
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.service.5'

$ man systemd.service.5

SYSTEMD.SERVICE(5) systemd.service SYSTEMD.SERVICE(5)

NAME

 systemd.service - Service unit configuration

SYNOPSIS

 service.service

DESCRIPTION

 A unit configuration file whose name ends in ".service" encodes

 information about a process controlled and supervised by systemd.

 This man page lists the configuration options specific to this unit

 type. See systemd.unit(5) for the common options of all unit

 configuration files. The common configuration items are configured in

 the generic [Unit] and [Install] sections. The service specific

 configuration options are configured in the [Service] section.

 Additional options are listed in systemd.exec(5), which define the

 execution environment the commands are executed in, and in

 systemd.kill(5), which define the way the processes of the service are

 terminated, and in systemd.resource-control(5), which configure

 resource control settings for the processes of the service. Page 1/36

 If SysV init compat is enabled, systemd automatically creates service

 units that wrap SysV init scripts (the service name is the same as the

 name of the script, with a ".service" suffix added); see systemd-sysv-

 generator(8).

 The systemd-run(1) command allows creating .service and .scope units

 dynamically and transiently from the command line.

SERVICE TEMPLATES

 It is possible for systemd services to take a single argument via the

 "service@argument.service" syntax. Such services are called

 "instantiated" services, while the unit definition without the argument

 parameter is called a "template". An example could be a dhcpcd@.service

 service template which takes a network interface as a parameter to form

 an instantiated service. Within the service file, this parameter or

 "instance name" can be accessed with %-specifiers. See systemd.unit(5)

 for details.

AUTOMATIC DEPENDENCIES

 Implicit Dependencies

 The following dependencies are implicitly added:

 ? Services with Type=dbus set automatically acquire dependencies of

 type Requires= and After= on dbus.socket.

 ? Socket activated services are automatically ordered after their

 activating .socket units via an automatic After= dependency.

 Services also pull in all .socket units listed in Sockets= via

 automatic Wants= and After= dependencies.

 Additional implicit dependencies may be added as result of execution

 and resource control parameters as documented in systemd.exec(5) and

 systemd.resource-control(5).

 Default Dependencies

 The following dependencies are added unless DefaultDependencies=no is

 set:

 ? Service units will have dependencies of type Requires= and After=

 on sysinit.target, a dependency of type After= on basic.target as

 well as dependencies of type Conflicts= and Before= on Page 2/36

 shutdown.target. These ensure that normal service units pull in

 basic system initialization, and are terminated cleanly prior to

 system shutdown. Only services involved with early boot or late

 system shutdown should disable this option.

 ? Instanced service units (i.e. service units with an "@" in their

 name) are assigned by default a per-template slice unit (see

 systemd.slice(5)), named after the template unit, containing all

 instances of the specific template. This slice is normally stopped

 at shutdown, together with all template instances. If that is not

 desired, set DefaultDependencies=no in the template unit, and

 either define your own per-template slice unit file that also sets

 DefaultDependencies=no, or set Slice=system.slice (or another

 suitable slice) in the template unit. Also see systemd.resource-

 control(5).

OPTIONS

 Service unit files may include [Unit] and [Install] sections, which are

 described in systemd.unit(5).

 Service unit files must include a [Service] section, which carries

 information about the service and the process it supervises. A number

 of options that may be used in this section are shared with other unit

 types. These options are documented in systemd.exec(5), systemd.kill(5)

 and systemd.resource-control(5). The options specific to the [Service]

 section of service units are the following:

 Type=

 Configures the process start-up type for this service unit. One of

 simple, exec, forking, oneshot, dbus, notify or idle:

 ? If set to simple (the default if ExecStart= is specified but

 neither Type= nor BusName= are), the service manager will

 consider the unit started immediately after the main service

 process has been forked off. It is expected that the process

 configured with ExecStart= is the main process of the service.

 In this mode, if the process offers functionality to other

 processes on the system, its communication channels should be Page 3/36

 installed before the service is started up (e.g. sockets set up

 by systemd, via socket activation), as the service manager will

 immediately proceed starting follow-up units, right after

 creating the main service process, and before executing the

 service's binary. Note that this means systemctl start command

 lines for simple services will report success even if the

 service's binary cannot be invoked successfully (for example

 because the selected User= doesn't exist, or the service binary

 is missing).

 ? The exec type is similar to simple, but the service manager

 will consider the unit started immediately after the main

 service binary has been executed. The service manager will

 delay starting of follow-up units until that point. (Or in

 other words: simple proceeds with further jobs right after

 fork() returns, while exec will not proceed before both fork()

 and execve() in the service process succeeded.) Note that this

 means systemctl start command lines for exec services will

 report failure when the service's binary cannot be invoked

 successfully (for example because the selected User= doesn't

 exist, or the service binary is missing).

 ? If set to forking, it is expected that the process configured

 with ExecStart= will call fork() as part of its start-up. The

 parent process is expected to exit when start-up is complete

 and all communication channels are set up. The child continues

 to run as the main service process, and the service manager

 will consider the unit started when the parent process exits.

 This is the behavior of traditional UNIX services. If this

 setting is used, it is recommended to also use the PIDFile=

 option, so that systemd can reliably identify the main process

 of the service. systemd will proceed with starting follow-up

 units as soon as the parent process exits.

 ? Behavior of oneshot is similar to simple; however, the service

 manager will consider the unit up after the main process exits. Page 4/36

 It will then start follow-up units. RemainAfterExit= is

 particularly useful for this type of service. Type=oneshot is

 the implied default if neither Type= nor ExecStart= are

 specified. Note that if this option is used without

 RemainAfterExit= the service will never enter "active" unit

 state, but directly transition from "activating" to

 "deactivating" or "dead" since no process is configured that

 shall run continuously. In particular this means that after a

 service of this type ran (and which has RemainAfterExit= not

 set) it will not show up as started afterwards, but as dead.

 ? Behavior of dbus is similar to simple; however, it is expected

 that the service acquires a name on the D-Bus bus, as

 configured by BusName=. systemd will proceed with starting

 follow-up units after the D-Bus bus name has been acquired.

 Service units with this option configured implicitly gain

 dependencies on the dbus.socket unit. This type is the default

 if BusName= is specified. A service unit of this type is

 considered to be in the activating state until the specified

 bus name is acquired. It is considered activated while the bus

 name is taken. Once the bus name is released the service is

 considered being no longer functional which has the effect that

 the service manager attempts to terminate any remaining

 processes belonging to the service. Services that drop their

 bus name as part of their shutdown logic thus should be

 prepared to receive a SIGTERM (or whichever signal is

 configured in KillSignal=) as result.

