
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.exec.5'

$ man systemd.exec.5

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

NAME

 systemd.exec - Execution environment configuration

SYNOPSIS

 service.service, socket.socket, mount.mount, swap.swap

DESCRIPTION

 Unit configuration files for services, sockets, mount points, and swap

 devices share a subset of configuration options which define the

 execution environment of spawned processes.

 This man page lists the configuration options shared by these four unit

 types. See systemd.unit(5) for the common options of all unit

 configuration files, and systemd.service(5), systemd.socket(5),

 systemd.swap(5), and systemd.mount(5) for more information on the

 specific unit configuration files. The execution specific configuration

 options are configured in the [Service], [Socket], [Mount], or [Swap]

 sections, depending on the unit type.

 In addition, options which control resources through Linux Control

 Groups (cgroups) are listed in systemd.resource-control(5). Those Page 1/106

 options complement options listed here.

IMPLICIT DEPENDENCIES

 A few execution parameters result in additional, automatic dependencies

 to be added:

 ? Units with WorkingDirectory=, RootDirectory=, RootImage=,

 RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=

 or ConfigurationDirectory= set automatically gain dependencies of

 type Requires= and After= on all mount units required to access the

 specified paths. This is equivalent to having them listed

 explicitly in RequiresMountsFor=.

 ? Similarly, units with PrivateTmp= enabled automatically get mount

 unit dependencies for all mounts required to access /tmp/ and

 /var/tmp/. They will also gain an automatic After= dependency on

 systemd-tmpfiles-setup.service(8).

 ? Units whose standard output or error output is connected to journal

 or kmsg (or their combinations with console output, see below)

 automatically acquire dependencies of type After= on

 systemd-journald.socket.

 ? Units using LogNamespace= will automatically gain ordering and

 requirement dependencies on the two socket units associated with

 systemd-journald@.service instances.

PATHS

 The following settings may be used to change a service's view of the

 filesystem. Please note that the paths must be absolute and must not

 contain a ".." path component.

 ExecSearchPath=

 Takes a colon separated list of absolute paths relative to which

 the executable used by the Exec*= (e.g. ExecStart=, ExecStop=,

 etc.) properties can be found. ExecSearchPath= overrides $PATH if

 $PATH is not supplied by the user through Environment=,

 EnvironmentFile= or PassEnvironment=. Assigning an empty string

 removes previous assignments and setting ExecSearchPath= to a value

 multiple times will append to the previous setting. Page 2/106

 WorkingDirectory=

 Takes a directory path relative to the service's root directory

 specified by RootDirectory=, or the special value "~". Sets the

 working directory for executed processes. If set to "~", the home

 directory of the user specified in User= is used. If not set,

 defaults to the root directory when systemd is running as a system

 instance and the respective user's home directory if run as user.

 If the setting is prefixed with the "-" character, a missing

 working directory is not considered fatal. If

 RootDirectory=/RootImage= is not set, then WorkingDirectory= is

 relative to the root of the system running the service manager.

 Note that setting this parameter might result in additional

 dependencies to be added to the unit (see above).

 RootDirectory=

 Takes a directory path relative to the host's root directory (i.e.

 the root of the system running the service manager). Sets the root

 directory for executed processes, with the chroot(2) system call.

 If this is used, it must be ensured that the process binary and all

 its auxiliary files are available in the chroot() jail. Note that

 setting this parameter might result in additional dependencies to

 be added to the unit (see above).

 The MountAPIVFS= and PrivateUsers= settings are particularly useful

 in conjunction with RootDirectory=. For details, see below.

 If RootDirectory=/RootImage= are used together with NotifyAccess=

 the notification socket is automatically mounted from the host into

 the root environment, to ensure the notification interface can work

 correctly.

 Note that services using RootDirectory=/RootImage= will not be able

 to log via the syslog or journal protocols to the host logging

 infrastructure, unless the relevant sockets are mounted from the

 host, specifically:

 Example 1. Mounting logging sockets into root environment

 BindReadOnlyPaths=/dev/log /run/systemd/journal/socket /run/systemd/journal/stdout Page 3/106

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 RootImage=

 Takes a path to a block device node or regular file as argument.

