
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-cbq.8'

$ man tc-cbq.8

CBQ(8) Linux CBQ(8)

NAME

 CBQ - Class Based Queueing

SYNOPSIS

 tc qdisc ... dev dev (parent classid | root) [handle major:] cbq [

 allot bytes] avpkt bytes bandwidth rate [cell bytes] [ewma log] [

 mpu bytes]

 tc class ... dev dev parent major:[minor] [classid major:minor] cbq

 allot bytes [bandwidth rate] [rate rate] prio priority [weight

 weight] [minburst packets] [maxburst packets] [ewma log] [cell

 bytes] avpkt bytes [mpu bytes] [bounded isolated] [split handle &

 defmap defmap] [estimator interval timeconstant]

DESCRIPTION

 Class Based Queueing is a classful qdisc that implements a rich

 linksharing hierarchy of classes. It contains shaping elements as well

 as prioritizing capabilities. Shaping is performed using link idle time

 calculations based on the timing of dequeue events and underlying link

 bandwidth. Page 1/8

SHAPING ALGORITHM

 When shaping a 10mbit/s connection to 1mbit/s, the link will be idle

 90% of the time. If it isn't, it needs to be throttled so that it IS

 idle 90% of the time.

 During operations, the effective idletime is measured using an exponen?

 tial weighted moving average (EWMA), which considers recent packets to

 be exponentially more important than past ones. The Unix loadaverage is

 calculated in the same way.

 The calculated idle time is subtracted from the EWMA measured one, the

 resulting number is called 'avgidle'. A perfectly loaded link has an

 avgidle of zero: packets arrive exactly at the calculated interval.

 An overloaded link has a negative avgidle and if it gets too negative,

 CBQ throttles and is then 'overlimit'.

 Conversely, an idle link might amass a huge avgidle, which would then

 allow infinite bandwidths after a few hours of silence. To prevent

 this, avgidle is capped at maxidle.

 If overlimit, in theory, the CBQ could throttle itself for exactly the

 amount of time that was calculated to pass between packets, and then

 pass one packet, and throttle again. Due to timer resolution con?

 straints, this may not be feasible, see the minburst parameter below.

CLASSIFICATION

 Within the one CBQ instance many classes may exist. Each of these

 classes contains another qdisc, by default tc-pfifo(8).

 When enqueueing a packet, CBQ starts at the root and uses various meth?

 ods to determine which class should receive the data.

 In the absence of uncommon configuration options, the process is rather

 easy. At each node we look for an instruction, and then go to the

 class the instruction refers us to. If the class found is a barren

 leaf-node (without children), we enqueue the packet there. If it is not

 yet a leaf node, we do the whole thing over again starting from that

 node.

 The following actions are performed, in order at each node we visit,

 until one sends us to another node, or terminates the process. Page 2/8

 (i) Consult filters attached to the class. If sent to a leafnode, we

 are done. Otherwise, restart.

 (ii) Consult the defmap for the priority assigned to this packet,

 which depends on the TOS bits. Check if the referral is leaf?

 less, otherwise restart.

 (iii) Ask the defmap for instructions for the 'best effort' priority.

 Check the answer for leafness, otherwise restart.

 (iv) If none of the above returned with an instruction, enqueue at

 this node.

 This algorithm makes sure that a packet always ends up somewhere, even

 while you are busy building your configuration.

 For more details, see tc-cbq-details(8).

LINK SHARING ALGORITHM

 When dequeuing for sending to the network device, CBQ decides which of

 its classes will be allowed to send. It does so with a Weighted Round

 Robin process in which each class with packets gets a chance to send in

 turn. The WRR process starts by asking the highest priority classes

 (lowest numerically - highest semantically) for packets, and will con?

 tinue to do so until they have no more data to offer, in which case the

 process repeats for lower priorities.

 Classes by default borrow bandwidth from their siblings. A class can be

 prevented from doing so by declaring it 'bounded'. A class can also in?

 dicate its unwillingness to lend out bandwidth by being 'isolated'.

QDISC

 The root of a CBQ qdisc class tree has the following parameters:

 parent major:minor | root

 This mandatory parameter determines the place of the CBQ in?

 stance, either at the root of an interface or within an existing

 class.

 handle major:

 Like all other qdiscs, the CBQ can be assigned a handle. Should

 consist only of a major number, followed by a colon. Optional,

 but very useful if classes will be generated within this qdisc. Page 3/8

 allot bytes

 This allotment is the 'chunkiness' of link sharing and is used

 for determining packet transmission time tables. The qdisc allot

 differs slightly from the class allot discussed below. Optional.

 Defaults to a reasonable value, related to avpkt.

 avpkt bytes

 The average size of a packet is needed for calculating maxidle,

 and is also used for making sure 'allot' has a safe value.

 Mandatory.

 bandwidth rate

 To determine the idle time, CBQ must know the bandwidth of your

 underlying physical interface, or parent qdisc. This is a vital

 parameter, more about it later. Mandatory.

 cell The cell size determines he granularity of packet transmission

 time calculations. Has a sensible default.

 mpu A zero sized packet may still take time to transmit. This value

 is the lower cap for packet transmission time calculations -

 packets smaller than this value are still deemed to have this

 size. Defaults to zero.

 ewma log

 When CBQ needs to measure the average idle time, it does so us?

 ing an Exponentially Weighted Moving Average which smooths out

 measurements into a moving average. The EWMA LOG determines how

 much smoothing occurs. Lower values imply greater sensitivity.

 Must be between 0 and 31. Defaults to 5.