 ? Behavior of notify is similar to exec; however, it is expected

 that the service sends a notification message via sd_notify(3)

 or an equivalent call when it has finished starting up. systemd

 will proceed with starting follow-up units after this

 notification message has been sent. If this option is used,

 NotifyAccess= (see below) should be set to open access to the

 notification socket provided by systemd. If NotifyAccess= is Page 5/36

 missing or set to none, it will be forcibly set to main.

 ? Behavior of idle is very similar to simple; however, actual

 execution of the service program is delayed until all active

 jobs are dispatched. This may be used to avoid interleaving of

 output of shell services with the status output on the console.

 Note that this type is useful only to improve console output,

 it is not useful as a general unit ordering tool, and the

 effect of this service type is subject to a 5s timeout, after

 which the service program is invoked anyway.

 It is generally recommended to use Type=simple for long-running

 services whenever possible, as it is the simplest and fastest

 option. However, as this service type won't propagate service

 start-up failures and doesn't allow ordering of other units against

 completion of initialization of the service (which for example is

 useful if clients need to connect to the service through some form

 of IPC, and the IPC channel is only established by the service

 itself ? in contrast to doing this ahead of time through socket or

 bus activation or similar), it might not be sufficient for many

 cases. If so, notify or dbus (the latter only in case the service

 provides a D-Bus interface) are the preferred options as they allow

 service program code to precisely schedule when to consider the

 service started up successfully and when to proceed with follow-up

 units. The notify service type requires explicit support in the

 service codebase (as sd_notify() or an equivalent API needs to be

 invoked by the service at the appropriate time) ? if it's not

 supported, then forking is an alternative: it supports the

 traditional UNIX service start-up protocol. Finally, exec might be

 an option for cases where it is enough to ensure the service binary

 is invoked, and where the service binary itself executes no or

 little initialization on its own (and its initialization is

 unlikely to fail). Note that using any type other than simple

 possibly delays the boot process, as the service manager needs to

 wait for service initialization to complete. It is hence Page 6/36

 recommended not to needlessly use any types other than simple.

 (Also note it is generally not recommended to use idle or oneshot

 for long-running services.)

 ExitType=

 Specifies when the manager should consider the service to be

 finished. One of main or cgroup:

 ? If set to main (the default), the service manager will consider

 the unit stopped when the main process, which is determined

 according to the Type=, exits. Consequently, it cannot be used

 with Type=oneshot.

 ? If set to cgroup, the service will be considered running as

 long as at least one process in the cgroup has not exited.

 It is generally recommended to use ExitType=main when a service has

 a known forking model and a main process can reliably be

 determined. ExitType= cgroup is meant for applications whose

 forking model is not known ahead of time and which might not have a

 specific main process. It is well suited for transient or

 automatically generated services, such as graphical applications

 inside of a desktop environment.

 RemainAfterExit=

 Takes a boolean value that specifies whether the service shall be

 considered active even when all its processes exited. Defaults to

 no.

 GuessMainPID=

 Takes a boolean value that specifies whether systemd should try to

 guess the main PID of a service if it cannot be determined

 reliably. This option is ignored unless Type=forking is set and

 PIDFile= is unset because for the other types or with an explicitly

 configured PID file, the main PID is always known. The guessing

 algorithm might come to incorrect conclusions if a daemon consists

 of more than one process. If the main PID cannot be determined,

 failure detection and automatic restarting of a service will not

 work reliably. Defaults to yes. Page 7/36

 PIDFile=

 Takes a path referring to the PID file of the service. Usage of

 this option is recommended for services where Type= is set to

 forking. The path specified typically points to a file below /run/.

 If a relative path is specified it is hence prefixed with /run/.

 The service manager will read the PID of the main process of the

 service from this file after start-up of the service. The service

 manager will not write to the file configured here, although it

 will remove the file after the service has shut down if it still

 exists. The PID file does not need to be owned by a privileged

 user, but if it is owned by an unprivileged user additional safety

 restrictions are enforced: the file may not be a symlink to a file

 owned by a different user (neither directly nor indirectly), and

 the PID file must refer to a process already belonging to the

 service.

 Note that PID files should be avoided in modern projects. Use

 Type=notify or Type=simple where possible, which does not require

 use of PID files to determine the main process of a service and

 avoids needless forking.

 BusName=

 Takes a D-Bus destination name that this service shall use. This

 option is mandatory for services where Type= is set to dbus. It is

 recommended to always set this property if known to make it easy to

 map the service name to the D-Bus destination. In particular,

 systemctl service-log-level/service-log-target verbs make use of

 this.

 ExecStart=

 Commands with their arguments that are executed when this service

 is started. The value is split into zero or more command lines

 according to the rules described below (see section "Command Lines"

 below).

 Unless Type= is oneshot, exactly one command must be given. When

 Type=oneshot is used, zero or more commands may be specified. Page 8/36

 Commands may be specified by providing multiple command lines in

 the same directive, or alternatively, this directive may be

 specified more than once with the same effect. If the empty string

 is assigned to this option, the list of commands to start is reset,

 prior assignments of this option will have no effect. If no

 ExecStart= is specified, then the service must have

 RemainAfterExit=yes and at least one ExecStop= line set. (Services

 lacking both ExecStart= and ExecStop= are not valid.)

 For each of the specified commands, the first argument must be

 either an absolute path to an executable or a simple file name

 without any slashes. Optionally, this filename may be prefixed with

 a number of special characters:

 Table 1. Special executable prefixes

 ??????????????????????????????????????

 ?Prefix ? Effect ?

 ??????????????????????????????????????

 ?"@" ? If the executable path is ?

 ? ? prefixed with "@", the ?

 ? ? second specified token ?

 ? ? will be passed as ?

 ? ? "argv[0]" to the executed ?

 ? ? process (instead of the ?

 ? ? actual filename), followed ?

 ? ? by the further arguments ?

 ? ? specified. ?

 ??????????????????????????????????????

 ?"-" ? If the executable path is ?

 ? ? prefixed with "-", an exit ?

 ? ? code of the command ?

 ? ? normally considered a ?

 ? ? failure (i.e. non-zero ?

 ? ? exit status or abnormal ?

 ? ? exit due to signal) is ? Page 9/36

 ? ? recorded, but has no ?

 ? ? further effect and is ?

 ? ? considered equivalent to ?

 ? ? success. ?

 ??????????????????????????????????????

 ?":" ? If the executable path is ?

 ? ? prefixed with ":", ?

 ? ? environment variable ?

 ? ? substitution (as described ?

 ? ? by the "Command Lines" ?

 ? ? section below) is not ?

 ? ? applied. ?

 ??????????????????????????????????????

 ?"+" ? If the executable path is ?

 ? ? prefixed with "+" then the ?

 ? ? process is executed with ?

 ? ? full privileges. In this ?

 ? ? mode privilege ?

 ? ? restrictions configured ?