 This call is similar to RootDirectory= however mounts a file system

 hierarchy from a block device node or loopback file instead of a

 directory. The device node or file system image file needs to

 contain a file system without a partition table, or a file system

 within an MBR/MS-DOS or GPT partition table with only a single

 Linux-compatible partition, or a set of file systems within a GPT

 partition table that follows the Discoverable Partitions

 Specification[1].

 When DevicePolicy= is set to "closed" or "strict", or set to "auto"

 and DeviceAllow= is set, then this setting adds /dev/loop-control

 with rw mode, "block-loop" and "block-blkext" with rwm mode to

 DeviceAllow=. See systemd.resource-control(5) for the details about

 DevicePolicy= or DeviceAllow=. Also, see PrivateDevices= below, as

 it may change the setting of DevicePolicy=.

 Units making use of RootImage= automatically gain an After=

 dependency on systemd-udevd.service.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 RootImageOptions=

 Takes a comma-separated list of mount options that will be used on

 disk images specified by RootImage=. Optionally a partition name

 can be prefixed, followed by colon, in case the image has multiple

 partitions, otherwise partition name "root" is implied. Options for

 multiple partitions can be specified in a single line with space

 separators. Assigning an empty string removes previous assignments.

 Duplicated options are ignored. For a list of valid mount options,

 please refer to mount(8). Page 4/106

 Valid partition names follow the Discoverable Partitions

 Specification[1]: root, usr, home, srv, esp, xbootldr, tmp, var.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 RootHash=

 Takes a data integrity (dm-verity) root hash specified in

 hexadecimal, or the path to a file containing a root hash in ASCII

 hexadecimal format. This option enables data integrity checks using

 dm-verity, if the used image contains the appropriate integrity

 data (see above) or if RootVerity= is used. The specified hash must

 match the root hash of integrity data, and is usually at least 256

 bits (and hence 64 formatted hexadecimal characters) long (in case

 of SHA256 for example). If this option is not specified, but the

 image file carries the "user.verity.roothash" extended file

 attribute (see xattr(7)), then the root hash is read from it, also

 as formatted hexadecimal characters. If the extended file attribute

 is not found (or is not supported by the underlying file system),

 but a file with the .roothash suffix is found next to the image

 file, bearing otherwise the same name (except if the image has the

 .raw suffix, in which case the root hash file must not have it in

 its name), the root hash is read from it and automatically used,

 also as formatted hexadecimal characters.

 If the disk image contains a separate /usr/ partition it may also

 be Verity protected, in which case the root hash may configured via

 an extended attribute "user.verity.usrhash" or a .usrhash file

 adjacent to the disk image. There's currently no option to

 configure the root hash for the /usr/ file system via the unit file

 directly.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 RootHashSignature= Page 5/106

 Takes a PKCS7 signature of the RootHash= option as a path to a

 DER-encoded signature file, or as an ASCII base64 string encoding

 of a DER-encoded signature prefixed by "base64:". The dm-verity

 volume will only be opened if the signature of the root hash is

 valid and signed by a public key present in the kernel keyring. If

 this option is not specified, but a file with the .roothash.p7s

 suffix is found next to the image file, bearing otherwise the same

 name (except if the image has the .raw suffix, in which case the

 signature file must not have it in its name), the signature is read

 from it and automatically used.

 If the disk image contains a separate /usr/ partition it may also

 be Verity protected, in which case the signature for the root hash

 may configured via a .usrhash.p7s file adjacent to the disk image.

 There's currently no option to configure the root hash signature

 for the /usr/ via the unit file directly.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 RootVerity=

 Takes the path to a data integrity (dm-verity) file. This option

 enables data integrity checks using dm-verity, if RootImage= is

 used and a root-hash is passed and if the used image itself does

 not contains the integrity data. The integrity data must be matched

 by the root hash. If this option is not specified, but a file with

 the .verity suffix is found next to the image file, bearing

 otherwise the same name (except if the image has the .raw suffix,

 in which case the verity data file must not have it in its name),

 the verity data is read from it and automatically used.

