
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.socket.5'

$ man systemd.socket.5

SYSTEMD.SOCKET(5) systemd.socket SYSTEMD.SOCKET(5)

NAME

 systemd.socket - Socket unit configuration

SYNOPSIS

 socket.socket

DESCRIPTION

 A unit configuration file whose name ends in ".socket" encodes

 information about an IPC or network socket or a file system FIFO

 controlled and supervised by systemd, for socket-based activation.

 This man page lists the configuration options specific to this unit

 type. See systemd.unit(5) for the common options of all unit

 configuration files. The common configuration items are configured in

 the generic [Unit] and [Install] sections. The socket specific

 configuration options are configured in the [Socket] section.

 Additional options are listed in systemd.exec(5), which define the

 execution environment the ExecStartPre=, ExecStartPost=, ExecStopPre=

 and ExecStopPost= commands are executed in, and in systemd.kill(5),

 which define the way the processes are terminated, and in Page 1/16

 systemd.resource-control(5), which configure resource control settings

 for the processes of the socket.

 For each socket unit, a matching service unit must exist, describing

 the service to start on incoming traffic on the socket (see

 systemd.service(5) for more information about .service units). The name

 of the .service unit is by default the same as the name of the .socket

 unit, but can be altered with the Service= option described below.

 Depending on the setting of the Accept= option described below, this

 .service unit must either be named like the .socket unit, but with the

 suffix replaced, unless overridden with Service=; or it must be a

 template unit named the same way. Example: a socket file foo.socket

 needs a matching service foo.service if Accept=no is set. If Accept=yes

 is set, a service template foo@.service must exist from which services

 are instantiated for each incoming connection.

 No implicit WantedBy= or RequiredBy= dependency from the socket to the

 service is added. This means that the service may be started without

 the socket, in which case it must be able to open sockets by itself. To

 prevent this, an explicit Requires= dependency may be added.

 Socket units may be used to implement on-demand starting of services,

 as well as parallelized starting of services. See the blog stories

 linked at the end for an introduction.

 Note that the daemon software configured for socket activation with

 socket units needs to be able to accept sockets from systemd, either

 via systemd's native socket passing interface (see sd_listen_fds(3) for

 details about the precise protocol used and the order in which the file

 descriptors are passed) or via traditional inetd(8)-style socket

 passing (i.e. sockets passed in via standard input and output, using

 StandardInput=socket in the service file).

 All network sockets allocated through .socket units are allocated in

 the host's network namespace (see network_namespaces(7)). This does not

 mean however that the service activated by a configured socket unit has

 to be part of the host's network namespace as well. It is supported and

 even good practice to run services in their own network namespace (for Page 2/16

 example through PrivateNetwork=, see systemd.exec(5)), receiving only

 the sockets configured through socket-activation from the host's

 namespace. In such a set-up communication within the host's network

 namespace is only permitted through the activation sockets passed in

 while all sockets allocated from the service code itself will be

 associated with the service's own namespace, and thus possibly subject

 to a restrictive configuration.

AUTOMATIC DEPENDENCIES

 Implicit Dependencies

 The following dependencies are implicitly added:

 ? Socket units automatically gain a Before= dependency on the service

 units they activate.

 ? Socket units referring to file system paths (such as AF_UNIX

 sockets or FIFOs) implicitly gain Requires= and After= dependencies

 on all mount units necessary to access those paths.

 ? Socket units using the BindToDevice= setting automatically gain a

 BindsTo= and After= dependency on the device unit encapsulating the

 specified network interface.

 Additional implicit dependencies may be added as result of execution

 and resource control parameters as documented in systemd.exec(5) and

 systemd.resource-control(5).

 Default Dependencies

 The following dependencies are added unless DefaultDependencies=no is

 set:

 ? Socket units automatically gain a Before= dependency on

 sockets.target.

 ? Socket units automatically gain a pair of After= and Requires=

 dependency on sysinit.target, and a pair of Before= and Conflicts=

 dependencies on shutdown.target. These dependencies ensure that the

 socket unit is started before normal services at boot, and is

 stopped on shutdown. Only sockets involved with early boot or late

 system shutdown should disable DefaultDependencies= option.

OPTIONS Page 3/16

 Socket unit files may include [Unit] and [Install] sections, which are

 described in systemd.unit(5).

