
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.unit.5'

$ man systemd.unit.5

SYSTEMD.UNIT(5) systemd.unit SYSTEMD.UNIT(5)

NAME

 systemd.unit - Unit configuration

SYNOPSIS

 service.service, socket.socket, device.device, mount.mount,

 automount.automount, swap.swap, target.target, path.path, timer.timer,

 slice.slice, scope.scope

 System Unit Search Path

 /etc/systemd/system.control/*

 /run/systemd/system.control/*

 /run/systemd/transient/*

 /run/systemd/generator.early/*

 /etc/systemd/system/*

 /etc/systemd/system.attached/*

 /run/systemd/system/*

 /run/systemd/system.attached/*

 /run/systemd/generator/*

 ... Page 1/55

 /usr/lib/systemd/system/*

 /run/systemd/generator.late/*

 User Unit Search Path

 ~/.config/systemd/user.control/*

 $XDG_RUNTIME_DIR/systemd/user.control/*

 $XDG_RUNTIME_DIR/systemd/transient/*

 $XDG_RUNTIME_DIR/systemd/generator.early/*

 ~/.config/systemd/user/*

 $XDG_CONFIG_DIRS/systemd/user/*

 /etc/systemd/user/*

 $XDG_RUNTIME_DIR/systemd/user/*

 /run/systemd/user/*

 $XDG_RUNTIME_DIR/systemd/generator/*

 $XDG_DATA_HOME/systemd/user/*

 $XDG_DATA_DIRS/systemd/user/*

 ...

 /usr/lib/systemd/user/*

 $XDG_RUNTIME_DIR/systemd/generator.late/*

DESCRIPTION

 A unit file is a plain text ini-style file that encodes information

 about a service, a socket, a device, a mount point, an automount point,

 a swap file or partition, a start-up target, a watched file system

 path, a timer controlled and supervised by systemd(1), a resource

 management slice or a group of externally created processes. See

 systemd.syntax(7) for a general description of the syntax.

 This man page lists the common configuration options of all the unit

 types. These options need to be configured in the [Unit] or [Install]

 sections of the unit files.

 In addition to the generic [Unit] and [Install] sections described

 here, each unit may have a type-specific section, e.g. [Service] for a

 service unit. See the respective man pages for more information:

 systemd.service(5), systemd.socket(5), systemd.device(5),

 systemd.mount(5), systemd.automount(5), systemd.swap(5), Page 2/55

 systemd.target(5), systemd.path(5), systemd.timer(5), systemd.slice(5),

 systemd.scope(5).

 Unit files are loaded from a set of paths determined during

 compilation, described in the next section.

 Valid unit names consist of a "name prefix" and a dot and a suffix

 specifying the unit type. The "unit prefix" must consist of one or more

 valid characters (ASCII letters, digits, ":", "-", "_", ".", and "\").

 The total length of the unit name including the suffix must not exceed

 256 characters. The type suffix must be one of ".service", ".socket",

 ".device", ".mount", ".automount", ".swap", ".target", ".path",

 ".timer", ".slice", or ".scope".

 Units names can be parameterized by a single argument called the

 "instance name". The unit is then constructed based on a "template

 file" which serves as the definition of multiple services or other

 units. A template unit must have a single "@" at the end of the name

 (right before the type suffix). The name of the full unit is formed by

 inserting the instance name between "@" and the unit type suffix. In

 the unit file itself, the instance parameter may be referred to using

 "%i" and other specifiers, see below.

 Unit files may contain additional options on top of those listed here.

 If systemd encounters an unknown option, it will write a warning log

 message but continue loading the unit. If an option or section name is

 prefixed with X-, it is ignored completely by systemd. Options within

 an ignored section do not need the prefix. Applications may use this to

 include additional information in the unit files. To access those

 options, applications need to parse the unit files on their own.

 Units can be aliased (have an alternative name), by creating a symlink

 from the new name to the existing name in one of the unit search paths.

 For example, systemd-networkd.service has the alias

 dbus-org.freedesktop.network1.service, created during installation as a

 symlink, so when systemd is asked through D-Bus to load

 dbus-org.freedesktop.network1.service, it'll load

 systemd-networkd.service. As another example, default.target ? the Page 3/55

 default system target started at boot ? is commonly aliased to either

 multi-user.target or graphical.target to select what is started by

 default. Alias names may be used in commands like disable, start, stop,

 status, and similar, and in all unit dependency directives, including

 Wants=, Requires=, Before=, After=. Aliases cannot be used with the

 preset command.

 Aliases obey the following restrictions: a unit of a certain type

 (".service", ".socket", ...) can only be aliased by a name with the

 same type suffix. A plain unit (not a template or an instance), may

 only be aliased by a plain name. A template instance may only be

 aliased by another template instance, and the instance part must be

 identical. A template may be aliased by another template (in which case

 the alias applies to all instances of the template). As a special case,

 a template instance (e.g. "alias@inst.service") may be a symlink to

 different template (e.g. "template@inst.service"). In that case, just

 this specific instance is aliased, while other instances of the

 template (e.g. "alias@foo.service", "alias@bar.service") are not

 aliased. Those rules preserve the requirement that the instance (if

 any) is always uniquely defined for a given unit and all its aliases.

 The target of alias symlink must point to a valid unit file location,

 i.e. the symlink target name must match the symlink source name as

 described, and the destination path must be in one of the unit search

 paths, see UNIT FILE LOAD PATH section below for more details. Note

 that the target file may not exist, i.e. the symlink may be dangling.

 Unit files may specify aliases through the Alias= directive in the

 [Install] section. When the unit is enabled, symlinks will be created

 for those names, and removed when the unit is disabled. For example,

 reboot.target specifies Alias=ctrl-alt-del.target, so when enabled, the

 symlink /etc/systemd/system/ctrl-alt-del.service pointing to the

 reboot.target file will be created, and when Ctrl+Alt+Del is invoked,

 systemd will look for the ctrl-alt-del.service and execute

 reboot.service. systemd does not look at the [Install] section at all

 during normal operation, so any directives in that section only have an Page 4/55

 effect through the symlinks created during enablement.

 Along with a unit file foo.service, the directory foo.service.wants/

 may exist. All unit files symlinked from such a directory are

 implicitly added as dependencies of type Wants= to the unit. Similar

 functionality exists for Requires= type dependencies as well, the

 directory suffix is .requires/ in this case. This functionality is

 useful to hook units into the start-up of other units, without having

 to modify their unit files. For details about the semantics of Wants=

 and Requires=, see below. The preferred way to create symlinks in the

 .wants/ or .requires/ directories is by specifying the dependency in

 [Install] section of the target unit, and creating the symlink in the

 file system with the enable or preset commands of systemctl(1). The

 target can be a normal unit (either plain or a specific instance of a

 template unit). In case when the source unit is a template, the target

 can also be a template, in which case the instance will be "propagated"

 to the target unit to form a valid unit instance. The target of

 symlinks in .wants/ or .requires/ must thus point to a valid unit file

 location, i.e. the symlink target name must satisfy the described

 requirements, and the destination path must be in one of the unit

 search paths, see UNIT FILE LOAD PATH section below for more details.

 Note that the target file may not exist, i.e. the symlink may be

 dangling.

 Along with a unit file foo.service, a "drop-in" directory

 foo.service.d/ may exist. All files with the suffix ".conf" from this

 directory will be merged in the alphanumeric order and parsed after the

 main unit file itself has been parsed. This is useful to alter or add

 configuration settings for a unit, without having to modify unit files.

 Each drop-in file must contain appropriate section headers. For

 instantiated units, this logic will first look for the instance ".d/"

 subdirectory (e.g. "foo@bar.service.d/") and read its ".conf" files,

 followed by the template ".d/" subdirectory (e.g. "foo@.service.d/")

 and the ".conf" files there. Moreover for unit names containing dashes

 ("-"), the set of directories generated by repeatedly truncating the Page 5/55

 unit name after all dashes is searched too. Specifically, for a unit

 name foo-bar-baz.service not only the regular drop-in directory

 foo-bar-baz.service.d/ is searched but also both foo-bar-.service.d/

 and foo-.service.d/. This is useful for defining common drop-ins for a

 set of related units, whose names begin with a common prefix. This

 scheme is particularly useful for mount, automount and slice units,

 whose systematic naming structure is built around dashes as component

 separators. Note that equally named drop-in files further down the

 prefix hierarchy override those further up, i.e.

 foo-bar-.service.d/10-override.conf overrides

 foo-.service.d/10-override.conf.

 In cases of unit aliases (described above), dropins for the aliased

 name and all aliases are loaded. In the example of default.target

 aliasing graphical.target, default.target.d/, default.target.wants/,

 default.target.requires/, graphical.target.d/, graphical.target.wants/,

 graphical.target.requires/ would all be read. For templates, dropins

 for the template, any template aliases, the template instance, and all

 alias instances are read. When just a specific template instance is

 aliased, then the dropins for the target template, the target template

 instance, and the alias template instance are read.

 In addition to /etc/systemd/system, the drop-in ".d/" directories for

 system services can be placed in /usr/lib/systemd/system or

 /run/systemd/system directories. Drop-in files in /etc/ take precedence

 over those in /run/ which in turn take precedence over those in

 /usr/lib/. Drop-in files under any of these directories take precedence

 over unit files wherever located. Multiple drop-in files with different

 names are applied in lexicographic order, regardless of which of the

 directories they reside in.

 Units also support a top-level drop-in with type.d/, where type may be

 e.g. "service" or "socket", that allows altering or adding to the

 settings of all corresponding unit files on the system. The formatting

 and precedence of applying drop-in configurations follow what is

 defined above. Files in type.d/ have lower precedence compared to files Page 6/55

 in name-specific override directories. The usual rules apply: multiple

 drop-in files with different names are applied in lexicographic order,

 regardless of which of the directories they reside in, so a file in

 type.d/ applies to a unit only if there are no drop-ins or masks with

 that name in directories with higher precedence. See Examples.

 Note that while systemd offers a flexible dependency system between

 units it is recommended to use this functionality only sparingly and

 instead rely on techniques such as bus-based or socket-based activation

 which make dependencies implicit, resulting in a both simpler and more

 flexible system.

 As mentioned above, a unit may be instantiated from a template file.

 This allows creation of multiple units from a single configuration

 file. If systemd looks for a unit configuration file, it will first

 search for the literal unit name in the file system. If that yields no

 success and the unit name contains an "@" character, systemd will look

 for a unit template that shares the same name but with the instance

 string (i.e. the part between the "@" character and the suffix)

 removed. Example: if a service getty@tty3.service is requested and no

 file by that name is found, systemd will look for getty@.service and

 instantiate a service from that configuration file if it is found.