 This option is supported only for disk images that contain a single

 file system, without an enveloping partition table. Images that

 contain a GPT partition table should instead include both root file

 system and matching Verity data in the same image, implementing the

 Discoverable Partitions Specification[1]. Page 6/106

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 MountAPIVFS=

 Takes a boolean argument. If on, a private mount namespace for the

 unit's processes is created and the API file systems /proc/, /sys/,

 /dev/ and /run/ (as an empty "tmpfs") are mounted inside of it,

 unless they are already mounted. Note that this option has no

 effect unless used in conjunction with RootDirectory=/RootImage= as

 these four mounts are generally mounted in the host anyway, and

 unless the root directory is changed, the private mount namespace

 will be a 1:1 copy of the host's, and include these four mounts.

 Note that the /dev/ file system of the host is bind mounted if this

 option is used without PrivateDevices=. To run the service with a

 private, minimal version of /dev/, combine this option with

 PrivateDevices=.

 In order to allow propagating mounts at runtime in a safe manner,

 /run/systemd/propagate on the host will be used to set up new

 mounts, and /run/host/incoming/ in the private namespace will be

 used as an intermediate step to store them before being moved to

 the final mount point.

 ProtectProc=

 Takes one of "noaccess", "invisible", "ptraceable" or "default"

 (which it defaults to). When set, this controls the "hidepid="

 mount option of the "procfs" instance for the unit that controls

 which directories with process metainformation (/proc/PID) are

 visible and accessible: when set to "noaccess" the ability to

 access most of other users' process metadata in /proc/ is taken

 away for processes of the service. When set to "invisible"

 processes owned by other users are hidden from /proc/. If

 "ptraceable" all processes that cannot be ptrace()'ed by a process

 are hidden to it. If "default" no restrictions on /proc/ access or

 visibility are made. For further details see The /proc Page 7/106

 Filesystem[2]. It is generally recommended to run most system

 services with this option set to "invisible". This option is

 implemented via file system namespacing, and thus cannot be used

 with services that shall be able to install mount points in the

 host file system hierarchy. Note that the root user is unaffected

 by this option, so to be effective it has to be used together with

 User= or DynamicUser=yes, and also without the "CAP_SYS_PTRACE"

 capability, which also allows a process to bypass this feature. It

 cannot be used for services that need to access metainformation

 about other users' processes. This option implies MountAPIVFS=.

 If the kernel doesn't support per-mount point hidepid= mount

 options this setting remains without effect, and the unit's

 processes will be able to access and see other process as if the

 option was not used.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 ProcSubset=

 Takes one of "all" (the default) and "pid". If "pid", all files and

 directories not directly associated with process management and

 introspection are made invisible in the /proc/ file system

 configured for the unit's processes. This controls the "subset="

 mount option of the "procfs" instance for the unit. For further

 details see The /proc Filesystem[2]. Note that Linux exposes

 various kernel APIs via /proc/, which are made unavailable with

 this setting. Since these APIs are used frequently this option is

 useful only in a few, specific cases, and is not suitable for most

 non-trivial programs.

 Much like ProtectProc= above, this is implemented via file system

 mount namespacing, and hence the same restrictions apply: it is

 only available to system services, it disables mount propagation to

 the host mount table, and it implies MountAPIVFS=. Also, like

 ProtectProc= this setting is gracefully disabled if the used kernel Page 8/106

 does not support the "subset=" mount option of "procfs".

 BindPaths=, BindReadOnlyPaths=

 Configures unit-specific bind mounts. A bind mount makes a

 particular file or directory available at an additional place in

 the unit's view of the file system. Any bind mounts created with

 this option are specific to the unit, and are not visible in the

 host's mount table. This option expects a whitespace separated list

 of bind mount definitions. Each definition consists of a

 colon-separated triple of source path, destination path and option

 string, where the latter two are optional. If only a source path is

 specified the source and destination is taken to be the same. The

 option string may be either "rbind" or "norbind" for configuring a

 recursive or non-recursive bind mount. If the destination path is

 omitted, the option string must be omitted too. Each bind mount

 definition may be prefixed with "-", in which case it will be

 ignored when its source path does not exist.