 Socket unit files must include a [Socket] section, which carries

 information about the socket or FIFO it supervises. A number of options

 that may be used in this section are shared with other unit types.

 These options are documented in systemd.exec(5) and systemd.kill(5).

 The options specific to the [Socket] section of socket units are the

 following:

 ListenStream=, ListenDatagram=, ListenSequentialPacket=

 Specifies an address to listen on for a stream (SOCK_STREAM),

 datagram (SOCK_DGRAM), or sequential packet (SOCK_SEQPACKET)

 socket, respectively. The address can be written in various

 formats:

 If the address starts with a slash ("/"), it is read as file system

 socket in the AF_UNIX socket family.

 If the address starts with an at symbol ("@"), it is read as

 abstract namespace socket in the AF_UNIX family. The "@" is

 replaced with a NUL character before binding. For details, see

 unix(7).

 If the address string is a single number, it is read as port number

 to listen on via IPv6. Depending on the value of BindIPv6Only= (see

 below) this might result in the service being available via both

 IPv6 and IPv4 (default) or just via IPv6.

 If the address string is a string in the format "v.w.x.y:z", it is

 interpreted as IPv4 address v.w.x.y and port z.

 If the address string is a string in the format "[x]:y", it is

 interpreted as IPv6 address x and port y. An optional interface

 scope (interface name or number) may be specified after a "%"

 symbol: "[x]:y%dev". Interface scopes are only useful with

 link-local addresses, because the kernel ignores them in other

 cases. Note that if an address is specified as IPv6, it might still

 make the service available via IPv4 too, depending on the

 BindIPv6Only= setting (see below). Page 4/16

 If the address string is a string in the format "vsock:x:y", it is

 read as CID x on a port y address in the AF_VSOCK family. The CID

 is a unique 32-bit integer identifier in AF_VSOCK analogous to an

 IP address. Specifying the CID is optional, and may be set to the

 empty string.

 Note that SOCK_SEQPACKET (i.e. ListenSequentialPacket=) is only

 available for AF_UNIX sockets. SOCK_STREAM (i.e. ListenStream=)

 when used for IP sockets refers to TCP sockets, SOCK_DGRAM (i.e.

 ListenDatagram=) to UDP.

 These options may be specified more than once, in which case

 incoming traffic on any of the sockets will trigger service

 activation, and all listed sockets will be passed to the service,

 regardless of whether there is incoming traffic on them or not. If

 the empty string is assigned to any of these options, the list of

 addresses to listen on is reset, all prior uses of any of these

 options will have no effect.

 It is also possible to have more than one socket unit for the same

 service when using Service=, and the service will receive all the

 sockets configured in all the socket units. Sockets configured in

 one unit are passed in the order of configuration, but no ordering

 between socket units is specified.

 If an IP address is used here, it is often desirable to listen on

 it before the interface it is configured on is up and running, and

 even regardless of whether it will be up and running at any point.

 To deal with this, it is recommended to set the FreeBind= option

 described below.

 ListenFIFO=

 Specifies a file system FIFO (see fifo(7) for details) to listen

 on. This expects an absolute file system path as argument. Behavior

 otherwise is very similar to the ListenDatagram= directive above.

 ListenSpecial=

 Specifies a special file in the file system to listen on. This

 expects an absolute file system path as argument. Behavior Page 5/16

 otherwise is very similar to the ListenFIFO= directive above. Use

 this to open character device nodes as well as special files in

 /proc/ and /sys/.

 ListenNetlink=

 Specifies a Netlink family to create a socket for to listen on.

 This expects a short string referring to the AF_NETLINK family name

 (such as audit or kobject-uevent) as argument, optionally suffixed

 by a whitespace followed by a multicast group integer. Behavior

 otherwise is very similar to the ListenDatagram= directive above.

 ListenMessageQueue=

 Specifies a POSIX message queue name to listen on (see

 mq_overview(7) for details). This expects a valid message queue

 name (i.e. beginning with "/"). Behavior otherwise is very similar

 to the ListenFIFO= directive above. On Linux message queue

 descriptors are actually file descriptors and can be inherited

 between processes.

 ListenUSBFunction=

 Specifies a USB FunctionFS[1] endpoints location to listen on, for

 implementation of USB gadget functions. This expects an absolute

 file system path of a FunctionFS mount point as the argument.