 ? ? with User=, Group=, ?

 ? ? CapabilityBoundingSet= or ?

 ? ? the various file system ?

 ? ? namespacing options (such ?

 ? ? as PrivateDevices=, ?

 ? ? PrivateTmp=) are not ?

 ? ? applied to the invoked ?

 ? ? command line (but still ?

 ? ? affect any other ?

 ? ? ExecStart=, ExecStop=, ... ?

 ? ? lines). ?

 ??????????????????????????????????????

 ?"!" ? Similar to the "+" ?

 ? ? character discussed above ? Page 10/36

 ? ? this permits invoking ?

 ? ? command lines with ?

 ? ? elevated privileges. ?

 ? ? However, unlike "+" the ?

 ? ? "!" character exclusively ?

 ? ? alters the effect of ?

 ? ? User=, Group= and ?

 ? ? SupplementaryGroups=, i.e. ?

 ? ? only the stanzas that ?

 ? ? affect user and group ?

 ? ? credentials. Note that ?

 ? ? this setting may be ?

 ? ? combined with ?

 ? ? DynamicUser=, in which ?

 ? ? case a dynamic user/group ?

 ? ? pair is allocated before ?

 ? ? the command is invoked, ?

 ? ? but credential changing is ?

 ? ? left to the executed ?

 ? ? process itself. ?

 ??????????????????????????????????????

 ?"!!" ? This prefix is very ?

 ? ? similar to "!", however it ?

 ? ? only has an effect on ?

 ? ? systems lacking support ?

 ? ? for ambient process ?

 ? ? capabilities, i.e. without ?

 ? ? support for ?

 ? ? AmbientCapabilities=. It's ?

 ? ? intended to be used for ?

 ? ? unit files that take ?

 ? ? benefit of ambient ?

 ? ? capabilities to run ? Page 11/36

 ? ? processes with minimal ?

 ? ? privileges wherever ?

 ? ? possible while remaining ?

 ? ? compatible with systems ?

 ? ? that lack ambient ?

 ? ? capabilities support. Note ?

 ? ? that when "!!" is used, ?

 ? ? and a system lacking ?

 ? ? ambient capability support ?

 ? ? is detected any configured ?

 ? ? SystemCallFilter= and ?

 ? ? CapabilityBoundingSet= ?

 ? ? stanzas are implicitly ?

 ? ? modified, in order to ?

 ? ? permit spawned processes ?

 ? ? to drop credentials and ?

 ? ? capabilities themselves, ?

 ? ? even if this is configured ?

 ? ? to not be allowed. ?

 ? ? Moreover, if this prefix ?

 ? ? is used and a system ?

 ? ? lacking ambient capability ?

 ? ? support is detected ?

 ? ? AmbientCapabilities= will ?

 ? ? be skipped and not be ?

 ? ? applied. On systems ?

 ? ? supporting ambient ?

 ? ? capabilities, "!!" has no ?

 ? ? effect and is redundant. ?

 ??????????????????????????????????????

 "@", "-", ":", and one of "+"/"!"/"!!" may be used together and

 they can appear in any order. However, only one of "+", "!", "!!"

 may be used at a time. Note that these prefixes are also supported Page 12/36

 for the other command line settings, i.e. ExecStartPre=,

 ExecStartPost=, ExecReload=, ExecStop= and ExecStopPost=.

 If more than one command is specified, the commands are invoked

 sequentially in the order they appear in the unit file. If one of

 the commands fails (and is not prefixed with "-"), other lines are

 not executed, and the unit is considered failed.

 Unless Type=forking is set, the process started via this command

 line will be considered the main process of the daemon.

 ExecStartPre=, ExecStartPost=

 Additional commands that are executed before or after the command

 in ExecStart=, respectively. Syntax is the same as for ExecStart=,

 except that multiple command lines are allowed and the commands are

 executed one after the other, serially.

 If any of those commands (not prefixed with "-") fail, the rest are

 not executed and the unit is considered failed.

 ExecStart= commands are only run after all ExecStartPre= commands

 that were not prefixed with a "-" exit successfully.

 ExecStartPost= commands are only run after the commands specified

 in ExecStart= have been invoked successfully, as determined by

 Type= (i.e. the process has been started for Type=simple or

 Type=idle, the last ExecStart= process exited successfully for

 Type=oneshot, the initial process exited successfully for

 Type=forking, "READY=1" is sent for Type=notify, or the BusName=

 has been taken for Type=dbus).

 Note that ExecStartPre= may not be used to start long-running

 processes. All processes forked off by processes invoked via

 ExecStartPre= will be killed before the next service process is

 run.

 Note that if any of the commands specified in ExecStartPre=,

 ExecStart=, or ExecStartPost= fail (and are not prefixed with "-",

 see above) or time out before the service is fully up, execution

 continues with commands specified in ExecStopPost=, the commands in

 ExecStop= are skipped. Page 13/36

 Note that the execution of ExecStartPost= is taken into account for

 the purpose of Before=/After= ordering constraints.

 ExecCondition=

 Optional commands that are executed before the commands in

 ExecStartPre=. Syntax is the same as for ExecStart=, except that

 multiple command lines are allowed and the commands are executed

 one after the other, serially.

 The behavior is like an ExecStartPre= and condition check hybrid:

 when an ExecCondition= command exits with exit code 1 through 254

 (inclusive), the remaining commands are skipped and the unit is not

 marked as failed. However, if an ExecCondition= command exits with

 255 or abnormally (e.g. timeout, killed by a signal, etc.), the

 unit will be considered failed (and remaining commands will be

 skipped). Exit code of 0 or those matching SuccessExitStatus= will

 continue execution to the next commands.

 The same recommendations about not running long-running processes

 in ExecStartPre= also applies to ExecCondition=. ExecCondition=

 will also run the commands in ExecStopPost=, as part of stopping

 the service, in the case of any non-zero or abnormal exits, like

 the ones described above.

 ExecReload=

 Commands to execute to trigger a configuration reload in the

 service. This argument takes multiple command lines, following the

 same scheme as described for ExecStart= above. Use of this setting

 is optional. Specifier and environment variable substitution is

 supported here following the same scheme as for ExecStart=.

 One additional, special environment variable is set: if known,

 $MAINPID is set to the main process of the daemon, and may be used

 for command lines like the following:

 ExecReload=kill -HUP $MAINPID

 Note however that reloading a daemon by sending a signal (as with

 the example line above) is usually not a good choice, because this

 is an asynchronous operation and hence not suitable to order Page 14/36

 reloads of multiple services against each other. It is strongly

 recommended to set ExecReload= to a command that not only triggers

 a configuration reload of the daemon, but also synchronously waits

 for it to complete. For example, dbus-broker(1) uses the following:

 ExecReload=busctl call org.freedesktop.DBus \

 /org/freedesktop/DBus org.freedesktop.DBus \

 ReloadConfig

 ExecStop=

 Commands to execute to stop the service started via ExecStart=.

