
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-fq_pie.8'

$ man tc-fq_pie.8

FQ-PIE(8) Linux FQ-PIE(8)

NAME

 FQ-PIE - Flow Queue Proportional Integral controller Enhanced

SYNOPSIS

 tc qdisc ... fq_pie [limit PACKETS] [flows NUMBER]

 [target TIME] [tupdate TIME]

 [alpha NUMBER] [beta NUMBER]

 [quantum BYTES] [memory_limit BYTES]

 [ecn_prob PERENTAGE] [[no]ecn]

 [[no]bytemode] [[no_]dq_rate_estimator]

DESCRIPTION

 FQ-PIE (Flow Queuing with Proportional Integral controller Enhanced) is

 a queuing discipline that combines Flow Queuing with the PIE AQM

 scheme. FQ-PIE uses a Jenkins hash function to classify incoming pack?

 ets into different flows and is used to provide a fair share of the

 bandwidth to all the flows using the qdisc. Each such flow is managed

 by the PIE algorithm.

ALGORITHM Page 1/5

 The FQ-PIE algorithm consists of two logical parts: the scheduler which

 selects which queue to dequeue a packet from, and the PIE AQM which

 works on each of the queues. The major work of FQ-PIE is mostly in the

 scheduling part. The interaction between the scheduler and the PIE al?

 gorithm is straight forward.

 During the enqueue stage, a hashing-based scheme is used, where flows

 are hashed into a number of buckets with each bucket having its own

 queue. The number of buckets is configurable, and presently defaults to

 1024 in the implementation. The flow hashing is performed on the 5-tu?

 ple of source and destination IP addresses, port numbers and IP proto?

 col number. Once the packet has been successfully classified into a

 queue, it is handed over to the PIE algorithm for enqueuing. It is then

 added to the tail of the selected queue, and the queue's byte count is

 updated by the packet size. If the queue is not currently active (i.e.,

 if it is not in either the list of new or the list of old queues) , it

 is added to the end of the list of new queues, and its number of cred?

 its is initiated to the configured quantum. Otherwise, the queue is

 left in its current queue list.

 During the dequeue stage, the scheduler first looks at the list of new

 queues; for the queue at the head of that list, if that queue has a

 negative number of credits (i.e., it has already dequeued at least a

 quantum of bytes), it is given an additional quantum of credits, the

 queue is put onto the end of the list of old queues, and the routine

 selects the next queue and starts again. Otherwise, that queue is se?

 lected for dequeue again. If the list of new queues is empty, the

 scheduler proceeds down the list of old queues in the same fashion

 (checking the credits, and either selecting the queue for dequeuing, or

 adding credits and putting the queue back at the end of the list). Af?

 ter having selected a queue from which to dequeue a packet, the PIE al?

 gorithm is invoked on that queue.

 Finally, if the PIE algorithm does not return a packet, then the queue

 must be empty and the scheduler does one of two things:

 If the queue selected for dequeue came from the list of new queues, it Page 2/5

 is moved to the end of the list of old queues. If instead it came from

 the list of old queues, that queue is removed from the list, to be

 added back (as a new queue) the next time a packet arrives that hashes

 to that queue. Then (since no packet was available for dequeue), the

 whole dequeue process is restarted from the beginning.

 If, instead, the scheduler did get a packet back from the PIE algo?

 rithm, it subtracts the size of the packet from the byte credits for

 the selected queue and returns the packet as the result of the dequeue

 operation.

PARAMETERS

 limit

 It is the limit on the queue size in packets. Incoming packets are

 dropped when the limit is reached. The default value is 10240 packets.

 flows

 It is the number of flows into which the incoming packets are classi?

 fied. Due to the stochastic nature of hashing, multiple flows may end

 up being hashed into the same slot. Newer flows have priority over

 older ones. This parameter can be set only at load time since memory

 has to be allocated for the hash table. The default value is 1024.

 target

 It is the queue delay which the PIE algorithm tries to maintain. The

 default target delay is 15ms.

 tupdate

 It is the time interval at which the system drop probability is calcu?

 lated. The default is 15ms.

 alpha

 beta

 alpha and beta are parameters chosen to control the drop probability.

 These should be in the range between 0 and 32.

 quantum

 quantum signifies the number of bytes that may be dequeued from a queue

 before switching to the next queue in the deficit round robin scheme.

 memory_limit Page 3/5

 It is the maximum total memory allowed for packets of all flows. The

 default is 32Mb.

 ecn_prob

 It is the drop probability threshold below which packets will be ECN

 marked instead of getting dropped. The default is 10%. Setting this pa?

 rameter requires ecn to be enabled.

 [no]ecn

 It has the same semantics as pie and can be used to mark packets in?

 stead of dropping them. If ecn has been enabled, noecn can be used to

 turn it off and vice-a-versa.

 [no]bytemode

 It is used to scale drop probability proportional to packet size byte?

 mode to turn on bytemode, nobytemode to turn off bytemode. By default,

 bytemode is turned off.

 [no_]dq_rate_estimator

 dq_rate_estimator can be used to calculate queue delay using Little's

 Law, no_dq_rate_estimator can be used to calculate queue delay using

 timestamp. By default, dq_rate_estimator is turned off.

EXAMPLES

 # tc qdisc add dev eth0 root fq_pie

 # tc -s qdisc show dev eth0

 qdisc fq_pie 8001: root refcnt 2 limit 10240p flows 1024 target 15.0ms

 tupdate 16.0ms alpha 2 beta 20 quantum 1514b memory_limit 32Mb ecn_prob

 10

 Sent 159173586 bytes 105261 pkt (dropped 24, overlimits 0 requeues 0)

 backlog 75700b 50p requeues 0

 pkts_in 105311 overlimit 0 overmemory 0 dropped 24 ecn_mark 0

 new_flow_count 7332 new_flows_len 0 old_flows_len 4 memory_used

 108800

 # tc qdisc add dev eth0 root fq_pie dq_rate_estimator

 # tc -s qdisc show dev eth0

 qdisc fq_pie 8001: root refcnt 2 limit 10240p flows 1024 target 15.0ms

 tupdate 16.0ms alpha 2 beta 20 quantum 1514b memory_limit 32Mb ecn_prob Page 4/5

 10 dq_rate_estimator

 Sent 8263620 bytes 5550 pkt (dropped 4, overlimits 0 requeues 0)

 backlog 805448b 532p requeues 0

 pkts_in 6082 overlimit 0 overmemory 0 dropped 4 ecn_mark 0

 new_flow_count 94 new_flows_len 0 old_flows_len 8 memory_used 1157632

SEE ALSO

 tc(8), tc-pie(8), tc-fq_codel(8)

SOURCES

 RFC 8033: https://tools.ietf.org/html/rfc8033

AUTHORS

 FQ-PIE was implemented by Mohit P. Tahiliani. Please report corrections

 to the Linux Networking mailing list <netdev@vger.kernel.org>.

iproute2 23 January 2020 FQ-PIE(8)

Page 5/5

