short HFSC aims to:

 1) guarantee precise bandwidth and delay allocation for all leaf

 classes (realtime criterion)

 2) allocate excess bandwidth fairly as specified by class hierar?

 chy (linkshare & upperlimit criterion)

 3) minimize any discrepancy between the service curve and the ac? Page 1/14

 tual amount of service provided during linksharing

 The main "selling" point of HFSC is feature (1), which is achieved by

 using nonlinear service curves (more about what it actually is later).

 This is particularly useful in VoIP or games, where not only a guaran?

 tee of consistent bandwidth is important, but also limiting the initial

 delay of a data stream. Note that it matters only for leaf classes

 (where the actual queues are) - thus class hierarchy is ignored in the

 realtime case.

 Feature (2) is well, obvious - any algorithm featuring class hierarchy

 (such as HTB or CBQ) strives to achieve that. HFSC does that well, al?

 though you might end with unusual situations, if you define service

 curves carelessly - see section CORNER CASES for examples.

 Feature (3) is mentioned due to the nature of the problem. There may be

 situations where it's either not possible to guarantee service of all

 curves at the same time, and/or it's impossible to do so fairly. Both

 will be explained later. Note that this is mainly related to interior

 (aka aggregate) classes, as the leafs are already handled by (1).

 Still, it's perfectly possible to create a leaf class without realtime

 service, and in such a case the caveats will naturally extend to leaf

 classes as well.

ABBREVIATIONS

 For the remaining part of the document, we'll use following shortcuts:

 RT - realtime

 LS - linkshare

 UL - upperlimit

 SC - service curve

BASICS OF HFSC

 To understand how HFSC works, we must first introduce a service curve.

 Overall, it's a nondecreasing function of some time unit, returning the

 amount of service (an allowed or allocated amount of bandwidth) at some

 specific point in time. The purpose of it should be subconsciously ob?

 vious: if a class was allowed to transfer not less than the amount

 specified by its service curve, then the service curve is not violated. Page 2/14

 Still, we need more elaborate criterion than just the above (although

 in the most generic case it can be reduced to it). The criterion has to

 take two things into account:

 ? idling periods

 ? the ability to "look back", so if during current active period

 the service curve is violated, maybe it isn't if we count ex?

 cess bandwidth received during earlier active period(s)

 Let's define the criterion as follows:

 (1) For each t1, there must exist t0 in set B, so S(t1-t0) <= w(t0,t1)

 Here 'w' denotes the amount of service received during some time period

 between t0 and t1. B is a set of all times, where a session becomes ac?

 tive after idling period (further denoted as 'becoming backlogged').

 For a clearer picture, imagine two situations:

 a) our session was active during two periods, with a small time

 gap between them

 b) as in (a), but with a larger gap

 Consider (a): if the service received during both periods meets (1),

 then all is well. But what if it doesn't do so during the 2nd period?

 If the amount of service received during the 1st period is larger than

 the service curve, then it might compensate for smaller service during

 the 2nd period and the gap - if the gap is small enough.

 If the gap is larger (b) - then it's less likely to happen (unless the

 excess bandwidth allocated during the 1st part was really large).

 Still, the larger the gap - the less interesting is what happened in

 the past (e.g. 10 minutes ago) - what matters is the current traffic

 that just started.

 From HFSC's perspective, more interesting is answering the following

 question: when should we start transferring packets, so a service curve

 of a class is not violated. Or rephrasing it: How much X() amount of

 service should a session receive by time t, so the service curve is not

 violated. Function X() defined as below is the basic building block of

 HFSC, used in: eligible, deadline, virtual-time and fit-time curves. Of

 course, X() is based on equation (1) and is defined recursively: Page 3/14

 ? At the 1st backlogged period beginning function X is initial?

 ized to generic service curve assigned to a class

 ? At any subsequent backlogged period, X() is:

 min(X() from previous period ; w(t0)+S(t-t0) for t>=t0),

 ... where t0 denotes the beginning of the current backlogged

 period.