 Behavior otherwise is very similar to the ListenFIFO= directive

 above. Use this to open the FunctionFS endpoint ep0. When using

 this option, the activated service has to have the

 USBFunctionDescriptors= and USBFunctionStrings= options set.

 SocketProtocol=

 Takes one of udplite or sctp. The socket will use the UDP-Lite

 (IPPROTO_UDPLITE) or SCTP (IPPROTO_SCTP) protocol, respectively.

 BindIPv6Only=

 Takes one of default, both or ipv6-only. Controls the IPV6_V6ONLY

 socket option (see ipv6(7) for details). If both, IPv6 sockets

 bound will be accessible via both IPv4 and IPv6. If ipv6-only, they

 will be accessible via IPv6 only. If default (which is the default,

 surprise!), the system wide default setting is used, as controlled Page 6/16

 by /proc/sys/net/ipv6/bindv6only, which in turn defaults to the

 equivalent of both.

 Backlog=

 Takes an unsigned integer argument. Specifies the number of

 connections to queue that have not been accepted yet. This setting

 matters only for stream and sequential packet sockets. See

 listen(2) for details. Defaults to SOMAXCONN (128).

 BindToDevice=

 Specifies a network interface name to bind this socket to. If set,

 traffic will only be accepted from the specified network

 interfaces. This controls the SO_BINDTODEVICE socket option (see

 socket(7) for details). If this option is used, an implicit

 dependency from this socket unit on the network interface device

 unit is created (see systemd.device(5)). Note that setting this

 parameter might result in additional dependencies to be added to

 the unit (see above).

 SocketUser=, SocketGroup=

 Takes a UNIX user/group name. When specified, all AF_UNIX sockets

 and FIFO nodes in the file system are owned by the specified user

 and group. If unset (the default), the nodes are owned by the root

 user/group (if run in system context) or the invoking user/group

 (if run in user context). If only a user is specified but no group,

 then the group is derived from the user's default group.

 SocketMode=

 If listening on a file system socket or FIFO, this option specifies

 the file system access mode used when creating the file node. Takes

 an access mode in octal notation. Defaults to 0666.

 DirectoryMode=

 If listening on a file system socket or FIFO, the parent

 directories are automatically created if needed. This option

 specifies the file system access mode used when creating these

 directories. Takes an access mode in octal notation. Defaults to

 0755. Page 7/16

 Accept=

 Takes a boolean argument. If yes, a service instance is spawned for

 each incoming connection and only the connection socket is passed

 to it. If no, all listening sockets themselves are passed to the

 started service unit, and only one service unit is spawned for all

 connections (also see above). This value is ignored for datagram

 sockets and FIFOs where a single service unit unconditionally

 handles all incoming traffic. Defaults to no. For performance

 reasons, it is recommended to write new daemons only in a way that

 is suitable for Accept=no. A daemon listening on an AF_UNIX socket

 may, but does not need to, call close(2) on the received socket

 before exiting. However, it must not unlink the socket from a file

 system. It should not invoke shutdown(2) on sockets it got with

 Accept=no, but it may do so for sockets it got with Accept=yes set.

 Setting Accept=yes is mostly useful to allow daemons designed for

 usage with inetd(8) to work unmodified with systemd socket

 activation.

 For IPv4 and IPv6 connections, the REMOTE_ADDR environment variable

 will contain the remote IP address, and REMOTE_PORT will contain

 the remote port. This is the same as the format used by CGI. For

 SOCK_RAW, the port is the IP protocol.

 It is recommended to set CollectMode=inactive-or-failed for service

 instances activated via Accept=yes, to ensure that failed

 connection services are cleaned up and released from memory, and do

 not accumulate.

 Writable=

 Takes a boolean argument. May only be used in conjunction with

 ListenSpecial=. If true, the specified special file is opened in

 read-write mode, if false, in read-only mode. Defaults to false.

 FlushPending=

 Takes a boolean argument. May only be used when Accept=no. If yes,

 the socket's buffers are cleared after the triggered service

 exited. This causes any pending data to be flushed and any pending Page 8/16

 incoming connections to be rejected. If no, the socket's buffers

 won't be cleared, permitting the service to handle any pending

 connections after restart, which is the usually expected behaviour.

 Defaults to no.