 BindPaths= creates regular writable bind mounts (unless the source

 file system mount is already marked read-only), while

 BindReadOnlyPaths= creates read-only bind mounts. These settings

 may be used more than once, each usage appends to the unit's list

 of bind mounts. If the empty string is assigned to either of these

 two options the entire list of bind mounts defined prior to this is

 reset. Note that in this case both read-only and regular bind

 mounts are reset, regardless which of the two settings is used.

 This option is particularly useful when RootDirectory=/RootImage=

 is used. In this case the source path refers to a path on the host

 file system, while the destination path refers to a path below the

 root directory of the unit.

 Note that the destination directory must exist or systemd must be

 able to create it. Thus, it is not possible to use those options

 for mount points nested underneath paths specified in

 InaccessiblePaths=, or under /home/ and other protected directories

 if ProtectHome=yes is specified. TemporaryFileSystem= with ":ro" Page 9/106

 or ProtectHome=tmpfs should be used instead.

 MountImages=

 This setting is similar to RootImage= in that it mounts a file

 system hierarchy from a block device node or loopback file, but the

 destination directory can be specified as well as mount options.

 This option expects a whitespace separated list of mount

 definitions. Each definition consists of a colon-separated tuple of

 source path and destination definitions, optionally followed by

 another colon and a list of mount options.

 Mount options may be defined as a single comma-separated list of

 options, in which case they will be implicitly applied to the root

 partition on the image, or a series of colon-separated tuples of

 partition name and mount options. Valid partition names and mount

 options are the same as for RootImageOptions= setting described

 above.

 Each mount definition may be prefixed with "-", in which case it

 will be ignored when its source path does not exist. The source

 argument is a path to a block device node or regular file. If

 source or destination contain a ":", it needs to be escaped as

 "\:". The device node or file system image file needs to follow the

 same rules as specified for RootImage=. Any mounts created with

 this option are specific to the unit, and are not visible in the

 host's mount table.

 These settings may be used more than once, each usage appends to

 the unit's list of mount paths. If the empty string is assigned,

 the entire list of mount paths defined prior to this is reset.

 Note that the destination directory must exist or systemd must be

 able to create it. Thus, it is not possible to use those options

 for mount points nested underneath paths specified in

 InaccessiblePaths=, or under /home/ and other protected directories

 if ProtectHome=yes is specified.

 When DevicePolicy= is set to "closed" or "strict", or set to "auto"

 and DeviceAllow= is set, then this setting adds /dev/loop-control Page 10/106

 with rw mode, "block-loop" and "block-blkext" with rwm mode to

 DeviceAllow=. See systemd.resource-control(5) for the details about

 DevicePolicy= or DeviceAllow=. Also, see PrivateDevices= below, as

 it may change the setting of DevicePolicy=.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 ExtensionImages=

 This setting is similar to MountImages= in that it mounts a file

 system hierarchy from a block device node or loopback file, but

 instead of providing a destination path, an overlay will be set up.

 This option expects a whitespace separated list of mount

 definitions. Each definition consists of a source path, optionally

 followed by a colon and a list of mount options.

 A read-only OverlayFS will be set up on top of /usr/ and /opt/

 hierarchies. The order in which the images are listed will

 determine the order in which the overlay is laid down: images

 specified first to last will result in overlayfs layers bottom to

 top.

 Mount options may be defined as a single comma-separated list of

 options, in which case they will be implicitly applied to the root

 partition on the image, or a series of colon-separated tuples of

 partition name and mount options. Valid partition names and mount

 options are the same as for RootImageOptions= setting described

 above.

 Each mount definition may be prefixed with "-", in which case it

 will be ignored when its source path does not exist. The source

 argument is a path to a block device node or regular file. If the

 source path contains a ":", it needs to be escaped as "\:". The

 device node or file system image file needs to follow the same

 rules as specified for RootImage=. Any mounts created with this

 option are specific to the unit, and are not visible in the host's

 mount table. Page 11/106

 These settings may be used more than once, each usage appends to

 the unit's list of image paths. If the empty string is assigned,

 the entire list of mount paths defined prior to this is reset.