 This argument takes multiple command lines, following the same

 scheme as described for ExecStart= above. Use of this setting is

 optional. After the commands configured in this option are run, it

 is implied that the service is stopped, and any processes remaining

 for it are terminated according to the KillMode= setting (see

 systemd.kill(5)). If this option is not specified, the process is

 terminated by sending the signal specified in KillSignal= or

 RestartKillSignal= when service stop is requested. Specifier and

 environment variable substitution is supported (including $MAINPID,

 see above).

 Note that it is usually not sufficient to specify a command for

 this setting that only asks the service to terminate (for example,

 by sending some form of termination signal to it), but does not

 wait for it to do so. Since the remaining processes of the services

 are killed according to KillMode= and KillSignal= or

 RestartKillSignal= as described above immediately after the command

 exited, this may not result in a clean stop. The specified command

 should hence be a synchronous operation, not an asynchronous one.

 Note that the commands specified in ExecStop= are only executed

 when the service started successfully first. They are not invoked

 if the service was never started at all, or in case its start-up

 failed, for example because any of the commands specified in

 ExecStart=, ExecStartPre= or ExecStartPost= failed (and weren't

 prefixed with "-", see above) or timed out. Use ExecStopPost= to Page 15/36

 invoke commands when a service failed to start up correctly and is

 shut down again. Also note that the stop operation is always

 performed if the service started successfully, even if the

 processes in the service terminated on their own or were killed.

 The stop commands must be prepared to deal with that case.

 $MAINPID will be unset if systemd knows that the main process

 exited by the time the stop commands are called.

 Service restart requests are implemented as stop operations

 followed by start operations. This means that ExecStop= and

 ExecStopPost= are executed during a service restart operation.

 It is recommended to use this setting for commands that communicate

 with the service requesting clean termination. For post-mortem

 clean-up steps use ExecStopPost= instead.

 ExecStopPost=

 Additional commands that are executed after the service is stopped.

 This includes cases where the commands configured in ExecStop= were

 used, where the service does not have any ExecStop= defined, or

 where the service exited unexpectedly. This argument takes multiple

 command lines, following the same scheme as described for

 ExecStart=. Use of these settings is optional. Specifier and

 environment variable substitution is supported. Note that ? unlike

 ExecStop= ? commands specified with this setting are invoked when a

 service failed to start up correctly and is shut down again.

 It is recommended to use this setting for clean-up operations that

 shall be executed even when the service failed to start up

 correctly. Commands configured with this setting need to be able to

 operate even if the service failed starting up half-way and left

 incompletely initialized data around. As the service's processes

 have been terminated already when the commands specified with this

 setting are executed they should not attempt to communicate with

 them.

 Note that all commands that are configured with this setting are

 invoked with the result code of the service, as well as the main Page 16/36

 process' exit code and status, set in the $SERVICE_RESULT,

 $EXIT_CODE and $EXIT_STATUS environment variables, see

 systemd.exec(5) for details.

 Note that the execution of ExecStopPost= is taken into account for

 the purpose of Before=/After= ordering constraints.

 RestartSec=

 Configures the time to sleep before restarting a service (as

 configured with Restart=). Takes a unit-less value in seconds, or a

 time span value such as "5min 20s". Defaults to 100ms.

 TimeoutStartSec=

 Configures the time to wait for start-up. If a daemon service does

 not signal start-up completion within the configured time, the

 service will be considered failed and will be shut down again. The

 precise action depends on the TimeoutStartFailureMode= option.

 Takes a unit-less value in seconds, or a time span value such as

 "5min 20s". Pass "infinity" to disable the timeout logic. Defaults

 to DefaultTimeoutStartSec= from the manager configuration file,

 except when Type=oneshot is used, in which case the timeout is

 disabled by default (see systemd-system.conf(5)).

 If a service of Type=notify sends "EXTEND_TIMEOUT_USEC=...", this

 may cause the start time to be extended beyond TimeoutStartSec=.

 The first receipt of this message must occur before

 TimeoutStartSec= is exceeded, and once the start time has extended

 beyond TimeoutStartSec=, the service manager will allow the service

 to continue to start, provided the service repeats

 "EXTEND_TIMEOUT_USEC=..." within the interval specified until the

 service startup status is finished by "READY=1". (see

 sd_notify(3)).

 TimeoutStopSec=

 This option serves two purposes. First, it configures the time to

 wait for each ExecStop= command. If any of them times out,

 subsequent ExecStop= commands are skipped and the service will be

 terminated by SIGTERM. If no ExecStop= commands are specified, the Page 17/36

 service gets the SIGTERM immediately. This default behavior can be

 changed by the TimeoutStopFailureMode= option. Second, it

 configures the time to wait for the service itself to stop. If it

 doesn't terminate in the specified time, it will be forcibly

 terminated by SIGKILL (see KillMode= in systemd.kill(5)). Takes a

 unit-less value in seconds, or a time span value such as "5min

 20s". Pass "infinity" to disable the timeout logic. Defaults to

 DefaultTimeoutStopSec= from the manager configuration file (see

 systemd-system.conf(5)).

 If a service of Type=notify sends "EXTEND_TIMEOUT_USEC=...", this

 may cause the stop time to be extended beyond TimeoutStopSec=. The

 first receipt of this message must occur before TimeoutStopSec= is

 exceeded, and once the stop time has extended beyond

 TimeoutStopSec=, the service manager will allow the service to

 continue to stop, provided the service repeats

 "EXTEND_TIMEOUT_USEC=..." within the interval specified, or

 terminates itself (see sd_notify(3)).

 TimeoutAbortSec=

 This option configures the time to wait for the service to

 terminate when it was aborted due to a watchdog timeout (see

 WatchdogSec=). If the service has a short TimeoutStopSec= this

 option can be used to give the system more time to write a core

 dump of the service. Upon expiration the service will be forcibly

 terminated by SIGKILL (see KillMode= in systemd.kill(5)). The core

 file will be truncated in this case. Use TimeoutAbortSec= to set a

 sensible timeout for the core dumping per service that is large

 enough to write all expected data while also being short enough to

 handle the service failure in due time.

 Takes a unit-less value in seconds, or a time span value such as

 "5min 20s". Pass an empty value to skip the dedicated watchdog

 abort timeout handling and fall back TimeoutStopSec=. Pass

 "infinity" to disable the timeout logic. Defaults to

 DefaultTimeoutAbortSec= from the manager configuration file (see Page 18/36

 systemd-system.conf(5)).