 MaxConnections=

 The maximum number of connections to simultaneously run services

 instances for, when Accept=yes is set. If more concurrent

 connections are coming in, they will be refused until at least one

 existing connection is terminated. This setting has no effect on

 sockets configured with Accept=no or datagram sockets. Defaults to

 64.

 MaxConnectionsPerSource=

 The maximum number of connections for a service per source IP

 address. This is very similar to the MaxConnections= directive

 above. Disabled by default.

 KeepAlive=

 Takes a boolean argument. If true, the TCP/IP stack will send a

 keep alive message after 2h (depending on the configuration of

 /proc/sys/net/ipv4/tcp_keepalive_time) for all TCP streams accepted

 on this socket. This controls the SO_KEEPALIVE socket option (see

 socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults to

 false.

 KeepAliveTimeSec=

 Takes time (in seconds) as argument. The connection needs to remain

 idle before TCP starts sending keepalive probes. This controls the

 TCP_KEEPIDLE socket option (see socket(7) and the TCP Keepalive

 HOWTO[2] for details.) Defaults value is 7200 seconds (2 hours).

 KeepAliveIntervalSec=

 Takes time (in seconds) as argument between individual keepalive

 probes, if the socket option SO_KEEPALIVE has been set on this

 socket. This controls the TCP_KEEPINTVL socket option (see

 socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults

 value is 75 seconds. Page 9/16

 KeepAliveProbes=

 Takes an integer as argument. It is the number of unacknowledged

 probes to send before considering the connection dead and notifying

 the application layer. This controls the TCP_KEEPCNT socket option

 (see socket(7) and the TCP Keepalive HOWTO[2] for details.)

 Defaults value is 9.

 NoDelay=

 Takes a boolean argument. TCP Nagle's algorithm works by combining

 a number of small outgoing messages, and sending them all at once.

 This controls the TCP_NODELAY socket option (see tcp(7)). Defaults

 to false.

 Priority=

 Takes an integer argument controlling the priority for all traffic

 sent from this socket. This controls the SO_PRIORITY socket option

 (see socket(7) for details.).

 DeferAcceptSec=

 Takes time (in seconds) as argument. If set, the listening process

 will be awakened only when data arrives on the socket, and not

 immediately when connection is established. When this option is

 set, the TCP_DEFER_ACCEPT socket option will be used (see tcp(7)),

 and the kernel will ignore initial ACK packets without any data.

 The argument specifies the approximate amount of time the kernel

 should wait for incoming data before falling back to the normal

 behavior of honoring empty ACK packets. This option is beneficial

 for protocols where the client sends the data first (e.g. HTTP, in

 contrast to SMTP), because the server process will not be woken up

 unnecessarily before it can take any action.

 If the client also uses the TCP_DEFER_ACCEPT option, the latency of

 the initial connection may be reduced, because the kernel will send

 data in the final packet establishing the connection (the third

 packet in the "three-way handshake").

 Disabled by default.

 ReceiveBuffer=, SendBuffer= Page 10/16

 Takes an integer argument controlling the receive or send buffer

 sizes of this socket, respectively. This controls the SO_RCVBUF and

 SO_SNDBUF socket options (see socket(7) for details.). The usual

 suffixes K, M, G are supported and are understood to the base of

 1024.

 IPTOS=

 Takes an integer argument controlling the IP Type-Of-Service field

 for packets generated from this socket. This controls the IP_TOS

 socket option (see ip(7) for details.). Either a numeric string or

 one of low-delay, throughput, reliability or low-cost may be

 specified.

 IPTTL=

 Takes an integer argument controlling the IPv4 Time-To-Live/IPv6

 Hop-Count field for packets generated from this socket. This sets

 the IP_TTL/IPV6_UNICAST_HOPS socket options (see ip(7) and ipv6(7)

 for details.)

 Mark=

 Takes an integer value. Controls the firewall mark of packets

 generated by this socket. This can be used in the firewall logic to

 filter packets from this socket. This sets the SO_MARK socket

 option. See iptables(8) for details.

 ReusePort=

 Takes a boolean value. If true, allows multiple bind(2)s to this

 TCP or UDP port. This controls the SO_REUSEPORT socket option. See

 socket(7) for details.

 SmackLabel=, SmackLabelIPIn=, SmackLabelIPOut=

 Takes a string value. Controls the extended attributes

 "security.SMACK64", "security.SMACK64IPIN" and

 "security.SMACK64IPOUT", respectively, i.e. the security label of

 the FIFO, or the security label for the incoming or outgoing

 connections of the socket, respectively. See Smack[3] for details.