 To refer to the instance string from within the configuration file you

 may use the special "%i" specifier in many of the configuration

 options. See below for details.

 If a unit file is empty (i.e. has the file size 0) or is symlinked to

 /dev/null, its configuration will not be loaded and it appears with a

 load state of "masked", and cannot be activated. Use this as an

 effective way to fully disable a unit, making it impossible to start it

 even manually.

 The unit file format is covered by the Interface Portability and

 Stability Promise[1].

STRING ESCAPING FOR INCLUSION IN UNIT NAMES

 Sometimes it is useful to convert arbitrary strings into unit names. To

 facilitate this, a method of string escaping is used, in order to map Page 7/55

 strings containing arbitrary byte values (except NUL) into valid unit

 names and their restricted character set. A common special case are

 unit names that reflect paths to objects in the file system hierarchy.

 Example: a device unit dev-sda.device refers to a device with the

 device node /dev/sda in the file system.

 The escaping algorithm operates as follows: given a string, any "/"

 character is replaced by "-", and all other characters which are not

 ASCII alphanumerics, ":", "_" or "." are replaced by C-style "\x2d"

 escapes. In addition, "." is replaced with such a C-style escape when

 it would appear as the first character in the escaped string.

 When the input qualifies as absolute file system path, this algorithm

 is extended slightly: the path to the root directory "/" is encoded as

 single dash "-". In addition, any leading, trailing or duplicate "/"

 characters are removed from the string before transformation. Example:

 /foo//bar/baz/ becomes "foo-bar-baz".

 This escaping is fully reversible, as long as it is known whether the

 escaped string was a path (the unescaping results are different for

 paths and non-path strings). The systemd-escape(1) command may be used

 to apply and reverse escaping on arbitrary strings. Use systemd-escape

 --path to escape path strings, and systemd-escape without --path

 otherwise.

AUTOMATIC DEPENDENCIES

 Implicit Dependencies

 A number of unit dependencies are implicitly established, depending on

 unit type and unit configuration. These implicit dependencies can make

 unit configuration file cleaner. For the implicit dependencies in each

 unit type, please refer to section "Implicit Dependencies" in

 respective man pages.

 For example, service units with Type=dbus automatically acquire

 dependencies of type Requires= and After= on dbus.socket. See

 systemd.service(5) for details.

 Default Dependencies

 Default dependencies are similar to implicit dependencies, but can be Page 8/55

 turned on and off by setting DefaultDependencies= to yes (the default)

 and no, while implicit dependencies are always in effect. See section

 "Default Dependencies" in respective man pages for the effect of

 enabling DefaultDependencies= in each unit types.

 For example, target units will complement all configured dependencies

 of type Wants= or Requires= with dependencies of type After=. See

 systemd.target(5) for details. Note that this behavior can be opted out

 by setting DefaultDependencies=no in the specified units, or it can be

 selectively overridden via an explicit Before= dependency.

UNIT FILE LOAD PATH

 Unit files are loaded from a set of paths determined during

 compilation, described in the two tables below. Unit files found in

 directories listed earlier override files with the same name in

 directories lower in the list.

 When the variable $SYSTEMD_UNIT_PATH is set, the contents of this

 variable overrides the unit load path. If $SYSTEMD_UNIT_PATH ends with

 an empty component (":"), the usual unit load path will be appended to

 the contents of the variable.

 Table 1. Load path when running in system mode (--system).

 ???

 ?Path ? Description ?

 ???

 ?/etc/systemd/system.control ? Persistent and transient ?

 ???????????????????????????????? configuration created ?

 ?/run/systemd/system.control ? using the dbus API ?

 ???

 ?/run/systemd/transient ? Dynamic configuration for ?

 ? ? transient units ?

 ???

 ?/run/systemd/generator.early ? Generated units with high ?

 ? ? priority (see early-dir in ?

 ? ? systemd.generator(7)) ?

 ??? Page 9/55

 ?/etc/systemd/system ? System units created by ?

 ? ? the administrator ?

 ???

 ?/run/systemd/system ? Runtime units ?

 ???

 ?/run/systemd/generator ? Generated units with ?

 ? ? medium priority (see ?

 ? ? normal-dir in ?

 ? ? systemd.generator(7)) ?

 ???

 ?/usr/local/lib/systemd/system ? System units installed by ?

 ? ? the administrator ?

 ???

 ?/usr/lib/systemd/system ? System units installed by ?

 ? ? the distribution package ?

 ? ? manager ?

 ???

 ?/run/systemd/generator.late ? Generated units with low ?

 ? ? priority (see late-dir in ?

 ? ? systemd.generator(7)) ?

 ???

 Table 2. Load path when running in user mode (--user).

 ??

 ?Path ? Description ?

 ??

 ?$XDG_CONFIG_HOME/systemd/user.control ? Persistent and transient ?

 ?or ? configuration created ?

 ?~/.config/systemd/user.control ? using the dbus API ?

 ??? ($XDG_CONFIG_HOME is used ?

 ?$XDG_RUNTIME_DIR/systemd/user.control ? if set, ~/.config ?

 ? ? otherwise) ?

 ??

 ?$XDG_RUNTIME_DIR/systemd/transient ? Dynamic configuration for ? Page 10/55

 ? ? transient units ?

 ??

 ?$XDG_RUNTIME_DIR/systemd/generator.early ? Generated units with high ?

 ? ? priority (see early-dir in ?

 ? ? systemd.generator(7)) ?

 ??

 ?$XDG_CONFIG_HOME/systemd/user or ? User configuration ?

 ?$HOME/.config/systemd/user ? ($XDG_CONFIG_HOME is used ?

 ? ? if set, ~/.config ?

 ? ? otherwise) ?

 ??

 ?$XDG_CONFIG_DIRS/systemd/user or ? Additional configuration ?

 ?/etc/xdg/systemd/user ? directories as specified ?

 ? ? by the XDG base directory ?

 ? ? specification ?

 ? ? ($XDG_CONFIG_DIRS is used ?

 ? ? if set, /etc/xdg ?

 ? ? otherwise) ?

 ??

 ?/etc/systemd/user ? User units created by the ?

 ? ? administrator ?

 ??

 ?$XDG_RUNTIME_DIR/systemd/user ? Runtime units (only used ?

 ? ? when $XDG_RUNTIME_DIR is ?

 ? ? set) ?

 ??

 ?/run/systemd/user ? Runtime units ?

 ??

 ?$XDG_RUNTIME_DIR/systemd/generator ? Generated units with ?

 ? ? medium priority (see ?

 ? ? normal-dir in ?

 ? ? systemd.generator(7)) ?

 ?? Page 11/55

 ?$XDG_DATA_HOME/systemd/user or ? Units of packages that ?

 ?$HOME/.local/share/systemd/user ? have been installed in the ?

 ? ? home directory ?

 ? ? ($XDG_DATA_HOME is used if ?

 ? ? set, ~/.local/share ?

 ? ? otherwise) ?

 ??

 ?$XDG_DATA_DIRS/systemd/user or ? Additional data ?

 ?/usr/local/share/systemd/user and ? directories as specified ?

 ?/usr/share/systemd/user ? by the XDG base directory ?

 ? ? specification ?

 ? ? ($XDG_DATA_DIRS is used if ?

 ? ? set, /usr/local/share and ?

 ? ? /usr/share otherwise) ?

 ??

 ?$dir/systemd/user for each $dir in ? Additional locations for ?

 ?$XDG_DATA_DIRS ? installed user units, one ?

 ? ? for each entry in ?

 ? ? $XDG_DATA_DIRS ?

 ??

 ?/usr/local/lib/systemd/user ? User units installed by ?

 ? ? the administrator ?

 ??

 ?/usr/lib/systemd/user ? User units installed by ?

 ? ? the distribution package ?

 ? ? manager ?

 ??

 ?$XDG_RUNTIME_DIR/systemd/generator.late ? Generated units with low ?

 ? ? priority (see late-dir in ?

 ? ? systemd.generator(7)) ?

 ??

 The set of load paths for the user manager instance may be augmented or

 changed using various environment variables. And environment variables Page 12/55

 may in turn be set using environment generators, see

 systemd.environment-generator(7). In particular, $XDG_DATA_HOME and

 $XDG_DATA_DIRS may be easily set using systemd-environment-d-

 generator(8). Thus, directories listed here are just the defaults. To

 see the actual list that would be used based on compilation options and

 current environment use

 systemd-analyze --user unit-paths

 Moreover, additional units might be loaded into systemd from

 directories not on the unit load path by creating a symlink pointing to

 a unit file in the directories. You can use systemctl link for this;

 see systemctl(1). The file system where the linked unit files are

 located must be accessible when systemd is started (e.g. anything

 underneath /home/ or /var/ is not allowed, unless those directories are

 located on the root file system).

 It is important to distinguish "linked unit files" from "unit file

 aliases": any symlink where the symlink target is within the unit load

 path becomes an alias: the source name and the target file name must

 satisfy specific constraints listed above in the discussion of aliases,

 but the symlink target doesn't have to exist, and in fact the symlink

 target path is not used, except to check whether the target is within

 the unit load path. In contrast, a symlink which goes outside of the

 unit load path signifies a linked unit file. The symlink is followed

 when loading the file, but the destination name is otherwise unused

 (and may even not be a valid unit file name). For example, symlinks

 /etc/systemd/system/alias1.service ? service1.service,

 /etc/systemd/system/alias2.service ? /usr/lib/systemd/service1.service,

 /etc/systemd/system/alias3.service ?

 /etc/systemd/system/service1.service are all valid aliases and

 service1.service will have four names, even if the unit file is located

 at /run/systemd/system/service1.service. In contrast, a symlink

 /etc/systemd/system/link1.service ? ../link1_service_file means that

 link1.service is a "linked unit" and the contents of

 /etc/systemd/link1_service_file provide its configuration. Page 13/55

UNIT GARBAGE COLLECTION

 The system and service manager loads a unit's configuration

 automatically when a unit is referenced for the first time. It will

 automatically unload the unit configuration and state again when the

 unit is not needed anymore ("garbage collection"). A unit may be

 referenced through a number of different mechanisms:

 1. Another loaded unit references it with a dependency such as After=,

 Wants=, ...