 If a service of Type=notify handles SIGABRT itself (instead of

 relying on the kernel to write a core dump) it can send

 "EXTEND_TIMEOUT_USEC=..." to extended the abort time beyond

 TimeoutAbortSec=. The first receipt of this message must occur

 before TimeoutAbortSec= is exceeded, and once the abort time has

 extended beyond TimeoutAbortSec=, the service manager will allow

 the service to continue to abort, provided the service repeats

 "EXTEND_TIMEOUT_USEC=..." within the interval specified, or

 terminates itself (see sd_notify(3)).

 TimeoutSec=

 A shorthand for configuring both TimeoutStartSec= and

 TimeoutStopSec= to the specified value.

 TimeoutStartFailureMode=, TimeoutStopFailureMode=

 These options configure the action that is taken in case a daemon

 service does not signal start-up within its configured

 TimeoutStartSec=, respectively if it does not stop within

 TimeoutStopSec=. Takes one of terminate, abort and kill. Both

 options default to terminate.

 If terminate is set the service will be gracefully terminated by

 sending the signal specified in KillSignal= (defaults to SIGTERM,

 see systemd.kill(5)). If the service does not terminate the

 FinalKillSignal= is sent after TimeoutStopSec=. If abort is set,

 WatchdogSignal= is sent instead and TimeoutAbortSec= applies before

 sending FinalKillSignal=. This setting may be used to analyze

 services that fail to start-up or shut-down intermittently. By

 using kill the service is immediately terminated by sending

 FinalKillSignal= without any further timeout. This setting can be

 used to expedite the shutdown of failing services.

 RuntimeMaxSec=

 Configures a maximum time for the service to run. If this is used

 and the service has been active for longer than the specified time

 it is terminated and put into a failure state. Note that this Page 19/36

 setting does not have any effect on Type=oneshot services, as they

 terminate immediately after activation completed. Pass "infinity"

 (the default) to configure no runtime limit.

 If a service of Type=notify sends "EXTEND_TIMEOUT_USEC=...", this

 may cause the runtime to be extended beyond RuntimeMaxSec=. The

 first receipt of this message must occur before RuntimeMaxSec= is

 exceeded, and once the runtime has extended beyond RuntimeMaxSec=,

 the service manager will allow the service to continue to run,

 provided the service repeats "EXTEND_TIMEOUT_USEC=..." within the

 interval specified until the service shutdown is achieved by

 "STOPPING=1" (or termination). (see sd_notify(3)).

 RuntimeRandomizedExtraSec=

 This option modifies RuntimeMaxSec= by increasing the maximum

 runtime by an evenly distributed duration between 0 and the

 specified value (in seconds). If RuntimeMaxSec= is unspecified,

 then this feature will be disabled.

 WatchdogSec=

 Configures the watchdog timeout for a service. The watchdog is

 activated when the start-up is completed. The service must call

 sd_notify(3) regularly with "WATCHDOG=1" (i.e. the "keep-alive

 ping"). If the time between two such calls is larger than the

 configured time, then the service is placed in a failed state and

 it will be terminated with SIGABRT (or the signal specified by

 WatchdogSignal=). By setting Restart= to on-failure, on-watchdog,

 on-abnormal or always, the service will be automatically restarted.

 The time configured here will be passed to the executed service

 process in the WATCHDOG_USEC= environment variable. This allows

 daemons to automatically enable the keep-alive pinging logic if

 watchdog support is enabled for the service. If this option is

 used, NotifyAccess= (see below) should be set to open access to the

 notification socket provided by systemd. If NotifyAccess= is not

 set, it will be implicitly set to main. Defaults to 0, which

 disables this feature. The service can check whether the service Page 20/36

 manager expects watchdog keep-alive notifications. See

 sd_watchdog_enabled(3) for details. sd_event_set_watchdog(3) may

 be used to enable automatic watchdog notification support.

 Restart=

 Configures whether the service shall be restarted when the service

 process exits, is killed, or a timeout is reached. The service

 process may be the main service process, but it may also be one of

 the processes specified with ExecStartPre=, ExecStartPost=,

 ExecStop=, ExecStopPost=, or ExecReload=. When the death of the

 process is a result of systemd operation (e.g. service stop or

 restart), the service will not be restarted. Timeouts include

 missing the watchdog "keep-alive ping" deadline and a service

 start, reload, and stop operation timeouts.

 Takes one of no, on-success, on-failure, on-abnormal, on-watchdog,

 on-abort, or always. If set to no (the default), the service will

 not be restarted. If set to on-success, it will be restarted only

 when the service process exits cleanly. In this context, a clean

 exit means any of the following:

 ? exit code of 0;

 ? for types other than Type=oneshot, one of the signals SIGHUP,

 SIGINT, SIGTERM, or SIGPIPE;

 ? exit statuses and signals specified in SuccessExitStatus=.

 If set to on-failure, the service will be restarted when the

 process exits with a non-zero exit code, is terminated by a signal

 (including on core dump, but excluding the aforementioned four

 signals), when an operation (such as service reload) times out, and

 when the configured watchdog timeout is triggered. If set to

 on-abnormal, the service will be restarted when the process is

 terminated by a signal (including on core dump, excluding the

 aforementioned four signals), when an operation times out, or when

 the watchdog timeout is triggered. If set to on-abort, the service

 will be restarted only if the service process exits due to an

 uncaught signal not specified as a clean exit status. If set to Page 21/36

 on-watchdog, the service will be restarted only if the watchdog

 timeout for the service expires. If set to always, the service will

 be restarted regardless of whether it exited cleanly or not, got

 terminated abnormally by a signal, or hit a timeout.

 Table 2. Exit causes and the effect of the Restart= settings

???

 ?Restart ? no ? always ? on-success ? on-failure ? on-abnormal ? on-abort ? on-watchdog ?

 ?settings/Exit ? ? ? ? ? ? ? ?

 ?causes ? ? ? ? ? ? ? ?

???

 ?Clean exit ? ? X ? X ? ? ? ? ?

 ?code or ? ? ? ? ? ? ? ?

 ?signal ? ? ? ? ? ? ? ?

???

 ?Unclean exit ? ? X ? ? X ? ? ? ?

 ?code ? ? ? ? ? ? ? ?

???

 ?Unclean ? ? X ? ? X ? X ? X ? ?

 ?signal ? ? ? ? ? ? ? ?

???

 ?Timeout ? ? X ? ? X ? X ? ? ?

???

 ?Watchdog ? ? X ? ? X ? X ? ? X ?

???

 As exceptions to the setting above, the service will not be

 restarted if the exit code or signal is specified in Page 22/36

 RestartPreventExitStatus= (see below) or the service is stopped

 with systemctl stop or an equivalent operation. Also, the services

 will always be restarted if the exit code or signal is specified in

 RestartForceExitStatus= (see below).