 A CBQ qdisc does not shape out of its own accord. It only needs to know

 certain parameters about the underlying link. Actual shaping is done in

 classes.

CLASSES

 Classes have a host of parameters to configure their operation.

 parent major:minor

 Place of this class within the hierarchy. If attached directly

 to a qdisc and not to another class, minor can be omitted. Page 4/8

 Mandatory.

 classid major:minor

 Like qdiscs, classes can be named. The major number must be

 equal to the major number of the qdisc to which it belongs. Op?

 tional, but needed if this class is going to have children.

 weight weight

 When dequeuing to the interface, classes are tried for traffic

 in a round-robin fashion. Classes with a higher configured qdisc

 will generally have more traffic to offer during each round, so

 it makes sense to allow it to dequeue more traffic. All weights

 under a class are normalized, so only the ratios matter. De?

 faults to the configured rate, unless the priority of this class

 is maximal, in which case it is set to 1.

 allot bytes

 Allot specifies how many bytes a qdisc can dequeue during each

 round of the process. This parameter is weighted using the

 renormalized class weight described above. Silently capped at a

 minimum of 3/2 avpkt. Mandatory.

 prio priority

 In the round-robin process, classes with the lowest priority

 field are tried for packets first. Mandatory.

 avpkt See the QDISC section.

 rate rate

 Maximum rate this class and all its children combined can send

 at. Mandatory.

 bandwidth rate

 This is different from the bandwidth specified when creating a

 CBQ disc! Only used to determine maxidle and offtime, which are

 only calculated when specifying maxburst or minburst. Mandatory

 if specifying maxburst or minburst.

 maxburst

 This number of packets is used to calculate maxidle so that when

 avgidle is at maxidle, this number of average packets can be Page 5/8

 burst before avgidle drops to 0. Set it higher to be more toler?

 ant of bursts. You can't set maxidle directly, only via this pa?

 rameter.

 minburst

 As mentioned before, CBQ needs to throttle in case of overlimit.

 The ideal solution is to do so for exactly the calculated idle

 time, and pass 1 packet. However, Unix kernels generally have a

 hard time scheduling events shorter than 10ms, so it is better

 to throttle for a longer period, and then pass minburst packets

 in one go, and then sleep minburst times longer.

 The time to wait is called the offtime. Higher values of min?

 burst lead to more accurate shaping in the long term, but to

 bigger bursts at millisecond timescales. Optional.

 minidle

 If avgidle is below 0, we are overlimits and need to wait until

 avgidle will be big enough to send one packet. To prevent a sud?

 den burst from shutting down the link for a prolonged period of

 time, avgidle is reset to minidle if it gets too low.

 Minidle is specified in negative microseconds, so 10 means that

 avgidle is capped at -10us. Optional.

 bounded

 Signifies that this class will not borrow bandwidth from its

 siblings.

 isolated

 Means that this class will not borrow bandwidth to its siblings

 split major:minor & defmap bitmap[/bitmap]

 If consulting filters attached to a class did not give a ver?

 dict, CBQ can also classify based on the packet's priority.

 There are 16 priorities available, numbered from 0 to 15.

 The defmap specifies which priorities this class wants to re?

 ceive, specified as a bitmap. The Least Significant Bit corre?

 sponds to priority zero. The split parameter tells CBQ at which

 class the decision must be made, which should be a (grand)parent Page 6/8

 of the class you are adding.

 As an example, 'tc class add ... classid 10:1 cbq .. split 10:0

 defmap c0' configures class 10:0 to send packets with priorities

 6 and 7 to 10:1.

 The complimentary configuration would then be: 'tc class add ...

 classid 10:2 cbq ... split 10:0 defmap 3f' Which would send all

 packets 0, 1, 2, 3, 4 and 5 to 10:1.

 estimator interval timeconstant

 CBQ can measure how much bandwidth each class is using, which tc

 filters can use to classify packets with. In order to determine

 the bandwidth it uses a very simple estimator that measures once

 every interval microseconds how much traffic has passed. This

 again is a EWMA, for which the time constant can be specified,

 also in microseconds. The time constant corresponds to the slug?

 gishness of the measurement or, conversely, to the sensitivity

 of the average to short bursts. Higher values mean less sensi?

 tivity.

BUGS

 The actual bandwidth of the underlying link may not be known, for exam?

 ple in the case of PPoE or PPTP connections which in fact may send over

 a pipe, instead of over a physical device. CBQ is quite resilient to

 major errors in the configured bandwidth, probably a the cost of

 coarser shaping.

 Default kernels rely on coarse timing information for making decisions.

 These may make shaping precise in the long term, but inaccurate on sec?

 ond long scales.

 See tc-cbq-details(8) for hints on how to improve this.

SOURCES

 o Sally Floyd and Van Jacobson, "Link-sharing and Resource Manage?

 ment Models for Packet Networks", IEEE/ACM Transactions on Net?

 working, Vol.3, No.4, 1995

 o Sally Floyd, "Notes on CBQ and Guaranteed Service", 1995

 o Sally Floyd, "Notes on Class-Based Queueing: Setting Parame? Page 7/8

 ters", 1996

 o Sally Floyd and Michael Speer, "Experimental Results for Class-

 Based Queueing", 1998, not published.

SEE ALSO

 tc(8)

AUTHOR

 Alexey N. Kuznetsov, <kuznet@ms2.inr.ac.ru>. This manpage maintained by

 bert hubert <ahu@ds9a.nl>

iproute2 16 December 2001 CBQ(8)

Page 8/8