 SELinuxContextFromNet=

 Takes a boolean argument. When true, systemd will attempt to figure Page 11/16

 out the SELinux label used for the instantiated service from the

 information handed by the peer over the network. Note that only the

 security level is used from the information provided by the peer.

 Other parts of the resulting SELinux context originate from either

 the target binary that is effectively triggered by socket unit or

 from the value of the SELinuxContext= option. This configuration

 option applies only when activated service is passed in single

 socket file descriptor, i.e. service instances that have standard

 input connected to a socket or services triggered by exactly one

 socket unit. Also note that this option is useful only when MLS/MCS

 SELinux policy is deployed. Defaults to "false".

 PipeSize=

 Takes a size in bytes. Controls the pipe buffer size of FIFOs

 configured in this socket unit. See fcntl(2) for details. The usual

 suffixes K, M, G are supported and are understood to the base of

 1024.

 MessageQueueMaxMessages=, MessageQueueMessageSize=

 These two settings take integer values and control the mq_maxmsg

 field or the mq_msgsize field, respectively, when creating the

 message queue. Note that either none or both of these variables

 need to be set. See mq_setattr(3) for details.

 FreeBind=

 Takes a boolean value. Controls whether the socket can be bound to

 non-local IP addresses. This is useful to configure sockets

 listening on specific IP addresses before those IP addresses are

 successfully configured on a network interface. This sets the

 IP_FREEBIND/IPV6_FREEBIND socket option. For robustness reasons it

 is recommended to use this option whenever you bind a socket to a

 specific IP address. Defaults to false.

 Transparent=

 Takes a boolean value. Controls the IP_TRANSPARENT/IPV6_TRANSPARENT

 socket option. Defaults to false.

 Broadcast= Page 12/16

 Takes a boolean value. This controls the SO_BROADCAST socket

 option, which allows broadcast datagrams to be sent from this

 socket. Defaults to false.

 PassCredentials=

 Takes a boolean value. This controls the SO_PASSCRED socket option,

 which allows AF_UNIX sockets to receive the credentials of the

 sending process in an ancillary message. Defaults to false.

 PassSecurity=

 Takes a boolean value. This controls the SO_PASSSEC socket option,

 which allows AF_UNIX sockets to receive the security context of the

 sending process in an ancillary message. Defaults to false.

 PassPacketInfo=

 Takes a boolean value. This controls the IP_PKTINFO,

 IPV6_RECVPKTINFO, NETLINK_PKTINFO or PACKET_AUXDATA socket options,

 which enable reception of additional per-packet metadata as

 ancillary message, on AF_INET, AF_INET6, AF_UNIX and AF_PACKET

 sockets. Defaults to false.

 Timestamping=

 Takes one of "off", "us" (alias: "usec", "?s") or "ns" (alias:

 "nsec"). This controls the SO_TIMESTAMP or SO_TIMESTAMPNS socket

 options, and enables whether ingress network traffic shall carry

 timestamping metadata. Defaults to off.

 TCPCongestion=

 Takes a string value. Controls the TCP congestion algorithm used by

 this socket. Should be one of "westwood", "veno", "cubic", "lp" or

 any other available algorithm supported by the IP stack. This

 setting applies only to stream sockets.

 ExecStartPre=, ExecStartPost=

 Takes one or more command lines, which are executed before or after

 the listening sockets/FIFOs are created and bound, respectively.

 The first token of the command line must be an absolute filename,

 then followed by arguments for the process. Multiple command lines

 may be specified following the same scheme as used for Page 13/16

 ExecStartPre= of service unit files.

 ExecStopPre=, ExecStopPost=

 Additional commands that are executed before or after the listening

 sockets/FIFOs are closed and removed, respectively. Multiple

 command lines may be specified following the same scheme as used

 for ExecStartPre= of service unit files.

 TimeoutSec=

 Configures the time to wait for the commands specified in

 ExecStartPre=, ExecStartPost=, ExecStopPre= and ExecStopPost= to

 finish. If a command does not exit within the configured time, the

 socket will be considered failed and be shut down again. All

 commands still running will be terminated forcibly via SIGTERM, and

 after another delay of this time with SIGKILL. (See KillMode= in

 systemd.kill(5).) Takes a unit-less value in seconds, or a time

 span value such as "5min 20s". Pass "0" to disable the timeout

 logic. Defaults to DefaultTimeoutStartSec= from the manager

 configuration file (see systemd-system.conf(5)).