 HFSC uses either linear, or two-piece linear service curves. In case of

 linear or two-piece linear convex functions (first slope < second

 slope), min() in X's definition reduces to the 2nd argument. But in

 case of two-piece concave functions, the 1st argument might quickly be?

 come lesser for some t>=t0. Note, that for some backlogged period, X()

 is defined only from that period's beginning. We also define X^(-1)(w)

 as smallest t>=t0, for which X(t) = w. We have to define it this way,

 as X() is usually not an injection.

 The above generic X() can be one of the following:

 E() In realtime criterion, selects packets eligible for sending. If

 none are eligible, HFSC will use linkshare criterion. Eligible

 time 'et' is calculated with reference to packets' heads (

 et = E^(-1)(w)). It's based on RT service curve, but in case

 of a convex curve, uses its 2nd slope only.

 D() In realtime criterion, selects the most suitable packet from

 the ones chosen by E(). Deadline time 'dt' corresponds to pack?

 ets' tails (dt = D^(-1)(w+l), where 'l' is packet's length).

 Based on RT service curve.

 V() In linkshare criterion, arbitrates which packet to send next.

 Note that V() is function of a virtual time - see LINKSHARE

 CRITERION section for details. Virtual time 'vt' corresponds to

 packets' heads (vt = V^(-1)(w)). Based on LS service curve.

 F() An extension to linkshare criterion, used to limit at which

 speed linkshare criterion is allowed to dequeue. Fit-time 'ft'

 corresponds to packets' heads as well (ft = F^(-1)(w)). Based

 on UL service curve.

 Be sure to make clean distinction between session's RT, LS and UL ser? Page 4/14

 vice curves and the above "utility" functions.

REALTIME CRITERION

 RT criterion ignores class hierarchy and guarantees precise bandwidth

 and delay allocation. We say that a packet is eligible for sending,

 when the current real time is later than the eligible time of the

 packet. From all eligible packets, the one most suited for sending is

 the one with the shortest deadline time. This sounds simple, but con?

 sider the following example:

 Interface 10Mbit, two classes, both with two-piece linear service

 curves:

 ? 1st class - 2Mbit for 100ms, then 7Mbit (convex - 1st slope <

 2nd slope)

 ? 2nd class - 7Mbit for 100ms, then 2Mbit (concave - 1st slope >

 2nd slope)

 Assume for a moment, that we only use D() for both finding eligible

 packets, and choosing the most fitting one, thus eligible time would be

 computed as D^(-1)(w) and deadline time would be computed as

 D^(-1)(w+l). If the 2nd class starts sending packets 1 second after the

 1st class, it's of course impossible to guarantee 14Mbit, as the inter?

 face capability is only 10Mbit. The only workaround in this scenario

 is to allow the 1st class to send the packets earlier that would nor?

 mally be allowed. That's where separate E() comes to help. Putting all

 the math aside (see HFSC paper for details), E() for RT concave service

 curve is just like D(), but for the RT convex service curve - it's con?

 structed using only RT service curve's 2nd slope (in our example

 7Mbit).

 The effect of such E() - packets will be sent earlier, and at the same

 time D() will be updated - so the current deadline time calculated from

 it will be later. Thus, when the 2nd class starts sending packets

 later, both the 1st and the 2nd class will be eligible, but the 2nd

 session's deadline time will be smaller and its packets will be sent

 first. When the 1st class becomes idle at some later point, the 2nd

 class will be able to "buffer" up again for later active period of the Page 5/14

 1st class.

 A short remark - in a situation, where the total amount of bandwidth

 available on the interface is larger than the allocated total realtime

 parts (imagine a 10 Mbit interface, but 1Mbit/2Mbit and 2Mbit/1Mbit

 classes), the sole speed of the interface could suffice to guarantee

 the times.