 Note that service restart is subject to unit start rate limiting

 configured with StartLimitIntervalSec= and StartLimitBurst=, see

 systemd.unit(5) for details. A restarted service enters the failed

 state only after the start limits are reached.

 Setting this to on-failure is the recommended choice for

 long-running services, in order to increase reliability by

 attempting automatic recovery from errors. For services that shall

 be able to terminate on their own choice (and avoid immediate

 restarting), on-abnormal is an alternative choice.

 SuccessExitStatus=

 Takes a list of exit status definitions that, when returned by the

 main service process, will be considered successful termination, in

 addition to the normal successful exit status 0 and, except for

 Type=oneshot, the signals SIGHUP, SIGINT, SIGTERM, and SIGPIPE.

 Exit status definitions can be numeric termination statuses,

 termination status names, or termination signal names, separated by

 spaces. See the Process Exit Codes section in systemd.exec(5) for a

 list of termination status names (for this setting only the part

 without the "EXIT_" or "EX_" prefix should be used). See signal(7)

 for a list of signal names.

 Note that this setting does not change the mapping between numeric

 exit statuses and their names, i.e. regardless how this setting is

 used 0 will still be mapped to "SUCCESS" (and thus typically shown

 as "0/SUCCESS" in tool outputs) and 1 to "FAILURE" (and thus

 typically shown as "1/FAILURE"), and so on. It only controls what

 happens as effect of these exit statuses, and how it propagates to

 the state of the service as a whole.

 This option may appear more than once, in which case the list of

 successful exit statuses is merged. If the empty string is assigned Page 23/36

 to this option, the list is reset, all prior assignments of this

 option will have no effect.

 Example 1. A service with the SuccessExitStatus= setting

 SuccessExitStatus=TEMPFAIL 250 SIGKILL

 Exit status 75 (TEMPFAIL), 250, and the termination signal SIGKILL

 are considered clean service terminations.

 Note: systemd-analyze exit-status may be used to list exit statuses

 and translate between numerical status values and names.

 RestartPreventExitStatus=

 Takes a list of exit status definitions that, when returned by the

 main service process, will prevent automatic service restarts,

 regardless of the restart setting configured with Restart=. Exit

 status definitions can either be numeric exit codes or termination

 signal names, and are separated by spaces. Defaults to the empty

 list, so that, by default, no exit status is excluded from the

 configured restart logic. For example:

 RestartPreventExitStatus=1 6 SIGABRT

 ensures that exit codes 1 and 6 and the termination signal SIGABRT

 will not result in automatic service restarting. This option may

 appear more than once, in which case the list of restart-preventing

 statuses is merged. If the empty string is assigned to this option,

 the list is reset and all prior assignments of this option will

 have no effect.

 Note that this setting has no effect on processes configured via

 ExecStartPre=, ExecStartPost=, ExecStop=, ExecStopPost= or

 ExecReload=, but only on the main service process, i.e. either the

 one invoked by ExecStart= or (depending on Type=, PIDFile=, ...)

 the otherwise configured main process.

 RestartForceExitStatus=

 Takes a list of exit status definitions that, when returned by the

 main service process, will force automatic service restarts,

 regardless of the restart setting configured with Restart=. The

 argument format is similar to RestartPreventExitStatus=. Page 24/36

 RootDirectoryStartOnly=

 Takes a boolean argument. If true, the root directory, as

 configured with the RootDirectory= option (see systemd.exec(5) for

 more information), is only applied to the process started with

 ExecStart=, and not to the various other ExecStartPre=,

 ExecStartPost=, ExecReload=, ExecStop=, and ExecStopPost= commands.

 If false, the setting is applied to all configured commands the

 same way. Defaults to false.

 NonBlocking=

 Set the O_NONBLOCK flag for all file descriptors passed via

 socket-based activation. If true, all file descriptors >= 3 (i.e.

 all except stdin, stdout, stderr), excluding those passed in via

 the file descriptor storage logic (see FileDescriptorStoreMax= for

 details), will have the O_NONBLOCK flag set and hence are in

 non-blocking mode. This option is only useful in conjunction with a

 socket unit, as described in systemd.socket(5) and has no effect on

 file descriptors which were previously saved in the file-descriptor

 store for example. Defaults to false.

 NotifyAccess=

 Controls access to the service status notification socket, as

 accessible via the sd_notify(3) call. Takes one of none (the

 default), main, exec or all. If none, no daemon status updates are

 accepted from the service processes, all status update messages are

 ignored. If main, only service updates sent from the main process

 of the service are accepted. If exec, only service updates sent

 from any of the main or control processes originating from one of

 the Exec*= commands are accepted. If all, all services updates from

 all members of the service's control group are accepted. This

 option should be set to open access to the notification socket when

 using Type=notify or WatchdogSec= (see above). If those options are

 used but NotifyAccess= is not configured, it will be implicitly set

 to main.

 Note that sd_notify() notifications may be attributed to units Page 25/36

 correctly only if either the sending process is still around at the

 time PID 1 processes the message, or if the sending process is

 explicitly runtime-tracked by the service manager. The latter is

 the case if the service manager originally forked off the process,

 i.e. on all processes that match main or exec. Conversely, if an

 auxiliary process of the unit sends an sd_notify() message and

 immediately exits, the service manager might not be able to

 properly attribute the message to the unit, and thus will ignore

 it, even if NotifyAccess=all is set for it.

 Hence, to eliminate all race conditions involving lookup of the

 client's unit and attribution of notifications to units correctly,

 sd_notify_barrier() may be used. This call acts as a

 synchronization point and ensures all notifications sent before

 this call have been picked up by the service manager when it

 returns successfully. Use of sd_notify_barrier() is needed for

 clients which are not invoked by the service manager, otherwise

 this synchronization mechanism is unnecessary for attribution of

 notifications to the unit.

 Sockets=

 Specifies the name of the socket units this service shall inherit

 socket file descriptors from when the service is started. Normally,

 it should not be necessary to use this setting, as all socket file

 descriptors whose unit shares the same name as the service (subject

 to the different unit name suffix of course) are passed to the

 spawned process.

 Note that the same socket file descriptors may be passed to

 multiple processes simultaneously. Also note that a different

 service may be activated on incoming socket traffic than the one

 which is ultimately configured to inherit the socket file

 descriptors. Or, in other words: the Service= setting of .socket

 units does not have to match the inverse of the Sockets= setting of

 the .service it refers to.

 This option may appear more than once, in which case the list of Page 26/36

 socket units is merged. Note that once set, clearing the list of

 sockets again (for example, by assigning the empty string to this

 option) is not supported.