 Each image must carry a

 /usr/lib/extension-release.d/extension-release.IMAGE file, with the

 appropriate metadata which matches RootImage=/RootDirectory= or the

 host. See: os-release(5). To disable the safety check that the

 extension-release file name matches the image file name, the

 x-systemd.relax-extension-release-check mount option may be

 appended.

 When DevicePolicy= is set to "closed" or "strict", or set to "auto"

 and DeviceAllow= is set, then this setting adds /dev/loop-control

 with rw mode, "block-loop" and "block-blkext" with rwm mode to

 DeviceAllow=. See systemd.resource-control(5) for the details about

 DevicePolicy= or DeviceAllow=. Also, see PrivateDevices= below, as

 it may change the setting of DevicePolicy=.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 ExtensionDirectories=

 This setting is similar to BindReadOnlyPaths= in that it mounts a

 file system hierarchy from a directory, but instead of providing a

 destination path, an overlay will be set up. This option expects a

 whitespace separated list of source directories.

 A read-only OverlayFS will be set up on top of /usr/ and /opt/

 hierarchies. The order in which the directories are listed will

 determine the order in which the overlay is laid down: directories

 specified first to last will result in overlayfs layers bottom to

 top.

 Each directory listed in ExtensionDirectories= may be prefixed with

 "-", in which case it will be ignored when its source path does not

 exist. Any mounts created with this option are specific to the

 unit, and are not visible in the host's mount table. Page 12/106

 These settings may be used more than once, each usage appends to

 the unit's list of directories paths. If the empty string is

 assigned, the entire list of mount paths defined prior to this is

 reset.

 Each directory must contain a

 /usr/lib/extension-release.d/extension-release.IMAGE file, with the

 appropriate metadata which matches RootImage=/RootDirectory= or the

 host. See: os-release(5).

 Note that usage from user units requires overlayfs support in

 unprivileged user namespaces, which was first introduced in kernel

 v5.11.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

USER/GROUP IDENTITY

 These options are only available for system services and are not

 supported for services running in per-user instances of the service

 manager.

 User=, Group=

 Set the UNIX user or group that the processes are executed as,

 respectively. Takes a single user or group name, or a numeric ID as

 argument. For system services (services run by the system service

 manager, i.e. managed by PID 1) and for user services of the root

 user (services managed by root's instance of systemd --user), the

 default is "root", but User= may be used to specify a different

 user. For user services of any other user, switching user identity

 is not permitted, hence the only valid setting is the same user the

 user's service manager is running as. If no group is set, the

 default group of the user is used. This setting does not affect

 commands whose command line is prefixed with "+".

 Note that this enforces only weak restrictions on the user/group

 name syntax, but will generate warnings in many cases where

 user/group names do not adhere to the following rules: the Page 13/106

 specified name should consist only of the characters a-z, A-Z, 0-9,

 "_" and "-", except for the first character which must be one of

 a-z, A-Z and "_" (i.e. digits and "-" are not permitted as first

 character). The user/group name must have at least one character,

 and at most 31. These restrictions are made in order to avoid

 ambiguities and to ensure user/group names and unit files remain

 portable among Linux systems. For further details on the names

 accepted and the names warned about see User/Group Name Syntax[3].

 When used in conjunction with DynamicUser= the user/group name

 specified is dynamically allocated at the time the service is

 started, and released at the time the service is stopped ? unless

 it is already allocated statically (see below). If DynamicUser= is

 not used the specified user and group must have been created

 statically in the user database no later than the moment the

 service is started, for example using the sysusers.d(5) facility,

 which is applied at boot or package install time. If the user does

 not exist by then program invocation will fail.

 If the User= setting is used the supplementary group list is

 initialized from the specified user's default group list, as

 defined in the system's user and group database. Additional groups

 may be configured through the SupplementaryGroups= setting (see

 below).