 Important part of RT criterion is that apart from updating its D() and

 E(), also V() used by LS criterion is updated. Generally the RT crite?

 rion is secondary to LS one, and used only if there's a risk of violat?

 ing precise realtime requirements. Still, the "participation" in band?

 width distributed by LS criterion is there, so V() has to be updated

 along the way. LS criterion can than properly compensate for non-ideal

 fair sharing situation, caused by RT scheduling. If you use UL service

 curve its F() will be updated as well (UL service curve is an extension

 to LS one - see UPPERLIMIT CRITERION section).

 Anyway - careless specification of LS and RT service curves can lead to

 potentially undesired situations (see CORNER CASES for examples). This

 wasn't the case in HFSC paper where LS and RT service curves couldn't

 be specified separately.

LINKSHARING CRITERION

 LS criterion's task is to distribute bandwidth according to specified

 class hierarchy. Contrary to RT criterion, there're no comparisons be?

 tween current real time and virtual time - the decision is based solely

 on direct comparison of virtual times of all active subclasses - the

 one with the smallest vt wins and gets scheduled. One immediate conclu?

 sion from this fact is that absolute values don't matter - only ratios

 between them (so for example, two children classes with simple linear

 1Mbit service curves will get the same treatment from LS criterion's

 perspective, as if they were 5Mbit). The other conclusion is, that in

 perfectly fluid system with linear curves, all virtual times across

 whole class hierarchy would be equal.

 Why is VC defined in term of virtual time (and what is it)?

 Imagine an example: class A with two children - A1 and A2, both with Page 6/14

 let's say 10Mbit SCs. If A2 is idle, A1 receives all the bandwidth of A

 (and update its V() in the process). When A2 becomes active, A1's vir?

 tual time is already far later than A2's one. Considering the type of

 decision made by LS criterion, A1 would become idle for a long time. We

 can workaround this situation by adjusting virtual time of the class

 becoming active - we do that by getting such time "up to date". HFSC

 uses a mean of the smallest and the biggest virtual time of currently

 active children fit for sending. As it's not real time anymore (exclud?

 ing trivial case of situation where all classes become active at the

 same time, and never become idle), it's called virtual time.

 Such approach has its price though. The problem is analogous to what

 was presented in previous section and is caused by non-linearity of

 service curves:

 1) either it's impossible to guarantee service curves and satisfy

 fairness during certain time periods:

 Recall the example from RT section, slightly modified (with 3Mbit

 slopes instead of 2Mbit ones):

 ? 1st class - 3Mbit for 100ms, then 7Mbit (convex - 1st slope <

 2nd slope)

 ? 2nd class - 7Mbit for 100ms, then 3Mbit (concave - 1st slope >

 2nd slope)

 They sum up nicely to 10Mbit - the interface's capacity. But if we

 wanted to only use LS for guarantees and fairness - it simply won't

 work. In LS context, only V() is used for making decision which

 class to schedule. If the 2nd class becomes active when the 1st one

 is in its second slope, the fairness will be preserved - ratio will

 be 1:1 (7Mbit:7Mbit), but LS itself is of course unable to guaran?

 tee the absolute values themselves - as it would have to go beyond

 of what the interface is capable of.

 2) and/or it's impossible to guarantee service curves of all classes

 at the same time [fairly or not]:

 This is similar to the above case, but a bit more subtle. We will

 consider two subtrees, arbitrated by their common (root here) par? Page 7/14

 ent:

 R (root) - 10Mbit

 A - 7Mbit, then 3Mbit

 A1 - 5Mbit, then 2Mbit

 A2 - 2Mbit, then 1Mbit

 B - 3Mbit, then 7Mbit

 R arbitrates between left subtree (A) and right (B). Assume that A2

 and B are constantly backlogged, and at some later point A1 becomes

 backlogged (when all other classes are in their 2nd linear part).

