
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-flow.8'

$ man tc-flow.8

Flow filter in tc(8) Linux Flow filter in tc(8)

NAME

 flow - flow based traffic control filter

SYNOPSIS

 Mapping mode:

 tc filter ... flow map key KEY [OPS] [OPTIONS]

 Hashing mode:

 tc filter ... flow hash keys KEY_LIST [perturb secs] [OPTIONS

]

 OPS := [OPS] OP

 OPTIONS := [divisor NUM] [baseclass ID] [match EMATCH_TREE] [ac?

 tion ACTION_SPEC]

 KEY_LIST := [KEY_LIST] KEY

 OP := { or | and | xor | rshift | addend } NUM

 ID := X:Y

 KEY := { src | dst | proto | proto-src | proto-dst | iif | priority |

 mark | nfct | nfct-src | nfct-dst | nfct-proto-src | nfct-

 proto-dst | rt-classid | sk-uid | sk-gid | vlan-tag | rxhash } Page 1/5

DESCRIPTION

 The flow classifier is meant to extend the SFQ hashing capabilities

 without hard-coding new hash functions. It also allows deterministic

 mappings of keys to classes.

OPTIONS

 action ACTION_SPEC

 Apply an action from the generic actions framework on matching

 packets.

 baseclass ID

 An offset for the resulting class ID. ID may be root, none or a

 hexadecimal class ID in the form [X:]Y. X must match

 qdisc's/class's major handle (if omitted, the correct value is

 chosen automatically). If the whole baseclass is omitted, Y de?

 faults to 1.

 divisor NUM

 Number of buckets to use for sorting into. Keys are calculated

 modulo NUM.

 hash keys KEY-LIST

 Perform a jhash2 operation over the keys in KEY-LIST, the result

 (modulo the divisor if given) is taken as class ID, optionally

 offset by the value of baseclass. It is possible to specify an

 interval (in seconds) after which jhash2's entropy source is

 recreated using the perturb parameter.

 map key KEY

 Packet data identified by KEY is translated into class IDs to

 push the packet into. The value may be mangled by OPS before us?

 ing it for the mapping. They are applied in the order listed

 here:

 and NUM

 Perform bitwise AND operation with numeric value NUM.

 or NUM

 Perform bitwise OR operation with numeric value NUM.

 xor NUM Page 2/5

 Perform bitwise XOR operation with numeric value NUM.

 rshift NUM

 Shift the value of KEY to the right by NUM bits.

 addend NUM

 Add NUM to the value of KEY.

 For the or, and, xor and rshift operations, NUM is assumed to be

 an unsigned, 32bit integer value. For the addend operation, NUM

 may be much more complex: It may be prefixed by a minus ('-')

 sign to cause subtraction instead of addition and for keys of

 src, dst, nfct-src and nfct-dst it may be given in IP address

 notation. See below for an illustrating example.

 match EMATCH_TREE

 Match packets using the extended match infrastructure. See tc-

 ematch(8) for a detailed description of the allowed syntax in

 EMATCH_TREE.

KEYS

 In mapping mode, a single key is used (after optional permutation) to

 build a class ID. The resulting ID is deducible in most cases. In hash?

 ing more, a number of keys may be specified which are then hashed and

 the output used as class ID. This ID is not deducible in beforehand,

 and may even change over time for a given flow if a perturb interval

 has been given.

 The range of class IDs can be limited by the divisor option, which is

 used for a modulus.

 src, dst

 Use source or destination address as key. In case of IPv4 and

 TIPC, this is the actual address value. For IPv6, the 128bit ad?

 dress is folded into a 32bit value by XOR'ing the four 32bit

 words. In all other cases, the kernel-internal socket address is

 used (after folding into 32bits on 64bit systems).

 proto Use the layer four protocol number as key.

 proto-src

 Use the layer four source port as key. If not available, the Page 3/5

 kernel-internal socket address is used instead.

 proto-dst

 Use the layer four destination port as key. If not available,

 the associated kernel-internal dst_entry address is used after

 XOR'ing with the packet's layer three protocol number.

 iif Use the incoming interface index as key.

 priority

 Use the packet's priority as key. Usually this is the IP

 header's DSCP/ECN value.

 mark Use the netfilter fwmark as key.

 nfct Use the associated conntrack entry address as key.

 nfct-src, nfct-dst, nfct-proto-src, nfct-proto-dst

 These are conntrack-aware variants of src, dst, proto-src and

 proto-dst. In case of NAT, these are basically the packet

 header's values before NAT was applied.

 rt-classid

 Use the packet's destination routing table entry's realm as key.

 sk-uid

 sk-gid For locally generated packets, use the user or group ID the

 originating socket belongs to as key.

 vlan-tag

 Use the packet's vlan ID as key.

 rxhash Use the flow hash as key.

EXAMPLES

 Classic SFQ hash:

 tc filter add ... flow hash \

 keys src,dst,proto,proto-src,proto-dst divisor 1024

 Classic SFQ hash, but using information from conntrack to work properly

 in combination with NAT:

 tc filter add ... flow hash \

 keys nfct-src,nfct-dst,proto,nfct-proto-src,nfct-proto-dst \

 divisor 1024

 Map destination IPs of 192.168.0.0/24 to classids 1-256: Page 4/5

 tc filter add ... flow map \

 key dst addend -192.168.0.0 divisor 256

 Alternative to the above:

 tc filter add ... flow map \

 key dst and 0xff

 The same, but in reverse order:

 tc filter add ... flow map \

 key dst and 0xff xor 0xff

SEE ALSO

 tc(8), tc-ematch(8), tc-sfq(8)

iproute2 20 Oct 2015 Flow filter in tc(8)

Page 5/5