 2. The unit is currently starting, running, reloading or stopping.

 3. The unit is currently in the failed state. (But see below.)

 4. A job for the unit is pending.

 5. The unit is pinned by an active IPC client program.

 6. The unit is a special "perpetual" unit that is always active and

 loaded. Examples for perpetual units are the root mount unit

 -.mount or the scope unit init.scope that the service manager

 itself lives in.

 7. The unit has running processes associated with it.

 The garbage collection logic may be altered with the CollectMode=

 option, which allows configuration whether automatic unloading of units

 that are in failed state is permissible, see below.

 Note that when a unit's configuration and state is unloaded, all

 execution results, such as exit codes, exit signals, resource

 consumption and other statistics are lost, except for what is stored in

 the log subsystem.

 Use systemctl daemon-reload or an equivalent command to reload unit

 configuration while the unit is already loaded. In this case all

 configuration settings are flushed out and replaced with the new

 configuration (which however might not be in effect immediately),

 however all runtime state is saved/restored.

[UNIT] SECTION OPTIONS

 The unit file may include a [Unit] section, which carries generic

 information about the unit that is not dependent on the type of unit:

 Description= Page 14/55

 A short human readable title of the unit. This may be used by

 systemd (and other UIs) as a user-visible label for the unit, so

 this string should identify the unit rather than describe it,

 despite the name. This string also shouldn't just repeat the unit

 name. "Apache2 Web Server" is a good example. Bad examples are

 "high-performance light-weight HTTP server" (too generic) or

 "Apache2" (meaningless for people who do not know Apache,

 duplicates the unit name). systemd may use this string as a noun

 in status messages ("Starting description...", "Started

 description.", "Reached target description.", "Failed to start

 description."), so it should be capitalized, and should not be a

 full sentence, or a phrase with a continuous verb. Bad examples

 include "exiting the container" or "updating the database once per

 day.".

 Documentation=

 A space-separated list of URIs referencing documentation for this

 unit or its configuration. Accepted are only URIs of the types

 "http://", "https://", "file:", "info:", "man:". For more

 information about the syntax of these URIs, see uri(7). The URIs

 should be listed in order of relevance, starting with the most

 relevant. It is a good idea to first reference documentation that

 explains what the unit's purpose is, followed by how it is

 configured, followed by any other related documentation. This

 option may be specified more than once, in which case the specified

 list of URIs is merged. If the empty string is assigned to this

 option, the list is reset and all prior assignments will have no

 effect.

 Wants=

 Configures (weak) requirement dependencies on other units. This

 option may be specified more than once or multiple space-separated

 units may be specified in one option in which case dependencies for

 all listed names will be created. Dependencies of this type may

 also be configured outside of the unit configuration file by adding Page 15/55

 a symlink to a .wants/ directory accompanying the unit file. For

 details, see above.

 Units listed in this option will be started if the configuring unit

 is. However, if the listed units fail to start or cannot be added

 to the transaction, this has no impact on the validity of the

 transaction as a whole, and this unit will still be started. This

 is the recommended way to hook the start-up of one unit to the

 start-up of another unit.

 Note that requirement dependencies do not influence the order in

 which services are started or stopped. This has to be configured

 independently with the After= or Before= options. If unit

 foo.service pulls in unit bar.service as configured with Wants= and

 no ordering is configured with After= or Before=, then both units

 will be started simultaneously and without any delay between them

 if foo.service is activated.

 Requires=

 Similar to Wants=, but declares a stronger requirement dependency.

 Dependencies of this type may also be configured by adding a

 symlink to a .requires/ directory accompanying the unit file.

 If this unit gets activated, the units listed will be activated as

 well. If one of the other units fails to activate, and an ordering

 dependency After= on the failing unit is set, this unit will not be

 started. Besides, with or without specifying After=, this unit will

 be stopped (or restarted) if one of the other units is explicitly

 stopped (or restarted).

 Often, it is a better choice to use Wants= instead of Requires= in

 order to achieve a system that is more robust when dealing with

 failing services.

 Note that this dependency type does not imply that the other unit

 always has to be in active state when this unit is running.

 Specifically: failing condition checks (such as

 ConditionPathExists=, ConditionPathIsSymbolicLink=, ... ? see

 below) do not cause the start job of a unit with a Requires= Page 16/55

 dependency on it to fail. Also, some unit types may deactivate on

 their own (for example, a service process may decide to exit

 cleanly, or a device may be unplugged by the user), which is not

 propagated to units having a Requires= dependency. Use the BindsTo=

 dependency type together with After= to ensure that a unit may

 never be in active state without a specific other unit also in

 active state (see below).

 Requisite=

 Similar to Requires=. However, if the units listed here are not

 started already, they will not be started and the starting of this

 unit will fail immediately. Requisite= does not imply an ordering

 dependency, even if both units are started in the same transaction.

 Hence this setting should usually be combined with After=, to

 ensure this unit is not started before the other unit.

 When Requisite=b.service is used on a.service, this dependency will

 show as RequisiteOf=a.service in property listing of b.service.

 RequisiteOf= dependency cannot be specified directly.

 BindsTo=

 Configures requirement dependencies, very similar in style to

 Requires=. However, this dependency type is stronger: in addition

 to the effect of Requires= it declares that if the unit bound to is

 stopped, this unit will be stopped too. This means a unit bound to

 another unit that suddenly enters inactive state will be stopped

 too. Units can suddenly, unexpectedly enter inactive state for

 different reasons: the main process of a service unit might

 terminate on its own choice, the backing device of a device unit

 might be unplugged or the mount point of a mount unit might be

 unmounted without involvement of the system and service manager.

 When used in conjunction with After= on the same unit the behaviour

 of BindsTo= is even stronger. In this case, the unit bound to

 strictly has to be in active state for this unit to also be in

 active state. This not only means a unit bound to another unit that

 suddenly enters inactive state, but also one that is bound to Page 17/55

 another unit that gets skipped due to an unmet condition check

 (such as ConditionPathExists=, ConditionPathIsSymbolicLink=, ... ?

 see below) will be stopped, should it be running. Hence, in many

 cases it is best to combine BindsTo= with After=.

 When BindsTo=b.service is used on a.service, this dependency will

 show as BoundBy=a.service in property listing of b.service.

 BoundBy= dependency cannot be specified directly.

 PartOf=

 Configures dependencies similar to Requires=, but limited to

 stopping and restarting of units. When systemd stops or restarts

 the units listed here, the action is propagated to this unit. Note

 that this is a one-way dependency ? changes to this unit do not

 affect the listed units.

 When PartOf=b.service is used on a.service, this dependency will

 show as ConsistsOf=a.service in property listing of b.service.

 ConsistsOf= dependency cannot be specified directly.

 Upholds=

 Configures dependencies similar to Wants=, but as long as this unit

 is up, all units listed in Upholds= are started whenever found to

 be inactive or failed, and no job is queued for them. While a

 Wants= dependency on another unit has a one-time effect when this

 units started, a Upholds= dependency on it has a continuous effect,

 constantly restarting the unit if necessary. This is an alternative

 to the Restart= setting of service units, to ensure they are kept

 running whatever happens.

 When Upholds=b.service is used on a.service, this dependency will

 show as UpheldBy=a.service in the property listing of b.service.

 The UpheldBy= dependency cannot be specified directly.

 Conflicts=

 A space-separated list of unit names. Configures negative

 requirement dependencies. If a unit has a Conflicts= setting on

 another unit, starting the former will stop the latter and vice

 versa. Page 18/55

 Note that this setting does not imply an ordering dependency,

 similarly to the Wants= and Requires= dependencies described above.

 This means that to ensure that the conflicting unit is stopped

 before the other unit is started, an After= or Before= dependency

 must be declared. It doesn't matter which of the two ordering

 dependencies is used, because stop jobs are always ordered before

 start jobs, see the discussion in Before=/After= below.

 If unit A that conflicts with unit B is scheduled to be started at

 the same time as B, the transaction will either fail (in case both

 are required parts of the transaction) or be modified to be fixed

 (in case one or both jobs are not a required part of the

 transaction). In the latter case, the job that is not required will

 be removed, or in case both are not required, the unit that

 conflicts will be started and the unit that is conflicted is

 stopped.

 Before=, After=

 These two settings expect a space-separated list of unit names.

 They may be specified more than once, in which case dependencies

 for all listed names are created.

 Those two settings configure ordering dependencies between units.

 If unit foo.service contains the setting Before=bar.service and

 both units are being started, bar.service's start-up is delayed

 until foo.service has finished starting up. After= is the inverse

 of Before=, i.e. while Before= ensures that the configured unit is

 started before the listed unit begins starting up, After= ensures

 the opposite, that the listed unit is fully started up before the

 configured unit is started.

 When two units with an ordering dependency between them are shut

 down, the inverse of the start-up order is applied. I.e. if a unit

 is configured with After= on another unit, the former is stopped

 before the latter if both are shut down. Given two units with any

 ordering dependency between them, if one unit is shut down and the

 other is started up, the shutdown is ordered before the start-up. Page 19/55

 It doesn't matter if the ordering dependency is After= or Before=,

 in this case. It also doesn't matter which of the two is shut down,

 as long as one is shut down and the other is started up; the

 shutdown is ordered before the start-up in all cases. If two units

 have no ordering dependencies between them, they are shut down or

 started up simultaneously, and no ordering takes place. It depends

 on the unit type when precisely a unit has finished starting up.

 Most importantly, for service units start-up is considered

 completed for the purpose of Before=/After= when all its configured

 start-up commands have been invoked and they either failed or

 reported start-up success. Note that this does includes

 ExecStartPost= (or ExecStopPost= for the shutdown case).

 Note that those settings are independent of and orthogonal to the

 requirement dependencies as configured by Requires=, Wants=,

 Requisite=, or BindsTo=. It is a common pattern to include a unit

 name in both the After= and Wants= options, in which case the unit

 listed will be started before the unit that is configured with

 these options.

 Note that Before= dependencies on device units have no effect and

 are not supported. Devices generally become available as a result

 of an external hotplug event, and systemd creates the corresponding

 device unit without delay.

 OnFailure=

 A space-separated list of one or more units that are activated when

 this unit enters the "failed" state. A service unit using Restart=

 enters the failed state only after the start limits are reached.

 OnSuccess=

 A space-separated list of one or more units that are activated when

 this unit enters the "inactive" state.

 PropagatesReloadTo=, ReloadPropagatedFrom=

 A space-separated list of one or more units to which reload

 requests from this unit shall be propagated to, or units from which

 reload requests shall be propagated to this unit, respectively. Page 20/55

 Issuing a reload request on a unit will automatically also enqueue

 reload requests on all units that are linked to it using these two

 settings.