 What happens now? B (choice made by R) will always get 7 Mbit as R

 is only (obviously) concerned with the ratio between its direct

 children. Thus A subtree gets 3Mbit, but its children would want

 (at the point when A1 became backlogged) 5Mbit + 1Mbit. That's of

 course impossible, as they can only get 3Mbit due to interface lim?

 itation.

 In the left subtree - we have the same situation as previously

 (fair split between A1 and A2, but violated guarantees), but in the

 whole tree - there's no fairness (B got 7Mbit, but A1 and A2 have

 to fit together in 3Mbit) and there's no guarantees for all classes

 (only B got what it wanted). Even if we violated fairness in the A

 subtree and set A2's service curve to 0, A1 would still not get the

 required bandwidth.

UPPERLIMIT CRITERION

 UL criterion is an extensions to LS one, that permits sending packets

 only if current real time is later than fit-time ('ft'). So the modi?

 fied LS criterion becomes: choose the smallest virtual time from all

 active children, such that fit-time < current real time also holds.

 Fit-time is calculated from F(), which is based on UL service curve. As

 you can see, its role is kinda similar to E() used in RT criterion.

 Also, for obvious reasons - you can't specify UL service curve without

 LS one.

 The main purpose of the UL service curve is to limit HFSC to bandwidth

 available on the upstream router (think adsl home modem/router, and Page 8/14

 linux server as NAT/firewall/etc. with 100Mbit+ connection to mentioned

 modem/router). Typically, it's used to create a single class directly

 under root, setting a linear UL service curve to available bandwidth -

 and then creating your class structure from that class downwards. Of

 course, you're free to add a UL service curve (linear or not) to any

 class with LS criterion.

 An important part about the UL service curve is that whenever at some

 point in time a class doesn't qualify for linksharing due to its

 fit-time, the next time it does qualify it will update its virtual time

 to the smallest virtual time of all active children fit for linkshar?

 ing. This way, one of the main things the LS criterion tries to achieve

 - equality of all virtual times across whole hierarchy - is preserved

 (in perfectly fluid system with only linear curves, all virtual times

 would be equal).

 Without that, 'vt' would lag behind other virtual times, and could

 cause problems. Consider an interface with a capacity of 10Mbit, and

 the following leaf classes (just in case you're skipping this text

 quickly - this example shows behavior that doesn't happen):

 A - ls 5.0Mbit

 B - ls 2.5Mbit

 C - ls 2.5Mbit, ul 2.5Mbit

 If B was idle, while A and C were constantly backlogged, A and C would

 normally (as far as LS criterion is concerned) divide bandwidth in 2:1

 ratio. But due to UL service curve in place, C would get at most

 2.5Mbit, and A would get the remaining 7.5Mbit. The longer the back?

 logged period, the more the virtual times of A and C would drift apart.

 If B became backlogged at some later point in time, its virtual time

 would be set to (A's vt + C's vt)/2, thus blocking A from sending any

 traffic until B's virtual time catches up with A.

SEPARATE LS / RT SCs

 Another difference from the original HFSC paper is that RT and LS SCs

 can be specified separately. Moreover, leaf classes are allowed to have

 only either RT SC or LS SC. For interior classes, only LS SCs make Page 9/14

 sense: any RT SC will be ignored.

CORNER CASES

 Separate service curves for LS and RT criteria can lead to certain

 traps that come from "fighting" between ideal linksharing and enforced

 realtime guarantees. Those situations didn't exist in original HFSC pa?

 per, where specifying separate LS / RT service curves was not dis?

 cussed.

 Consider an interface with a 10Mbit capacity, with the following leaf

 classes:

 A - ls 5.0Mbit, rt 8Mbit

 B - ls 2.5Mbit

 C - ls 2.5Mbit

 Imagine A and C are constantly backlogged. As B is idle, A and C would

 divide bandwidth in 2:1 ratio, considering LS service curve (so in the?

 ory - 6.66 and 3.33). Alas RT criterion takes priority, so A will get

 8Mbit and LS will be able to compensate class C for only 2 Mbit - this

 will cause discrepancy between virtual times of A and C.