 DynamicUser=

 Takes a boolean parameter. If set, a UNIX user and group pair is

 allocated dynamically when the unit is started, and released as

 soon as it is stopped. The user and group will not be added to

 /etc/passwd or /etc/group, but are managed transiently during

 runtime. The nss-systemd(8) glibc NSS module provides integration

 of these dynamic users/groups into the system's user and group

 databases. The user and group name to use may be configured via

 User= and Group= (see above). If these options are not used and

 dynamic user/group allocation is enabled for a unit, the name of

 the dynamic user/group is implicitly derived from the unit name. If Page 14/106

 the unit name without the type suffix qualifies as valid user name

 it is used directly, otherwise a name incorporating a hash of it is

 used. If a statically allocated user or group of the configured

 name already exists, it is used and no dynamic user/group is

 allocated. Note that if User= is specified and the static group

 with the name exists, then it is required that the static user with

 the name already exists. Similarly, if Group= is specified and the

 static user with the name exists, then it is required that the

 static group with the name already exists. Dynamic users/groups are

 allocated from the UID/GID range 61184...65519. It is recommended

 to avoid this range for regular system or login users. At any point

 in time each UID/GID from this range is only assigned to zero or

 one dynamically allocated users/groups in use. However, UID/GIDs

 are recycled after a unit is terminated. Care should be taken that

 any processes running as part of a unit for which dynamic

 users/groups are enabled do not leave files or directories owned by

 these users/groups around, as a different unit might get the same

 UID/GID assigned later on, and thus gain access to these files or

 directories. If DynamicUser= is enabled, RemoveIPC= and PrivateTmp=

 are implied (and cannot be turned off). This ensures that the

 lifetime of IPC objects and temporary files created by the executed

 processes is bound to the runtime of the service, and hence the

 lifetime of the dynamic user/group. Since /tmp/ and /var/tmp/ are

 usually the only world-writable directories on a system this

 ensures that a unit making use of dynamic user/group allocation

 cannot leave files around after unit termination. Furthermore

 NoNewPrivileges= and RestrictSUIDSGID= are implicitly enabled (and

 cannot be disabled), to ensure that processes invoked cannot take

 benefit or create SUID/SGID files or directories. Moreover

 ProtectSystem=strict and ProtectHome=read-only are implied, thus

 prohibiting the service to write to arbitrary file system

 locations. In order to allow the service to write to certain

 directories, they have to be allow-listed using ReadWritePaths=, Page 15/106

 but care must be taken so that UID/GID recycling doesn't create

 security issues involving files created by the service. Use

 RuntimeDirectory= (see below) in order to assign a writable runtime

 directory to a service, owned by the dynamic user/group and removed

 automatically when the unit is terminated. Use StateDirectory=,

 CacheDirectory= and LogsDirectory= in order to assign a set of

 writable directories for specific purposes to the service in a way

 that they are protected from vulnerabilities due to UID reuse (see

 below). If this option is enabled, care should be taken that the

 unit's processes do not get access to directories outside of these

 explicitly configured and managed ones. Specifically, do not use

 BindPaths= and be careful with AF_UNIX file descriptor passing for

 directory file descriptors, as this would permit processes to

 create files or directories owned by the dynamic user/group that

 are not subject to the lifecycle and access guarantees of the

 service. Defaults to off.

 SupplementaryGroups=

 Sets the supplementary Unix groups the processes are executed as.

 This takes a space-separated list of group names or IDs. This

 option may be specified more than once, in which case all listed

 groups are set as supplementary groups. When the empty string is

 assigned, the list of supplementary groups is reset, and all

 assignments prior to this one will have no effect. In any way, this

 option does not override, but extends the list of supplementary

 groups configured in the system group database for the user. This

 does not affect commands prefixed with "+".

 PAMName=

 Sets the PAM service name to set up a session as. If set, the

 executed process will be registered as a PAM session under the

 specified service name. This is only useful in conjunction with the

 User= setting, and is otherwise ignored. If not set, no PAM session

 will be opened for the executed processes. See pam(8) for details.

 Note that for each unit making use of this option a PAM session Page 16/106

 handler process will be maintained as part of the unit and stays

 around as long as the unit is active, to ensure that appropriate

 actions can be taken when the unit and hence the PAM session

 terminates. This process is named "(sd-pam)" and is an immediate

 child process of the unit's main process.