 PropagatesStopTo=, StopPropagatedFrom=

 A space-separated list of one or more units to which stop requests

 from this unit shall be propagated to, or units from which stop

 requests shall be propagated to this unit, respectively. Issuing a

 stop request on a unit will automatically also enqueue stop

 requests on all units that are linked to it using these two

 settings.

 JoinsNamespaceOf=

 For units that start processes (such as service units), lists one

 or more other units whose network and/or temporary file namespace

 to join. This only applies to unit types which support the

 PrivateNetwork=, NetworkNamespacePath=, PrivateIPC=,

 IPCNamespacePath=, and PrivateTmp= directives (see systemd.exec(5)

 for details). If a unit that has this setting set is started, its

 processes will see the same /tmp/, /var/tmp/, IPC namespace and

 network namespace as one listed unit that is started. If multiple

 listed units are already started, it is not defined which namespace

 is joined. Note that this setting only has an effect if

 PrivateNetwork=/NetworkNamespacePath=,

 PrivateIPC=/IPCNamespacePath= and/or PrivateTmp= is enabled for

 both the unit that joins the namespace and the unit whose namespace

 is joined.

 RequiresMountsFor=

 Takes a space-separated list of absolute paths. Automatically adds

 dependencies of type Requires= and After= for all mount units

 required to access the specified path.

 Mount points marked with noauto are not mounted automatically

 through local-fs.target, but are still honored for the purposes of

 this option, i.e. they will be pulled in by this unit.

 OnFailureJobMode= Page 21/55

 Takes a value of "fail", "replace", "replace-irreversibly",

 "isolate", "flush", "ignore-dependencies" or "ignore-requirements".

 Defaults to "replace". Specifies how the units listed in OnFailure=

 will be enqueued. See systemctl(1)'s --job-mode= option for details

 on the possible values. If this is set to "isolate", only a single

 unit may be listed in OnFailure=.

 IgnoreOnIsolate=

 Takes a boolean argument. If true, this unit will not be stopped

 when isolating another unit. Defaults to false for service, target,

 socket, timer, and path units, and true for slice, scope, device,

 swap, mount, and automount units.

 StopWhenUnneeded=

 Takes a boolean argument. If true, this unit will be stopped when

 it is no longer used. Note that, in order to minimize the work to

 be executed, systemd will not stop units by default unless they are

 conflicting with other units, or the user explicitly requested

 their shut down. If this option is set, a unit will be

 automatically cleaned up if no other active unit requires it.

 Defaults to false.

 RefuseManualStart=, RefuseManualStop=

 Takes a boolean argument. If true, this unit can only be activated

 or deactivated indirectly. In this case, explicit start-up or

 termination requested by the user is denied, however if it is

 started or stopped as a dependency of another unit, start-up or

 termination will succeed. This is mostly a safety feature to ensure

 that the user does not accidentally activate units that are not

 intended to be activated explicitly, and not accidentally

 deactivate units that are not intended to be deactivated. These

 options default to false.

 AllowIsolate=

 Takes a boolean argument. If true, this unit may be used with the

 systemctl isolate command. Otherwise, this will be refused. It

 probably is a good idea to leave this disabled except for target Page 22/55

 units that shall be used similar to runlevels in SysV init systems,

 just as a precaution to avoid unusable system states. This option

 defaults to false.

 DefaultDependencies=

 Takes a boolean argument. If yes, (the default), a few default

 dependencies will implicitly be created for the unit. The actual

 dependencies created depend on the unit type. For example, for

 service units, these dependencies ensure that the service is

 started only after basic system initialization is completed and is

 properly terminated on system shutdown. See the respective man

 pages for details. Generally, only services involved with early

 boot or late shutdown should set this option to no. It is highly

 recommended to leave this option enabled for the majority of common

 units. If set to no, this option does not disable all implicit

 dependencies, just non-essential ones.

 CollectMode=

 Tweaks the "garbage collection" algorithm for this unit. Takes one

 of inactive or inactive-or-failed. If set to inactive the unit will

 be unloaded if it is in the inactive state and is not referenced by

 clients, jobs or other units ? however it is not unloaded if it is

 in the failed state. In failed mode, failed units are not unloaded

 until the user invoked systemctl reset-failed on them to reset the

 failed state, or an equivalent command. This behaviour is altered

 if this option is set to inactive-or-failed: in this case the unit

 is unloaded even if the unit is in a failed state, and thus an

 explicitly resetting of the failed state is not necessary. Note

 that if this mode is used unit results (such as exit codes, exit

 signals, consumed resources, ...) are flushed out immediately after

 the unit completed, except for what is stored in the logging

 subsystem. Defaults to inactive.

 FailureAction=, SuccessAction=

 Configure the action to take when the unit stops and enters a

 failed state or inactive state. Takes one of none, reboot, Page 23/55

 reboot-force, reboot-immediate, poweroff, poweroff-force,

 poweroff-immediate, exit, and exit-force. In system mode, all

 options are allowed. In user mode, only none, exit, and exit-force

 are allowed. Both options default to none.

 If none is set, no action will be triggered. reboot causes a

 reboot following the normal shutdown procedure (i.e. equivalent to

 systemctl reboot). reboot-force causes a forced reboot which will

 terminate all processes forcibly but should cause no dirty file

 systems on reboot (i.e. equivalent to systemctl reboot -f) and

 reboot-immediate causes immediate execution of the reboot(2) system

 call, which might result in data loss (i.e. equivalent to systemctl

 reboot -ff). Similarly, poweroff, poweroff-force,

 poweroff-immediate have the effect of powering down the system with

 similar semantics. exit causes the manager to exit following the

 normal shutdown procedure, and exit-force causes it terminate

 without shutting down services. When exit or exit-force is used by

 default the exit status of the main process of the unit (if this

 applies) is returned from the service manager. However, this may be

 overridden with FailureActionExitStatus=/SuccessActionExitStatus=,

 see below.

 FailureActionExitStatus=, SuccessActionExitStatus=

 Controls the exit status to propagate back to an invoking container

 manager (in case of a system service) or service manager (in case

 of a user manager) when the FailureAction=/SuccessAction= are set

 to exit or exit-force and the action is triggered. By default the

 exit status of the main process of the triggering unit (if this

 applies) is propagated. Takes a value in the range 0...255 or the

 empty string to request default behaviour.

 JobTimeoutSec=, JobRunningTimeoutSec=

 JobTimeoutSec= specifies a timeout for the whole job that starts

 running when the job is queued. JobRunningTimeoutSec= specifies a

 timeout that starts running when the queued job is actually

 started. If either limit is reached, the job will be cancelled, the Page 24/55

 unit however will not change state or even enter the "failed" mode.

 Both settings take a time span with the default unit of seconds,

 but other units may be specified, see systemd.time(5). The default

 is "infinity" (job timeouts disabled), except for device units

 where JobRunningTimeoutSec= defaults to DefaultTimeoutStartSec=.

 Note: these timeouts are independent from any unit-specific

 timeouts (for example, the timeout set with TimeoutStartSec= in

 service units). The job timeout has no effect on the unit itself.

 Or in other words: unit-specific timeouts are useful to abort unit

 state changes, and revert them. The job timeout set with this

 option however is useful to abort only the job waiting for the unit

 state to change.

 JobTimeoutAction=, JobTimeoutRebootArgument=

 JobTimeoutAction= optionally configures an additional action to

 take when the timeout is hit, see description of JobTimeoutSec= and

 JobRunningTimeoutSec= above. It takes the same values as

 StartLimitAction=. Defaults to none.

 JobTimeoutRebootArgument= configures an optional reboot string to

 pass to the reboot(2) system call.

 StartLimitIntervalSec=interval, StartLimitBurst=burst

 Configure unit start rate limiting. Units which are started more

 than burst times within an interval time span are not permitted to

 start any more. Use StartLimitIntervalSec= to configure the

 checking interval and StartLimitBurst= to configure how many starts

 per interval are allowed.

 interval is a time span with the default unit of seconds, but other

 units may be specified, see systemd.time(5). Defaults to

 DefaultStartLimitIntervalSec= in manager configuration file, and

 may be set to 0 to disable any kind of rate limiting. burst is a

 number and defaults to DefaultStartLimitBurst= in manager

 configuration file.

 These configuration options are particularly useful in conjunction

 with the service setting Restart= (see systemd.service(5)); Page 25/55

 however, they apply to all kinds of starts (including manual), not

 just those triggered by the Restart= logic.

 Note that units which are configured for Restart=, and which reach

 the start limit are not attempted to be restarted anymore; however,

 they may still be restarted manually or from a timer or socket at a

 later point, after the interval has passed. From that point on, the

 restart logic is activated again. systemctl reset-failed will

 cause the restart rate counter for a service to be flushed, which

 is useful if the administrator wants to manually start a unit and

 the start limit interferes with that. Rate-limiting is enforced

 after any unit condition checks are executed, and hence unit

 activations with failing conditions do not count towards the rate

 limit.

 When a unit is unloaded due to the garbage collection logic (see

 above) its rate limit counters are flushed out too. This means that

 configuring start rate limiting for a unit that is not referenced

 continuously has no effect.

 This setting does not apply to slice, target, device, and scope

 units, since they are unit types whose activation may either never

 fail, or may succeed only a single time.

 StartLimitAction=

 Configure an additional action to take if the rate limit configured

 with StartLimitIntervalSec= and StartLimitBurst= is hit. Takes the

 same values as the FailureAction=/SuccessAction= settings. If none

 is set, hitting the rate limit will trigger no action except that

 the start will not be permitted. Defaults to none.

 RebootArgument=

 Configure the optional argument for the reboot(2) system call if

 StartLimitAction= or FailureAction= is a reboot action. This works

 just like the optional argument to systemctl reboot command.

 SourcePath=

 A path to a configuration file this unit has been generated from.

 This is primarily useful for implementation of generator tools that Page 26/55

 convert configuration from an external configuration file format

 into native unit files. This functionality should not be used in

 normal units.

 Conditions and Asserts

 Unit files may also include a number of Condition...= and Assert...=

 settings. Before the unit is started, systemd will verify that the

 specified conditions and asserts are true. If not, the starting of the

 unit will be (mostly silently) skipped (in case of conditions), or

 aborted with an error message (in case of asserts). Failing conditions

 or asserts will not result in the unit being moved into the "failed"

 state. The conditions and asserts are checked at the time the queued

 start job is to be executed. The ordering dependencies are still

 respected, so other units are still pulled in and ordered as if this

 unit was successfully activated, and the conditions and asserts are

 executed the precise moment the unit would normally start and thus can

 validate system state after the units ordered before completed

 initialization. Use condition expressions for skipping units that do

 not apply to the local system, for example because the kernel or

 runtime environment doesn't require their functionality.