 Service=

 Specifies the service unit name to activate on incoming traffic.

 This setting is only allowed for sockets with Accept=no. It

 defaults to the service that bears the same name as the socket

 (with the suffix replaced). In most cases, it should not be

 necessary to use this option. Note that setting this parameter

 might result in additional dependencies to be added to the unit

 (see above).

 RemoveOnStop=

 Takes a boolean argument. If enabled, any file nodes created by

 this socket unit are removed when it is stopped. This applies to

 AF_UNIX sockets in the file system, POSIX message queues, FIFOs, as

 well as any symlinks to them configured with Symlinks=. Normally,

 it should not be necessary to use this option, and is not

 recommended as services might continue to run after the socket unit

 has been terminated and it should still be possible to communicate Page 14/16

 with them via their file system node. Defaults to off.

 Symlinks=

 Takes a list of file system paths. The specified paths will be

 created as symlinks to the AF_UNIX socket path or FIFO path of this

 socket unit. If this setting is used, only one AF_UNIX socket in

 the file system or one FIFO may be configured for the socket unit.

 Use this option to manage one or more symlinked alias names for a

 socket, binding their lifecycle together. Note that if creation of

 a symlink fails this is not considered fatal for the socket unit,

 and the socket unit may still start. If an empty string is

 assigned, the list of paths is reset. Defaults to an empty list.

 FileDescriptorName=

 Assigns a name to all file descriptors this socket unit

 encapsulates. This is useful to help activated services identify

 specific file descriptors, if multiple fds are passed. Services may

 use the sd_listen_fds_with_names(3) call to acquire the names

 configured for the received file descriptors. Names may contain any

 ASCII character, but must exclude control characters and ":", and

 must be at most 255 characters in length. If this setting is not

 used, the file descriptor name defaults to the name of the socket

 unit, including its .socket suffix.

 TriggerLimitIntervalSec=, TriggerLimitBurst=

 Configures a limit on how often this socket unit may be activated

 within a specific time interval. The TriggerLimitIntervalSec= may

 be used to configure the length of the time interval in the usual

 time units "us", "ms", "s", "min", "h", ... and defaults to 2s (See

 systemd.time(7) for details on the various time units understood).

 The TriggerLimitBurst= setting takes a positive integer value and

 specifies the number of permitted activations per time interval,

 and defaults to 200 for Accept=yes sockets (thus by default

 permitting 200 activations per 2s), and 20 otherwise (20

 activations per 2s). Set either to 0 to disable any form of trigger

 rate limiting. If the limit is hit, the socket unit is placed into Page 15/16

 a failure mode, and will not be connectible anymore until

 restarted. Note that this limit is enforced before the service

 activation is enqueued.

 Check systemd.unit(5), systemd.exec(5), and systemd.kill(5) for more

 settings.

SEE ALSO

 systemd(1), systemctl(1), systemd-system.conf(5), systemd.unit(5),

 systemd.exec(5), systemd.kill(5), systemd.resource-control(5),

 systemd.service(5), systemd.directives(7), sd_listen_fds(3),

 sd_listen_fds_with_names(3)

 For more extensive descriptions see the "systemd for Developers"

 series: Socket Activation[4], Socket Activation, part II[5], Converting

 inetd Services[6], Socket Activated Internet Services and OS

 Containers[7].

NOTES

 1. USB FunctionFS

 https://docs.kernel.org/usb/functionfs.html

 2. TCP Keepalive HOWTO

 http://www.tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/

 3. Smack

 https://docs.kernel.org/admin-guide/LSM/Smack.html

 4. Socket Activation

 http://0pointer.de/blog/projects/socket-activation.html

 5. Socket Activation, part II

 http://0pointer.de/blog/projects/socket-activation2.html

 6. Converting inetd Services

 http://0pointer.de/blog/projects/inetd.html

 7. Socket Activated Internet Services and OS Containers

 http://0pointer.de/blog/projects/socket-activated-containers.html

systemd 252 SYSTEMD.SOCKET(5)

Page 16/16