 Assume this situation lasts for a long time with no idle periods, and

 suddenly B becomes active. B's virtual time will be updated to

 (A's vt + C's vt)/2, effectively landing in the middle between A's and

 C's virtual time. The effect - B, having no RT guarantees, will be pun?

 ished and will not be allowed to transfer until C's virtual time

 catches up.

 If the interface had a higher capacity, for example 100Mbit, this exam?

 ple would behave perfectly fine though.

 Let's look a bit closer at the above example - it "cleverly" invali?

 dates one of the basic things LS criterion tries to achieve - equality

 of all virtual times across class hierarchy. Leaf classes without RT

 service curves are literally left to their own fate (governed by messed

 up virtual times).

 Also, it doesn't make much sense. Class A will always be guaranteed up

 to 8Mbit, and this is more than any absolute bandwidth that could hap?

 pen from its LS criterion (excluding trivial case of only A being ac? Page 10/14

 tive). If the bandwidth taken by A is smaller than absolute value from

 LS criterion, the unused part will be automatically assigned to other

 active classes (as A has idling periods in such case). The only "advan?

 tage" is, that even in case of low bandwidth on average, bursts would

 be handled at the speed defined by RT criterion. Still, if extra speed

 is needed (e.g. due to latency), non linear service curves should be

 used in such case.

 In the other words: the LS criterion is meaningless in the above exam?

 ple.

 You can quickly "workaround" it by making sure each leaf class has RT

 service curve assigned (thus guaranteeing all of them will get some

 bandwidth), but it doesn't make it any more valid.

 Keep in mind - if you use nonlinear curves and irregularities explained

 above happen only in the first segment, then there's little wrong with

 "overusing" RT curve a bit:

 A - ls 5.0Mbit, rt 9Mbit/30ms, then 1Mbit

 B - ls 2.5Mbit

 C - ls 2.5Mbit

 Here, the vt of A will "spike" in the initial period, but then A will

 never get more than 1Mbit until B & C catch up. Then everything will be

 back to normal.

LINUX AND TIMER RESOLUTION

 In certain situations, the scheduler can throttle itself and setup so

 called watchdog to wakeup dequeue function at some time later. In case

 of HFSC it happens when for example no packet is eligible for schedul?

 ing, and UL service curve is used to limit the speed at which LS crite?

 rion is allowed to dequeue packets. It's called throttling, and accu?

 racy of it is dependent on how the kernel is compiled.

 There're 3 important options in modern kernels, as far as timers' reso?

 lution goes: 'tickless system', 'high resolution timer support' and

 'timer frequency'.

 If you have 'tickless system' enabled, then the timer interrupt will

 trigger as slowly as possible, but each time a scheduler throttles it? Page 11/14

 self (or any other part of the kernel needs better accuracy), the rate

 will be increased as needed / possible. The ceiling is either 'timer

 frequency' if 'high resolution timer support' is not available or not

 compiled in, or it's hardware dependent and can go far beyond the high?

 est 'timer frequency' setting available.

 If 'tickless system' is not enabled, the timer will trigger at a fixed

 rate specified by 'timer frequency' - regardless if high resolution

 timers are or aren't available.

 This is important to keep those settings in mind, as in scenario like:

 no tickless, no HR timers, frequency set to 100hz - throttling accuracy

 would be at 10ms. It doesn't automatically mean you would be limited to

 ~0.8Mbit/s (assuming packets at ~1KB) - as long as your queues are pre?

 pared to cover for timer inaccuracy. Of course, in case of e.g. locally

 generated UDP traffic - appropriate socket size is needed as well.