 If multiple conditions are specified, the unit will be executed if all

 of them apply (i.e. a logical AND is applied). Condition checks can use

 a pipe symbol ("|") after the equals sign ("Condition...=|..."), which

 causes the condition to become a triggering condition. If at least one

 triggering condition is defined for a unit, then the unit will be

 started if at least one of the triggering conditions of the unit

 applies and all of the regular (i.e. non-triggering) conditions apply.

 If you prefix an argument with the pipe symbol and an exclamation mark,

 the pipe symbol must be passed first, the exclamation second. If any of

 these options is assigned the empty string, the list of conditions is

 reset completely, all previous condition settings (of any kind) will

 have no effect.

 The AssertArchitecture=, AssertVirtualization=, ... options are similar

 to conditions but cause the start job to fail (instead of being Page 27/55

 skipped). The failed check is logged. Units with unmet conditions are

 considered to be in a clean state and will be garbage collected if they

 are not referenced. This means that when queried, the condition failure

 may or may not show up in the state of the unit.

 Note that neither assertion nor condition expressions result in unit

 state changes. Also note that both are checked at the time the job is

 to be executed, i.e. long after depending jobs and it itself were

 queued. Thus, neither condition nor assertion expressions are suitable

 for conditionalizing unit dependencies.

 The condition verb of systemd-analyze(1) can be used to test condition

 and assert expressions.

 Except for ConditionPathIsSymbolicLink=, all path checks follow

 symlinks.

 ConditionArchitecture=

 Check whether the system is running on a specific architecture.

 Takes one of "x86", "x86-64", "ppc", "ppc-le", "ppc64", "ppc64-le",

 "ia64", "parisc", "parisc64", "s390", "s390x", "sparc", "sparc64",

 "mips", "mips-le", "mips64", "mips64-le", "alpha", "arm", "arm-be",

 "arm64", "arm64-be", "sh", "sh64", "m68k", "tilegx", "cris", "arc",

 "arc-be", or "native".

 The architecture is determined from the information returned by

 uname(2) and is thus subject to personality(2). Note that a

 Personality= setting in the same unit file has no effect on this

 condition. A special architecture name "native" is mapped to the

 architecture the system manager itself is compiled for. The test

 may be negated by prepending an exclamation mark.

 ConditionFirmware=

 Check whether the system's firmware is of a certain type. The

 following values are possible:

 ? "uefi" matches systems with EFI.

 ? "device-tree" matches systems with a device tree.

 ? "device-tree-compatible(value)" matches systems with a device

 tree that is compatible with "value". Page 28/55

 ? "smbios-field(field operator value)" matches systems with a

 SMBIOS field containing a certain value. field is the name of

 the SMBIOS field exposed as "sysfs" attribute file below

 /sys/class/dmi/id/. operator is one of "<", "<=", ">=", ">",

 "==", "<>" for version comparisons, "=" and "!=" for literal

 string comparisons, or "$=", "!$=" for shell-style glob

 comparisons. value is the expected value of the SMBIOS field

 value (possibly containing shell style globs in case "$="/"!$="

 is used).

 ConditionVirtualization=

 Check whether the system is executed in a virtualized environment

 and optionally test whether it is a specific implementation. Takes

 either boolean value to check if being executed in any virtualized

 environment, or one of "vm" and "container" to test against a

 generic type of virtualization solution, or one of "qemu", "kvm",

 "amazon", "zvm", "vmware", "microsoft", "oracle", "powervm", "xen",

 "bochs", "uml", "bhyve", "qnx", "apple", "openvz", "lxc",

 "lxc-libvirt", "systemd-nspawn", "docker", "podman", "rkt", "wsl",

 "proot", "pouch", "acrn" to test against a specific implementation,

 or "private-users" to check whether we are running in a user

 namespace. See systemd-detect-virt(1) for a full list of known

 virtualization technologies and their identifiers. If multiple

 virtualization technologies are nested, only the innermost is

 considered. The test may be negated by prepending an exclamation

 mark.

 ConditionHost=

 ConditionHost= may be used to match against the hostname or machine

 ID of the host. This either takes a hostname string (optionally

 with shell style globs) which is tested against the locally set

 hostname as returned by gethostname(2), or a machine ID formatted

 as string (see machine-id(5)). The test may be negated by

 prepending an exclamation mark.

 ConditionKernelCommandLine= Page 29/55

 ConditionKernelCommandLine= may be used to check whether a specific

 kernel command line option is set (or if prefixed with the

 exclamation mark ? unset). The argument must either be a single

 word, or an assignment (i.e. two words, separated by "="). In the

 former case the kernel command line is searched for the word

 appearing as is, or as left hand side of an assignment. In the

 latter case, the exact assignment is looked for with right and left

 hand side matching. This operates on the kernel command line

 communicated to userspace via /proc/cmdline, except when the

 service manager is invoked as payload of a container manager, in

 which case the command line of PID 1 is used instead (i.e.

 /proc/1/cmdline).

 ConditionKernelVersion=

 ConditionKernelVersion= may be used to check whether the kernel

 version (as reported by uname -r) matches a certain expression, or

 if prefixed with the exclamation mark, does not match. The argument

 must be a list of (potentially quoted) expressions. Each expression

 starts with one of "=" or "!=" for string comparisons, "<", "<=",

 "==", "<>", ">=", ">" for version comparisons, or "$=", "!$=" for a

 shell-style glob match. If no operator is specified, "$=" is

 implied.

 Note that using the kernel version string is an unreliable way to

 determine which features are supported by a kernel, because of the

 widespread practice of backporting drivers, features, and fixes

 from newer upstream kernels into older versions provided by

 distributions. Hence, this check is inherently unportable and

 should not be used for units which may be used on different

 distributions.

 ConditionCredential=

 ConditionCredential= may be used to check whether a credential by

 the specified name was passed into the service manager. See System

 and Service Credentials[2] for details about credentials. If used

 in services for the system service manager this may be used to Page 30/55

 conditionalize services based on system credentials passed in. If

 used in services for the per-user service manager this may be used

 to conditionalize services based on credentials passed into the

 unit@.service service instance belonging to the user. The argument

 must be a valid credential name.

 ConditionEnvironment=

 ConditionEnvironment= may be used to check whether a specific

 environment variable is set (or if prefixed with the exclamation

 mark ? unset) in the service manager's environment block. The

 argument may be a single word, to check if the variable with this

 name is defined in the environment block, or an assignment

 ("name=value"), to check if the variable with this exact value is

 defined. Note that the environment block of the service manager

 itself is checked, i.e. not any variables defined with Environment=

 or EnvironmentFile=, as described above. This is particularly

 useful when the service manager runs inside a containerized

 environment or as per-user service manager, in order to check for

 variables passed in by the enclosing container manager or PAM.

 ConditionSecurity=

 ConditionSecurity= may be used to check whether the given security

 technology is enabled on the system. Currently, the recognized

 values are "selinux", "apparmor", "tomoyo", "ima", "smack",

 "audit", "uefi-secureboot" and "tpm2". The test may be negated by

 prepending an exclamation mark.

 ConditionCapability=

 Check whether the given capability exists in the capability

 bounding set of the service manager (i.e. this does not check

 whether capability is actually available in the permitted or

 effective sets, see capabilities(7) for details). Pass a capability

 name such as "CAP_MKNOD", possibly prefixed with an exclamation

 mark to negate the check.

 ConditionACPower=

 Check whether the system has AC power, or is exclusively battery Page 31/55

 powered at the time of activation of the unit. This takes a boolean

 argument. If set to "true", the condition will hold only if at

 least one AC connector of the system is connected to a power

 source, or if no AC connectors are known. Conversely, if set to

 "false", the condition will hold only if there is at least one AC

 connector known and all AC connectors are disconnected from a power

 source.

 ConditionNeedsUpdate=

 Takes one of /var/ or /etc/ as argument, possibly prefixed with a

 "!" (to invert the condition). This condition may be used to

 conditionalize units on whether the specified directory requires an

 update because /usr/'s modification time is newer than the stamp

 file .updated in the specified directory. This is useful to

 implement offline updates of the vendor operating system resources

 in /usr/ that require updating of /etc/ or /var/ on the next

 following boot. Units making use of this condition should order

 themselves before systemd-update-done.service(8), to make sure they

 run before the stamp file's modification time gets reset indicating

 a completed update.

 If the systemd.condition-needs-update= option is specified on the

 kernel command line (taking a boolean), it will override the result

 of this condition check, taking precedence over any file

 modification time checks. If the kernel command line option is

 used, systemd-update-done.service will not have immediate effect on

 any following ConditionNeedsUpdate= checks, until the system is

 rebooted where the kernel command line option is not specified

 anymore.

 Note that to make this scheme effective, the timestamp of /usr/

 should be explicitly updated after its contents are modified. The

 kernel will automatically update modification timestamp on a

 directory only when immediate children of a directory are modified;

 an modification of nested files will not automatically result in

 mtime of /usr/ being updated. Page 32/55

 Also note that if the update method includes a call to execute

 appropriate post-update steps itself, it should not touch the

 timestamp of /usr/. In a typical distribution packaging scheme,

 packages will do any required update steps as part of the

 installation or upgrade, to make package contents immediately

 usable. ConditionNeedsUpdate= should be used with other update

 mechanisms where such an immediate update does not happen.

 ConditionFirstBoot=

 Takes a boolean argument. This condition may be used to

 conditionalize units on whether the system is booting up for the

 first time. This roughly means that /etc/ was unpopulated when the

 system started booting (for details, see "First Boot Semantics" in

 machine-id(5)). First boot is considered finished (this condition

 will evaluate as false) after the manager has finished the startup

 phase.

 This condition may be used to populate /etc/ on the first boot

 after factory reset, or when a new system instance boots up for the

 first time.

 For robustness, units with ConditionFirstBoot=yes should order

 themselves before first-boot-complete.target and pull in this

 passive target with Wants=. This ensures that in a case of an

 aborted first boot, these units will be re-run during the next

 system startup.

 If the systemd.condition-first-boot= option is specified on the

 kernel command line (taking a boolean), it will override the result

 of this condition check, taking precedence over /etc/machine-id

 existence checks.