 FileDescriptorStoreMax=

 Configure how many file descriptors may be stored in the service

 manager for the service using sd_pid_notify_with_fds(3)'s

 "FDSTORE=1" messages. This is useful for implementing services that

 can restart after an explicit request or a crash without losing

 state. Any open sockets and other file descriptors which should not

 be closed during the restart may be stored this way. Application

 state can either be serialized to a file in /run/, or better,

 stored in a memfd_create(2) memory file descriptor. Defaults to 0,

 i.e. no file descriptors may be stored in the service manager. All

 file descriptors passed to the service manager from a specific

 service are passed back to the service's main process on the next

 service restart (see sd_listen_fds(3) for details about the precise

 protocol used and the order in which the file descriptors are

 passed). Any file descriptors passed to the service manager are

 automatically closed when POLLHUP or POLLERR is seen on them, or

 when the service is fully stopped and no job is queued or being

 executed for it. If this option is used, NotifyAccess= (see above)

 should be set to open access to the notification socket provided by

 systemd. If NotifyAccess= is not set, it will be implicitly set to

 main.

 USBFunctionDescriptors=

 Configure the location of a file containing USB FunctionFS[1]

 descriptors, for implementation of USB gadget functions. This is

 used only in conjunction with a socket unit with ListenUSBFunction=

 configured. The contents of this file are written to the ep0 file

 after it is opened.

 USBFunctionStrings=

 Configure the location of a file containing USB FunctionFS strings.

 Behavior is similar to USBFunctionDescriptors= above. Page 27/36

 OOMPolicy=

 Configure the out-of-memory (OOM) killing policy for the kernel and

 the userspace OOM killer systemd-oomd.service(8). On Linux, when

 memory becomes scarce to the point that the kernel has trouble

 allocating memory for itself, it might decide to kill a running

 process in order to free up memory and reduce memory pressure. Note

 that systemd-oomd.service is a more flexible solution that aims to

 prevent out-of-memory situations for the userspace too, not just

 the kernel, by attempting to terminate services earlier, before the

 kernel would have to act.

 This setting takes one of continue, stop or kill. If set to

 continue and a process in the unit is killed by the OOM killer,

 this is logged but the unit continues running. If set to stop the

 event is logged but the unit is terminated cleanly by the service

 manager. If set to kill and one of the unit's processes is killed

 by the OOM killer the kernel is instructed to kill all remaining

 processes of the unit too, by setting the memory.oom.group

 attribute to 1; also see kernel documentation[2].

 Defaults to the setting DefaultOOMPolicy= in systemd-system.conf(5)

 is set to, except for units where Delegate= is turned on, where it

 defaults to continue.

 Use the OOMScoreAdjust= setting to configure whether processes of

 the unit shall be considered preferred or less preferred candidates

 for process termination by the Linux OOM killer logic. See

 systemd.exec(5) for details.

 This setting also applies to systemd-oomd. Similarly to the kernel

 OOM kills, this setting determines the state of the unit after

 systemd-oomd kills a cgroup associated with it.

 Check systemd.unit(5), systemd.exec(5), and systemd.kill(5) for more

 settings.

COMMAND LINES

 This section describes command line parsing and variable and specifier

 substitutions for ExecStart=, ExecStartPre=, ExecStartPost=, Page 28/36

 ExecReload=, ExecStop=, and ExecStopPost= options.

 Multiple command lines may be concatenated in a single directive by

 separating them with semicolons (these semicolons must be passed as

 separate words). Lone semicolons may be escaped as "\;".

 Each command line is unquoted using the rules described in "Quoting"

 section in systemd.syntax(7). The first item becomes the command to

 execute, and the subsequent items the arguments.

 This syntax is inspired by shell syntax, but only the meta-characters

 and expansions described in the following paragraphs are understood,

 and the expansion of variables is different. Specifically, redirection

 using "<", "<<", ">", and ">>", pipes using "|", running programs in

 the background using "&", and other elements of shell syntax are not

 supported.

 The command to execute may contain spaces, but control characters are

 not allowed.

 The command line accepts "%" specifiers as described in

 systemd.unit(5).

 Basic environment variable substitution is supported. Use "${FOO}" as

 part of a word, or as a word of its own, on the command line, in which

 case it will be erased and replaced by the exact value of the

 environment variable (if any) including all whitespace it contains,

 always resulting in exactly a single argument. Use "$FOO" as a separate

 word on the command line, in which case it will be replaced by the

 value of the environment variable split at whitespace, resulting in

 zero or more arguments. For this type of expansion, quotes are

 respected when splitting into words, and afterwards removed.

 If the command is not a full (absolute) path, it will be resolved to a

 full path using a fixed search path determined at compilation time.

 Searched directories include /usr/local/bin/, /usr/bin/, /bin/ on

 systems using split /usr/bin/ and /bin/ directories, and their sbin/

 counterparts on systems using split bin/ and sbin/. It is thus safe to

 use just the executable name in case of executables located in any of

 the "standard" directories, and an absolute path must be used in other Page 29/36

 cases. Using an absolute path is recommended to avoid ambiguity. Hint:

 this search path may be queried using systemd-path

 search-binaries-default.

 Example:

 Environment="ONE=one" 'TWO=two two'

 ExecStart=echo $ONE $TWO ${TWO}

 This will execute /bin/echo with four arguments: "one", "two", "two",

 and "two two".

 Example:

 Environment=ONE='one' "TWO='two two' too" THREE=

 ExecStart=/bin/echo ${ONE} ${TWO} ${THREE}

 ExecStart=/bin/echo $ONE $TWO $THREE

 This results in /bin/echo being called twice, the first time with

 arguments "'one'", "'two two' too", "", and the second time with

 arguments "one", "two two", "too".

 To pass a literal dollar sign, use "$$". Variables whose value is not

 known at expansion time are treated as empty strings. Note that the

 first argument (i.e. the program to execute) may not be a variable.

 Variables to be used in this fashion may be defined through

 Environment= and EnvironmentFile=. In addition, variables listed in the

 section "Environment variables in spawned processes" in

 systemd.exec(5), which are considered "static configuration", may be

 used (this includes e.g. $USER, but not $TERM).

 Note that shell command lines are not directly supported. If shell

 command lines are to be used, they need to be passed explicitly to a

 shell implementation of some kind. Example:

 ExecStart=sh -c 'dmesg | tac'

 Example:

 ExecStart=echo one ; echo "two two"

 This will execute echo two times, each time with one argument: "one"

 and "two two", respectively. Because two commands are specified,

 Type=oneshot must be used.

 Example: Page 30/36

 ExecStart=echo / >/dev/null & \; \

 ls

 This will execute echo with five arguments: "/", ">/dev/null", "&",

 ";", and "ls".

EXAMPLES

 Example 2. Simple service

 The following unit file creates a service that will execute

 /usr/sbin/foo-daemon. Since no Type= is specified, the default

 Type=simple will be assumed. systemd will assume the unit to be started

 immediately after the program has begun executing.