 Short example to make it more understandable (assume hardcore

 anti-schedule settings - HZ=100, no HR timers, no tickless):

 tc qdisc add dev eth0 root handle 1:0 hfsc default 1

 tc class add dev eth0 parent 1:0 classid 1:1 hfsc rt m2 10Mbit

 Assuming packet of ~1KB size and HZ=100, that averages to ~0.8Mbit -

 anything beyond it (e.g. the above example with specified rate over 10x

 larger) will require appropriate queuing and cause bursts every ~10 ms.

 As you can imagine, any HFSC's RT guarantees will be seriously invali?

 dated by that. Aforementioned example is mainly important if you deal

 with old hardware - as is particularly popular for home server chores.

 Even then, you can easily set HZ=1000 and have very accurate scheduling

 for typical adsl speeds.

 Anything modern (apic or even hpet msi based timers + 'tickless sys?

 tem') will provide enough accuracy for superb 1Gbit scheduling. For ex?

 ample, on one of my cheap dual-core AMD boards I have the following

 settings:

 tc qdisc add dev eth0 parent root handle 1:0 hfsc default 1

 tc class add dev eth0 parent 1:0 classid 1:1 hfsc rt m2 300mbit

 And a simple: Page 12/14

 nc -u dst.host.com 54321 </dev/zero

 nc -l -p 54321 >/dev/null

 ...will yield the following effects over a period of ~10 seconds (taken

 from /proc/interrupts):

 319: 42124229 0 HPET_MSI-edge hpet2 (before)

 319: 42436214 0 HPET_MSI-edge hpet2 (after 10s.)

 That's roughly 31000/s. Now compare it with HZ=1000 setting. The obvi?

 ous drawback of it is that cpu load can be rather high with servicing

 that many timer interrupts. The example with 300Mbit RT service curve

 on 1Gbit link is particularly ugly, as it requires a lot of throttling

 with minuscule delays.

 Also note that it's just an example showing the capabilities of current

 hardware. The above example (essentially a 300Mbit TBF emulator) is

 pointless on an internal interface to begin with: you will pretty much

 always want a regular LS service curve there, and in such a scenario

 HFSC simply doesn't throttle at all.

 300Mbit RT service curve (selected columns from mpstat -P ALL 1):

 10:56:43 PM CPU %sys %irq %soft %idle

 10:56:44 PM all 20.10 6.53 34.67 37.19

 10:56:44 PM 0 35.00 0.00 63.00 0.00

 10:56:44 PM 1 4.95 12.87 6.93 73.27

 So, in the rare case you need those speeds with only a RT service

 curve, or with a UL service curve: remember the drawbacks.

CAVEAT: RANDOM ONLINE EXAMPLES

 For reasons unknown (though well guessed), many examples you can google

 love to overuse UL criterion and stuff it in every node possible. This

 makes no sense and works against what HFSC tries to do (and does pretty

 damn well). Use UL where it makes sense: on the uppermost node to match

 upstream router's uplink capacity. Or in special cases, such as testing

 (limit certain subtree to some speed), or customers that must never get

 more than certain speed. In the last case you can usually achieve the

 same by just using a RT criterion without LS+UL on leaf nodes.

 As for the router case - remember it's good to differentiate between Page 13/14

 "traffic to router" (remote console, web config, etc.) and "outgoing

 traffic", so for example:

 tc qdisc add dev eth0 root handle 1:0 hfsc default 0x8002

 tc class add dev eth0 parent 1:0 classid 1:999 hfsc rt m2 50Mbit

 tc class add dev eth0 parent 1:0 classid 1:1 hfsc ls m2 2Mbit ul m2 2Mbit

 ... so "internet" tree under 1:1 and "router itself" as 1:999

LAYER2 ADAPTATION

 Please refer to tc-stab(8)

SEE ALSO

 tc(8), tc-hfsc(8), tc-stab(8)

 Please direct bugreports and patches to: <netdev@vger.kernel.org>

AUTHOR

 Manpage created by Michal Soltys (soltys@ziu.info)

iproute2 31 October 2011 TC-HFSC(7)

Page 14/14