 ConditionPathExists=

 Check for the existence of a file. If the specified absolute path

 name does not exist, the condition will fail. If the absolute path

 name passed to ConditionPathExists= is prefixed with an exclamation

 mark ("!"), the test is negated, and the unit is only started if

 the path does not exist. Page 33/55

 ConditionPathExistsGlob=

 ConditionPathExistsGlob= is similar to ConditionPathExists=, but

 checks for the existence of at least one file or directory matching

 the specified globbing pattern.

 ConditionPathIsDirectory=

 ConditionPathIsDirectory= is similar to ConditionPathExists= but

 verifies that a certain path exists and is a directory.

 ConditionPathIsSymbolicLink=

 ConditionPathIsSymbolicLink= is similar to ConditionPathExists= but

 verifies that a certain path exists and is a symbolic link.

 ConditionPathIsMountPoint=

 ConditionPathIsMountPoint= is similar to ConditionPathExists= but

 verifies that a certain path exists and is a mount point.

 ConditionPathIsReadWrite=

 ConditionPathIsReadWrite= is similar to ConditionPathExists= but

 verifies that the underlying file system is readable and writable

 (i.e. not mounted read-only).

 ConditionPathIsEncrypted=

 ConditionPathIsEncrypted= is similar to ConditionPathExists= but

 verifies that the underlying file system's backing block device is

 encrypted using dm-crypt/LUKS. Note that this check does not cover

 ext4 per-directory encryption, and only detects block level

 encryption. Moreover, if the specified path resides on a file

 system on top of a loopback block device, only encryption above the

 loopback device is detected. It is not detected whether the file

 system backing the loopback block device is encrypted.

 ConditionDirectoryNotEmpty=

 ConditionDirectoryNotEmpty= is similar to ConditionPathExists= but

 verifies that a certain path exists and is a non-empty directory.

 ConditionFileNotEmpty=

 ConditionFileNotEmpty= is similar to ConditionPathExists= but

 verifies that a certain path exists and refers to a regular file

 with a non-zero size. Page 34/55

 ConditionFileIsExecutable=

 ConditionFileIsExecutable= is similar to ConditionPathExists= but

 verifies that a certain path exists, is a regular file, and marked

 executable.

 ConditionUser=

 ConditionUser= takes a numeric "UID", a UNIX user name, or the

 special value "@system". This condition may be used to check

 whether the service manager is running as the given user. The

 special value "@system" can be used to check if the user id is

 within the system user range. This option is not useful for system

 services, as the system manager exclusively runs as the root user,

 and thus the test result is constant.

 ConditionGroup=

 ConditionGroup= is similar to ConditionUser= but verifies that the

 service manager's real or effective group, or any of its auxiliary

 groups, match the specified group or GID. This setting does not

 support the special value "@system".

 ConditionControlGroupController=

 Check whether given cgroup controllers (e.g. "cpu") are available

 for use on the system.

 Multiple controllers may be passed with a space separating them; in

 this case the condition will only pass if all listed controllers

 are available for use. Controllers unknown to systemd are ignored.

 Valid controllers are "cpu", "cpuset", "io", "memory", and "pids".

 Even if available in the kernel, a particular controller may not be

 available if it was disabled on the kernel command line with

 cgroup_disable=controller.

 ConditionMemory=

 Verify that the specified amount of system memory is available to

 the current system. Takes a memory size in bytes as argument,

 optionally prefixed with a comparison operator "<", "<=", "=" (or

 "=="), "!=" (or "<>"), ">=", ">". On bare-metal systems compares

 the amount of physical memory in the system with the specified Page 35/55

 size, adhering to the specified comparison operator. In containers

 compares the amount of memory assigned to the container instead.

 ConditionCPUs=

 Verify that the specified number of CPUs is available to the

 current system. Takes a number of CPUs as argument, optionally

 prefixed with a comparison operator "<", "<=", "=" (or "=="), "!="

 (or "<>"), ">=", ">". Compares the number of CPUs in the CPU

 affinity mask configured of the service manager itself with the

 specified number, adhering to the specified comparison operator. On

 physical systems the number of CPUs in the affinity mask of the

 service manager usually matches the number of physical CPUs, but in

 special and virtual environments might differ. In particular, in

 containers the affinity mask usually matches the number of CPUs

 assigned to the container and not the physically available ones.

 ConditionCPUFeature=

 Verify that a given CPU feature is available via the "CPUID"

 instruction. This condition only does something on i386 and x86-64

 processors. On other processors it is assumed that the CPU does not

 support the given feature. It checks the leaves "1", "7",

 "0x80000001", and "0x80000007". Valid values are: "fpu", "vme",

 "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", "sep",

 "mtrr", "pge", "mca", "cmov", "pat", "pse36", "clflush", "mmx",

 "fxsr", "sse", "sse2", "ht", "pni", "pclmul", "monitor", "ssse3",

 "fma3", "cx16", "sse4_1", "sse4_2", "movbe", "popcnt", "aes",

 "xsave", "osxsave", "avx", "f16c", "rdrand", "bmi1", "avx2",

 "bmi2", "rdseed", "adx", "sha_ni", "syscall", "rdtscp", "lm",

 "lahf_lm", "abm", "constant_tsc".

 ConditionOSRelease=

 Verify that a specific "key=value" pair is set in the host's os-

 release(5).

 Other than exact string matching (with "=" and "!="), relative

 comparisons are supported for versioned parameters (e.g.

 "VERSION_ID"; with "<", "<=", "==", "<>", ">=", ">"), and Page 36/55

 shell-style wildcard comparisons ("*", "?", "[]") are supported

 with the "$=" (match) and "!$=" (non-match).

 ConditionMemoryPressure=, ConditionCPUPressure=, ConditionIOPressure=

 Verify that the overall system (memory, CPU or IO) pressure is

 below or equal to a threshold. This setting takes a threshold value

 as argument. It can be specified as a simple percentage value,

 suffixed with "%", in which case the pressure will be measured as

 an average over the last five minutes before the attempt to start

 the unit is performed. Alternatively, the average timespan can also

 be specified using "/" as a separator, for example: "10%/1min". The

 supported timespans match what the kernel provides, and are limited

 to "10sec", "1min" and "5min". The "full" PSI will be checked

 first, and if not found "some" will be checked. For more details,

 see the documentation on PSI (Pressure Stall Information)[3].

 Optionally, the threshold value can be prefixed with the slice unit

 under which the pressure will be checked, followed by a ":". If the

 slice unit is not specified, the overall system pressure will be

 measured, instead of a particular cgroup's.

 AssertArchitecture=, AssertVirtualization=, AssertHost=,

 AssertKernelCommandLine=, AssertKernelVersion=, AssertCredential=,

 AssertEnvironment=, AssertSecurity=, AssertCapability=, AssertACPower=,

 AssertNeedsUpdate=, AssertFirstBoot=, AssertPathExists=,

 AssertPathExistsGlob=, AssertPathIsDirectory=,

 AssertPathIsSymbolicLink=, AssertPathIsMountPoint=,

 AssertPathIsReadWrite=, AssertPathIsEncrypted=,

 AssertDirectoryNotEmpty=, AssertFileNotEmpty=, AssertFileIsExecutable=,

 AssertUser=, AssertGroup=, AssertControlGroupController=,

 AssertMemory=, AssertCPUs=, AssertCPUFeature=, AssertOSRelease=,

 AssertMemoryPressure=, AssertCPUPressure=, AssertIOPressure=

 Similar to the ConditionArchitecture=, ConditionVirtualization=,

 ..., condition settings described above, these settings add

 assertion checks to the start-up of the unit. However, unlike the

 conditions settings, any assertion setting that is not met results Page 37/55

 in failure of the start job (which means this is logged loudly).

 Note that hitting a configured assertion does not cause the unit to

 enter the "failed" state (or in fact result in any state change of

 the unit), it affects only the job queued for it. Use assertion

 expressions for units that cannot operate when specific

 requirements are not met, and when this is something the

 administrator or user should look into.

MAPPING OF UNIT PROPERTIES TO THEIR INVERSES

 Unit settings that create a relationship with a second unit usually

 show up in properties of both units, for example in systemctl show

 output. In some cases the name of the property is the same as the name

 of the configuration setting, but not always. This table lists the

 properties that are shown on two units which are connected through some

 dependency, and shows which property on "source" unit corresponds to

 which property on the "target" unit.

 Table 3. Forward and reverse unit properties

 ??

 ?"Forward" ? "Reverse" ? Where used ?

 ?property ? property ? ?

 ??

 ?Before= ? After= ? ?

 ?? [Unit] section ?

 ?After= ? Before= ? ?

 ??

 ?Requires= ? RequiredBy= ? [Unit] section ? [Install] ?

 ? ? ? ? section ?

 ??

 ?Wants= ? WantedBy= ? [Unit] section ? [Install] ?

 ? ? ? ? section ?

 ??

 ?PartOf= ? ConsistsOf= ? [Unit] section ? an automatic ?

 ? ? ? ? property ?

 ?? Page 38/55

 ?BindsTo= ? BoundBy= ? [Unit] section ? an automatic ?

 ? ? ? ? property ?

 ??

 ?Requisite= ? RequisiteOf= ? [Unit] section ? an automatic ?

 ? ? ? ? property ?

 ??

 ?Triggers= ? TriggeredBy= ? Automatic properties, see notes ?

 ? ? ? below ?

 ??

 ?Conflicts= ? ConflictedBy= ? [Unit] section ? an automatic ?

 ? ? ? ? property ?

 ??

 ?PropagatesReloadTo= ? ReloadPropagatedFrom= ? ?

 ?? [Unit] section ?

 ?ReloadPropagatedFrom= ? PropagatesReloadTo= ? ?

 ??

 ?Following= ? n/a ? An automatic ? ?

 ? ? ? property ? ?

 ??

 Note: WantedBy= and RequiredBy= are used in the [Install] section to

 create symlinks in .wants/ and .requires/ directories. They cannot be

 used directly as a unit configuration setting.

 Note: ConsistsOf=, BoundBy=, RequisiteOf=, ConflictedBy= are created

 implicitly along with their reverses and cannot be specified directly.

 Note: Triggers= is created implicitly between a socket, path unit, or

 an automount unit, and the unit they activate. By default a unit with

 the same name is triggered, but this can be overridden using Sockets=,

 Service=, and Unit= settings. See systemd.service(5),

 systemd.socket(5), systemd.path(5), and systemd.automount(5) for

 details. TriggeredBy= is created implicitly on the triggered unit.