 [Unit]

 Description=Foo

 [Service]

 ExecStart=/usr/sbin/foo-daemon

 [Install]

 WantedBy=multi-user.target

 Note that systemd assumes here that the process started by systemd will

 continue running until the service terminates. If the program

 daemonizes itself (i.e. forks), please use Type=forking instead.

 Since no ExecStop= was specified, systemd will send SIGTERM to all

 processes started from this service, and after a timeout also SIGKILL.

 This behavior can be modified, see systemd.kill(5) for details.

 Note that this unit type does not include any type of notification when

 a service has completed initialization. For this, you should use other

 unit types, such as Type=notify if the service understands systemd's

 notification protocol, Type=forking if the service can background

 itself or Type=dbus if the unit acquires a DBus name once

 initialization is complete. See below.

 Example 3. Oneshot service

 Sometimes, units should just execute an action without keeping active

 processes, such as a filesystem check or a cleanup action on boot. For

 this, Type=oneshot exists. Units of this type will wait until the

 process specified terminates and then fall back to being inactive. The Page 31/36

 following unit will perform a cleanup action:

 [Unit]

 Description=Cleanup old Foo data

 [Service]

 Type=oneshot

 ExecStart=/usr/sbin/foo-cleanup

 [Install]

 WantedBy=multi-user.target

 Note that systemd will consider the unit to be in the state "starting"

 until the program has terminated, so ordered dependencies will wait for

 the program to finish before starting themselves. The unit will revert

 to the "inactive" state after the execution is done, never reaching the

 "active" state. That means another request to start the unit will

 perform the action again.

 Type=oneshot are the only service units that may have more than one

 ExecStart= specified. For units with multiple commands (Type=oneshot),

 all commands will be run again.

 For Type=oneshot, Restart=always and Restart=on-success are not

 allowed.

 Example 4. Stoppable oneshot service

 Similarly to the oneshot services, there are sometimes units that need

 to execute a program to set up something and then execute another to

 shut it down, but no process remains active while they are considered

 "started". Network configuration can sometimes fall into this category.

 Another use case is if a oneshot service shall not be executed each

 time when they are pulled in as a dependency, but only the first time.

 For this, systemd knows the setting RemainAfterExit=yes, which causes

 systemd to consider the unit to be active if the start action exited

 successfully. This directive can be used with all types, but is most

 useful with Type=oneshot and Type=simple. With Type=oneshot, systemd

 waits until the start action has completed before it considers the unit

 to be active, so dependencies start only after the start action has

 succeeded. With Type=simple, dependencies will start immediately after Page 32/36

 the start action has been dispatched. The following unit provides an

 example for a simple static firewall.

 [Unit]

 Description=Simple firewall

 [Service]

 Type=oneshot

 RemainAfterExit=yes

 ExecStart=/usr/local/sbin/simple-firewall-start

 ExecStop=/usr/local/sbin/simple-firewall-stop

 [Install]

 WantedBy=multi-user.target

 Since the unit is considered to be running after the start action has

 exited, invoking systemctl start on that unit again will cause no

 action to be taken.

 Example 5. Traditional forking services

 Many traditional daemons/services background (i.e. fork, daemonize)

 themselves when starting. Set Type=forking in the service's unit file

 to support this mode of operation. systemd will consider the service to

 be in the process of initialization while the original program is still

 running. Once it exits successfully and at least a process remains (and

 RemainAfterExit=no), the service is considered started.

 Often, a traditional daemon only consists of one process. Therefore, if

 only one process is left after the original process terminates, systemd

 will consider that process the main process of the service. In that

 case, the $MAINPID variable will be available in ExecReload=,

 ExecStop=, etc.

 In case more than one process remains, systemd will be unable to

 determine the main process, so it will not assume there is one. In that

 case, $MAINPID will not expand to anything. However, if the process

 decides to write a traditional PID file, systemd will be able to read

 the main PID from there. Please set PIDFile= accordingly. Note that the

 daemon should write that file before finishing with its initialization.

 Otherwise, systemd might try to read the file before it exists. Page 33/36

 The following example shows a simple daemon that forks and just starts

 one process in the background:

 [Unit]

 Description=Some simple daemon

 [Service]

 Type=forking

 ExecStart=/usr/sbin/my-simple-daemon -d

 [Install]

 WantedBy=multi-user.target

 Please see systemd.kill(5) for details on how you can influence the way

 systemd terminates the service.

 Example 6. DBus services

 For services that acquire a name on the DBus system bus, use Type=dbus

 and set BusName= accordingly. The service should not fork (daemonize).

 systemd will consider the service to be initialized once the name has

 been acquired on the system bus. The following example shows a typical

 DBus service:

 [Unit]

 Description=Simple DBus service

 [Service]

 Type=dbus

 BusName=org.example.simple-dbus-service

 ExecStart=/usr/sbin/simple-dbus-service

 [Install]

 WantedBy=multi-user.target

 For bus-activatable services, do not include a [Install] section in the

 systemd service file, but use the SystemdService= option in the

 corresponding DBus service file, for example

 (/usr/share/dbus-1/system-services/org.example.simple-dbus-service.service):

 [D-BUS Service]

 Name=org.example.simple-dbus-service

 Exec=/usr/sbin/simple-dbus-service

 User=root Page 34/36

 SystemdService=simple-dbus-service.service

 Please see systemd.kill(5) for details on how you can influence the way

 systemd terminates the service.

 Example 7. Services that notify systemd about their initialization

 Type=simple services are really easy to write, but have the major

 disadvantage of systemd not being able to tell when initialization of

 the given service is complete. For this reason, systemd supports a

 simple notification protocol that allows daemons to make systemd aware

 that they are done initializing. Use Type=notify for this. A typical

 service file for such a daemon would look like this:

 [Unit]

 Description=Simple notifying service

 [Service]

 Type=notify

 ExecStart=/usr/sbin/simple-notifying-service

 [Install]

 WantedBy=multi-user.target

 Note that the daemon has to support systemd's notification protocol,

 else systemd will think the service has not started yet and kill it

 after a timeout. For an example of how to update daemons to support

 this protocol transparently, take a look at sd_notify(3). systemd will

 consider the unit to be in the 'starting' state until a readiness

 notification has arrived.

 Please see systemd.kill(5) for details on how you can influence the way

 systemd terminates the service.

SEE ALSO

 systemd(1), systemctl(1), systemd-system.conf(5), systemd.unit(5),

 systemd.exec(5), systemd.resource-control(5), systemd.kill(5),

 systemd.directives(7), systemd-run(1)

NOTES

 1. USB FunctionFS

 https://docs.kernel.org/usb/functionfs.html

 2. kernel documentation Page 35/36

 https://docs.kernel.org/admin-guide/cgroup-v2.html

systemd 252 SYSTEMD.SERVICE(5)

Page 36/36