 Note: Following= is used to group device aliases and points to the

 "primary" device unit that systemd is using to track device state,

 usually corresponding to a sysfs path. It does not show up in the Page 39/55

 "target" unit.

[INSTALL] SECTION OPTIONS

 Unit files may include an [Install] section, which carries installation

 information for the unit. This section is not interpreted by systemd(1)

 during runtime; it is used by the enable and disable commands of the

 systemctl(1) tool during installation of a unit.

 Alias=

 A space-separated list of additional names this unit shall be

 installed under. The names listed here must have the same suffix

 (i.e. type) as the unit filename. This option may be specified more

 than once, in which case all listed names are used. At installation

 time, systemctl enable will create symlinks from these names to the

 unit filename. Note that not all unit types support such alias

 names, and this setting is not supported for them. Specifically,

 mount, slice, swap, and automount units do not support aliasing.

 WantedBy=, RequiredBy=

 This option may be used more than once, or a space-separated list

 of unit names may be given. A symbolic link is created in the

 .wants/ or .requires/ directory of each of the listed units when

 this unit is installed by systemctl enable. This has the effect of

 a dependency of type Wants= or Requires= being added from the

 listed unit to the current unit. The primary result is that the

 current unit will be started when the listed unit is started, see

 the description of Wants= and Requires= in the [Unit] section for

 details.

 In case of template units listing non template units, the listing

 unit must have DefaultInstance= set, or systemctl enable must be

 called with an instance name. The instance (default or specified)

 will be added to the .wants/ or .requires/ list of the listed unit.

 For example, WantedBy=getty.target in a service getty@.service will

 result in systemctl enable getty@tty2.service creating a

 getty.target.wants/getty@tty2.service link to getty@.service. This

 also applies to listing specific instances of templated units: this Page 40/55

 specific instance will gain the dependency. A template unit may

 also list a template unit, in which case a generic dependency will

 be added where each instance of the listing unit will have a

 dependency on an instance of the listed template with the same

 instance value. For example, WantedBy=container@.target in a

 service monitor@.service will result in systemctl enable

 monitor@.service creating a

 container@.target.wants/monitor@.service link to monitor@.service,

 which applies to all instances of container@.target.

 Also=

 Additional units to install/deinstall when this unit is

 installed/deinstalled. If the user requests

 installation/deinstallation of a unit with this option configured,

 systemctl enable and systemctl disable will automatically

 install/uninstall units listed in this option as well.

 This option may be used more than once, or a space-separated list

 of unit names may be given.

 DefaultInstance=

 In template unit files, this specifies for which instance the unit

 shall be enabled if the template is enabled without any explicitly

 set instance. This option has no effect in non-template unit files.

 The specified string must be usable as instance identifier.

 The following specifiers are interpreted in the Install section: %a,

 %b, %B, %g, %G, %H, %i, %j, %l, %m, %n, %N, %o, %p, %u, %U, %v, %w, %W,

 %%. For their meaning see the next section.

SPECIFIERS

 Many settings resolve specifiers which may be used to write generic

 unit files referring to runtime or unit parameters that are replaced

 when the unit files are loaded. Specifiers must be known and resolvable

 for the setting to be valid. The following specifiers are understood:

 Table 4. Specifiers available in unit files

 ???

 ?Specifier ? Meaning ? Details ? Page 41/55

 ???

 ?"%a" ? Architecture ? A short string ?

 ? ? ? identifying the ?

 ? ? ? architecture of the ?

 ? ? ? local system. A ?

 ? ? ? string such as x86, ?

 ? ? ? x86-64 or arm64. ?

 ? ? ? See the ?

 ? ? ? architectures ?

 ? ? ? defined for ?

 ? ? ? ConditionArchitecture= ?

 ? ? ? above for a full ?

 ? ? ? list. ?

 ???

 ?"%A" ? Operating system ? The operating system ?

 ? ? image version ? image version ?

 ? ? ? identifier of the ?

 ? ? ? running system, as ?

 ? ? ? read from the ?

 ? ? ? IMAGE_VERSION= field ?

 ? ? ? of /etc/os-release. If ?

 ? ? ? not set, resolves to ?

 ? ? ? an empty string. See ?

 ? ? ? os-release(5) for more ?

 ? ? ? information. ?

 ???

 ?"%b" ? Boot ID ? The boot ID of the ?

 ? ? ? running system, ?

 ? ? ? formatted as string. ?

 ? ? ? See random(4) for more ?

 ? ? ? information. ?

 ???

 ?"%B" ? Operating system ? The operating system ? Page 42/55

 ? ? build ID ? build identifier of ?

 ? ? ? the running system, as ?

 ? ? ? read from the ?

 ? ? ? BUILD_ID= field of ?

 ? ? ? /etc/os-release. If ?

 ? ? ? not set, resolves to ?

 ? ? ? an empty string. See ?

 ? ? ? os-release(5) for more ?

 ? ? ? information. ?

 ???

 ?"%C" ? Cache directory ? This is either ?

 ? ? root ? /var/cache (for the ?

 ? ? ? system manager) or the ?

 ? ? ? path "$XDG_CACHE_HOME" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ???

 ?"%d" ? Credentials ? This is the value of ?

 ? ? directory ? the ?

 ? ? ? "$CREDENTIALS_DIRECTORY" ?

 ? ? ? environment variable ?

 ? ? ? if available. See ?

 ? ? ? section "Credentials" ?

 ? ? ? in systemd.exec(5) for ?

 ? ? ? more information. ?

 ???

 ?"%E" ? Configuration ? This is either /etc/ ?

 ? ? directory root ? (for the system manager) ?

 ? ? ? or the path ?

 ? ? ? "$XDG_CONFIG_HOME" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ??? Page 43/55

 ?"%f" ? Unescaped filename ? This is either the ?

 ? ? ? unescaped instance name ?

 ? ? ? (if applicable) with / ?

 ? ? ? prepended (if ?

 ? ? ? applicable), or the ?

 ? ? ? unescaped prefix name ?

 ? ? ? prepended with /. This ?

 ? ? ? implements unescaping ?

 ? ? ? according to the rules ?

 ? ? ? for escaping absolute ?

 ? ? ? file system paths ?

 ? ? ? discussed above. ?

 ???

 ?"%g" ? User group ? This is the name of the ?

 ? ? ? group running the ?

 ? ? ? service manager ?

 ? ? ? instance. In case of the ?

 ? ? ? system manager this ?

 ? ? ? resolves to "root". ?

 ???

 ?"%G" ? User GID ? This is the numeric GID ?

 ? ? ? of the user running the ?

 ? ? ? service manager ?

 ? ? ? instance. In case of the ?

 ? ? ? system manager this ?

 ? ? ? resolves to "0". ?

 ???

 ?"%h" ? User home directory ? This is the home ?

 ? ? ? directory of the user ?

 ? ? ? running the service ?

 ? ? ? manager instance. In ?

 ? ? ? case of the system ?

 ? ? ? manager this resolves to ? Page 44/55

 ? ? ? "/root". ?

 ? ? ? ?

 ? ? ? Note that this setting ?

 ? ? ? is not influenced by the ?

 ? ? ? User= setting ?

 ? ? ? configurable in the ?

 ? ? ? [Service] section of the ?

 ? ? ? service unit. ?

 ???

 ?"%H" ? Host name ? The hostname of the ?

 ? ? ? running system at the ?

 ? ? ? point in time the unit ?

 ? ? ? configuration is loaded. ?

 ???

 ?"%i" ? Instance name ? For instantiated units ?

 ? ? ? this is the string ?

 ? ? ? between the first "@" ?

 ? ? ? character and the type ?

 ? ? ? suffix. Empty for ?

 ? ? ? non-instantiated units. ?

 ???

 ?"%I" ? Unescaped instance ? Same as "%i", but with ?

 ? ? name ? escaping undone. ?

 ???

 ?"%j" ? Final component of ? This is the string ?

 ? ? the prefix ? between the last "-" and ?

 ? ? ? the end of the prefix ?

 ? ? ? name. If there is no ?

 ? ? ? "-", this is the same as ?

 ? ? ? "%p". ?

 ???

 ?"%J" ? Unescaped final ? Same as "%j", but with ?

 ? ? component of the ? escaping undone. ? Page 45/55

 ? ? prefix ? ?

 ???

 ?"%l" ? Short host name ? The hostname of the ?

 ? ? ? running system at the ?

 ? ? ? point in time the unit ?

 ? ? ? configuration is loaded, ?

 ? ? ? truncated at the first ?

 ? ? ? dot to remove any domain ?

 ? ? ? component. ?

 ???

 ?"%L" ? Log directory root ? This is either /var/log ?

 ? ? ? (for the system manager) ?

 ? ? ? or the path ?

 ? ? ? "$XDG_CONFIG_HOME" ?

 ? ? ? resolves to with /log ?

 ? ? ? appended (for user ?

 ? ? ? managers). ?

 ???

 ?"%m" ? Machine ID ? The machine ID of the ?

 ? ? ? running system, ?

 ? ? ? formatted as string. See ?

 ? ? ? machine-id(5) for more ?

 ? ? ? information. ?

 ???

 ?"%M" ? Operating system ? The operating system ?

 ? ? image identifier ? image identifier of the ?

 ? ? ? running system, as read ?

 ? ? ? from the IMAGE_ID= field ?

 ? ? ? of /etc/os-release. If ?

 ? ? ? not set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ? Page 46/55

 ???

 ?"%n" ? Full unit name ? ?

 ???

 ?"%N" ? Full unit name ? Same as "%n", but with ?

 ? ? ? the type suffix removed. ?

 ???

 ?"%o" ? Operating system ID ? The operating system ?

 ? ? ? identifier of the ?

 ? ? ? running system, as read ?

 ? ? ? from the ID= field of ?

 ? ? ? /etc/os-release. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ???

 ?"%p" ? Prefix name ? For instantiated units, ?

 ? ? ? this refers to the ?

 ? ? ? string before the first ?

 ? ? ? "@" character of the ?

 ? ? ? unit name. For ?

 ? ? ? non-instantiated units, ?

 ? ? ? same as "%N". ?

 ???

 ?"%P" ? Unescaped prefix ? Same as "%p", but with ?

 ? ? name ? escaping undone. ?

 ???

 ?"%q" ? Pretty host name ? The pretty hostname of ?

 ? ? ? the running system at ?

 ? ? ? the point in time the ?

 ? ? ? unit configuration is ?

 ? ? ? loaded, as read from the ?

 ? ? ? PRETTY_HOSTNAME= field ?

 ? ? ? of /etc/machine-info. If ?

 ? ? ? not set, resolves to the ? Page 47/55

 ? ? ? short hostname. See ?

 ? ? ? machine-info(5) for more ?

 ? ? ? information. ?

 ???

 ?"%s" ? User shell ? This is the shell of the ?

 ? ? ? user running the service ?

 ? ? ? manager instance. ?

 ???

 ?"%S" ? State directory ? This is either /var/lib ?

 ? ? root ? (for the system manager) ?

 ? ? ? or the path ?

 ? ? ? "$XDG_CONFIG_HOME" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ???

 ?"%t" ? Runtime directory ? This is either /run/ ?

 ? ? root ? (for the system manager) ?

 ? ? ? or the path ?

 ? ? ? "$XDG_RUNTIME_DIR" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ???

 ?"%T" ? Directory for ? This is either /tmp or ?

 ? ? temporary files ? the path "$TMPDIR", ?

 ? ? ? "$TEMP" or "$TMP" are ?

 ? ? ? set to. (Note that the ?

 ? ? ? directory may be ?

 ? ? ? specified without a ?

 ? ? ? trailing slash.) ?

 ???

 ?"%u" ? User name ? This is the name of the ?

 ? ? ? user running the service ?

 ? ? ? manager instance. In ? Page 48/55

 ? ? ? case of the system ?

 ? ? ? manager this resolves to ?

 ? ? ? "root". ?

 ? ? ? ?

 ? ? ? Note that this setting ?

 ? ? ? is not influenced by the ?

 ? ? ? User= setting ?

 ? ? ? configurable in the ?

 ? ? ? [Service] section of the ?

 ? ? ? service unit. ?

 ???

 ?"%U" ? User UID ? This is the numeric UID ?

 ? ? ? of the user running the ?

 ? ? ? service manager ?

 ? ? ? instance. In case of the ?

 ? ? ? system manager this ?

 ? ? ? resolves to "0". ?

 ? ? ? ?

 ? ? ? Note that this setting ?

 ? ? ? is not influenced by the ?

 ? ? ? User= setting ?

 ? ? ? configurable in the ?

 ? ? ? [Service] section of the ?

 ? ? ? service unit. ?

 ???

 ?"%v" ? Kernel release ? Identical to uname -r ?

 ? ? ? output. ?

 ???

 ?"%V" ? Directory for ? This is either /var/tmp ?

 ? ? larger and ? or the path "$TMPDIR", ?

 ? ? persistent ? "$TEMP" or "$TMP" are ?

 ? ? temporary files ? set to. (Note that the ?

 ? ? ? directory may be ? Page 49/55

 ? ? ? specified without a ?

 ? ? ? trailing slash.) ?

 ???

 ?"%w" ? Operating system ? The operating system ?

 ? ? version ID ? version identifier of ?

 ? ? ? the running system, as ?

 ? ? ? read from the ?

 ? ? ? VERSION_ID= field of ?

 ? ? ? /etc/os-release. If not ?

 ? ? ? set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ???

 ?"%W" ? Operating system ? The operating system ?

 ? ? variant ID ? variant identifier of ?

 ? ? ? the running system, as ?

 ? ? ? read from the ?

 ? ? ? VARIANT_ID= field of ?

 ? ? ? /etc/os-release. If not ?

 ? ? ? set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ???

 ?"%y" ? The path to the ? This is the path where ?

 ? ? fragment ? the main part of the ?

 ? ? ? unit file is located. ?

 ? ? ? For linked unit files, ?

 ? ? ? the real path outside of ?

 ? ? ? the unit search ?

 ? ? ? directories is used. For ?

 ? ? ? units that don't have a ? Page 50/55

 ? ? ? fragment file, this ?

 ? ? ? specifier will raise an ?

 ? ? ? error. ?

 ???

 ?"%Y" ? The directory of ? This is the directory ?

 ? ? the fragment ? part of "%y". ?

 ???

 ?"%%" ? Single percent sign ? Use "%%" in place of "%" ?

 ? ? ? to specify a single ?

 ? ? ? percent sign. ?

 ???

EXAMPLES

 Example 1. Allowing units to be enabled

 The following snippet (highlighted) allows a unit (e.g. foo.service)

 to be enabled via systemctl enable:

 [Unit]

 Description=Foo

 [Service]

 ExecStart=/usr/sbin/foo-daemon

 [Install]

 WantedBy=multi-user.target

 After running systemctl enable, a symlink

 /etc/systemd/system/multi-user.target.wants/foo.service linking to the

 actual unit will be created. It tells systemd to pull in the unit when

 starting multi-user.target. The inverse systemctl disable will remove

 that symlink again.

 Example 2. Overriding vendor settings

 There are two methods of overriding vendor settings in unit files:

 copying the unit file from /usr/lib/systemd/system to

 /etc/systemd/system and modifying the chosen settings. Alternatively,

 one can create a directory named unit.d/ within /etc/systemd/system and

 place a drop-in file name.conf there that only changes the specific

 settings one is interested in. Note that multiple such drop-in files Page 51/55

 are read if present, processed in lexicographic order of their

 filename.

 The advantage of the first method is that one easily overrides the

 complete unit, the vendor unit is not parsed at all anymore. It has the

 disadvantage that improvements to the unit file by the vendor are not

 automatically incorporated on updates.

 The advantage of the second method is that one only overrides the

 settings one specifically wants, where updates to the unit by the

 vendor automatically apply. This has the disadvantage that some future

 updates by the vendor might be incompatible with the local changes.

 This also applies for user instances of systemd, but with different

 locations for the unit files. See the section on unit load paths for

 further details.

 Suppose there is a vendor-supplied unit

 /usr/lib/systemd/system/httpd.service with the following contents:

 [Unit]

 Description=Some HTTP server

 After=remote-fs.target sqldb.service

 Requires=sqldb.service

 AssertPathExists=/srv/webserver

 [Service]

 Type=notify

 ExecStart=/usr/sbin/some-fancy-httpd-server

 Nice=5

 [Install]

 WantedBy=multi-user.target

 Now one wants to change some settings as an administrator: firstly, in

 the local setup, /srv/webserver might not exist, because the HTTP

 server is configured to use /srv/www instead. Secondly, the local

 configuration makes the HTTP server also depend on a memory cache

 service, memcached.service, that should be pulled in (Requires=) and

 also be ordered appropriately (After=). Thirdly, in order to harden the

 service a bit more, the administrator would like to set the PrivateTmp= Page 52/55

 setting (see systemd.exec(5) for details). And lastly, the

 administrator would like to reset the niceness of the service to its

 default value of 0.

 The first possibility is to copy the unit file to

 /etc/systemd/system/httpd.service and change the chosen settings:

 [Unit]

 Description=Some HTTP server

 After=remote-fs.target sqldb.service memcached.service

 Requires=sqldb.service memcached.service

 AssertPathExists=/srv/www

 [Service]

 Type=notify

 ExecStart=/usr/sbin/some-fancy-httpd-server

 Nice=0

 PrivateTmp=yes

 [Install]

 WantedBy=multi-user.target

 Alternatively, the administrator could create a drop-in file

 /etc/systemd/system/httpd.service.d/local.conf with the following

 contents:

 [Unit]

 After=memcached.service

 Requires=memcached.service

 # Reset all assertions and then re-add the condition we want

 AssertPathExists=

 AssertPathExists=/srv/www

 [Service]

 Nice=0

 PrivateTmp=yes

 Note that for drop-in files, if one wants to remove entries from a

 setting that is parsed as a list (and is not a dependency), such as

 AssertPathExists= (or e.g. ExecStart= in service units), one needs to

 first clear the list before re-adding all entries except the one that Page 53/55

 is to be removed. Dependencies (After=, etc.) cannot be reset to an

 empty list, so dependencies can only be added in drop-ins. If you want

 to remove dependencies, you have to override the entire unit.

 Example 3. Top level drop-ins with template units

 Top level per-type drop-ins can be used to change some aspect of all

 units of a particular type. For example by creating the

 /etc/systemd/system/service.d/ directory with a drop-in file, the

 contents of the drop-in file can be applied to all service units. We

 can take this further by having the top-level drop-in instantiate a

 secondary helper unit. Consider for example the following set of units

 and drop-in files where we install an OnFailure= dependency for all

 service units.

 /etc/systemd/system/failure-handler@.service:

 [Unit]

 Description=My failure handler for %i

 [Service]

 Type=oneshot

 # Perform some special action for when %i exits unexpectedly.

 ExecStart=/usr/sbin/myfailurehandler %i

 We can then add an instance of failure-handler@.service as an

 OnFailure= dependency for all service units.

 /etc/systemd/system/service.d/10-all.conf:

 [Unit]

 OnFailure=failure-handler@%N.service

 Now, after running systemctl daemon-reload all services will have

 acquired an OnFailure= dependency on failure-handler@%N.service. The

 template instance units will also have gained the dependency which

 results in the creation of a recursive dependency chain. systemd will

 try to detect these recursive dependency chains where a template unit

 directly and recursively depends on itself and will remove such

 dependencies automatically if it finds them. If systemd doesn't detect

 the recursive dependency chain, we can break the chain ourselves by

 disabling the drop-in for the template instance units via a symlink to Page 54/55

 /dev/null:

 mkdir /etc/systemd/system/failure-handler@.service.d/

 ln -s /dev/null /etc/systemd/system/failure-handler@.service.d/10-all.conf

 systemctl daemon-reload

 This ensures that if a failure-handler@.service instance fails it will

 not trigger an instance named failure-handler@failure-handler.service.

SEE ALSO

 systemd(1), systemctl(1), systemd-system.conf(5), systemd.special(7),

 systemd.service(5), systemd.socket(5), systemd.device(5),

 systemd.mount(5), systemd.automount(5), systemd.swap(5),

 systemd.target(5), systemd.path(5), systemd.timer(5), systemd.scope(5),

 systemd.slice(5), systemd.time(7), systemd-analyze(1), capabilities(7),

 systemd.directives(7), uname(1)

NOTES

 1. Interface Portability and Stability Promise

 https://systemd.io/PORTABILITY_AND_STABILITY/

 2. System and Service Credentials

 https://systemd.io/CREDENTIALS

 3. PSI (Pressure Stall Information)

 https://docs.kernel.org/accounting/psi.html

systemd 252 SYSTEMD.UNIT(5)

Page 55/55