 Note that when this option is used for a unit it is very likely

 (depending on PAM configuration) that the main unit process will be

 migrated to its own session scope unit when it is activated. This

 process will hence be associated with two units: the unit it was

 originally started from (and for which PAMName= was configured),

 and the session scope unit. Any child processes of that process

 will however be associated with the session scope unit only. This

 has implications when used in combination with NotifyAccess=all, as

 these child processes will not be able to affect changes in the

 original unit through notification messages. These messages will be

 considered belonging to the session scope unit and not the original

 unit. It is hence not recommended to use PAMName= in combination

 with NotifyAccess=all.

CAPABILITIES

 These options are only available for system services, or for services

 running in per-user instances of the service manager when PrivateUsers=

 is enabled.

 CapabilityBoundingSet=

 Controls which capabilities to include in the capability bounding

 set for the executed process. See capabilities(7) for details.

 Takes a whitespace-separated list of capability names, e.g.

 CAP_SYS_ADMIN, CAP_DAC_OVERRIDE, CAP_SYS_PTRACE. Capabilities

 listed will be included in the bounding set, all others are

 removed. If the list of capabilities is prefixed with "~", all but

 the listed capabilities will be included, the effect of the

 assignment inverted. Note that this option also affects the

 respective capabilities in the effective, permitted and inheritable

 capability sets. If this option is not used, the capability Page 17/106

 bounding set is not modified on process execution, hence no limits

 on the capabilities of the process are enforced. This option may

 appear more than once, in which case the bounding sets are merged

 by OR, or by AND if the lines are prefixed with "~" (see below). If

 the empty string is assigned to this option, the bounding set is

 reset to the empty capability set, and all prior settings have no

 effect. If set to "~" (without any further argument), the bounding

 set is reset to the full set of available capabilities, also

 undoing any previous settings. This does not affect commands

 prefixed with "+".

 Use systemd-analyze(1)'s capability command to retrieve a list of

 capabilities defined on the local system.

 Example: if a unit has the following,

 CapabilityBoundingSet=CAP_A CAP_B

 CapabilityBoundingSet=CAP_B CAP_C

 then CAP_A, CAP_B, and CAP_C are set. If the second line is

 prefixed with "~", e.g.,

 CapabilityBoundingSet=CAP_A CAP_B

 CapabilityBoundingSet=~CAP_B CAP_C

 then, only CAP_A is set.

 AmbientCapabilities=

 Controls which capabilities to include in the ambient capability

 set for the executed process. Takes a whitespace-separated list of

 capability names, e.g. CAP_SYS_ADMIN, CAP_DAC_OVERRIDE,

 CAP_SYS_PTRACE. This option may appear more than once, in which

 case the ambient capability sets are merged (see the above examples

 in CapabilityBoundingSet=). If the list of capabilities is prefixed

 with "~", all but the listed capabilities will be included, the

 effect of the assignment inverted. If the empty string is assigned

 to this option, the ambient capability set is reset to the empty

 capability set, and all prior settings have no effect. If set to

 "~" (without any further argument), the ambient capability set is

 reset to the full set of available capabilities, also undoing any Page 18/106

 previous settings. Note that adding capabilities to the ambient

 capability set adds them to the process's inherited capability set.

 Ambient capability sets are useful if you want to execute a process

 as a non-privileged user but still want to give it some

 capabilities. Note that in this case option keep-caps is

 automatically added to SecureBits= to retain the capabilities over

 the user change. AmbientCapabilities= does not affect commands

 prefixed with "+".

SECURITY

 NoNewPrivileges=

 Takes a boolean argument. If true, ensures that the service process

 and all its children can never gain new privileges through execve()

 (e.g. via setuid or setgid bits, or filesystem capabilities). This

 is the simplest and most effective way to ensure that a process and

 its children can never elevate privileges again. Defaults to false,

 but certain settings override this and ignore the value of this

 setting. This is the case when DynamicUser=, LockPersonality=,

 MemoryDenyWriteExecute=, PrivateDevices=, ProtectClock=,

 ProtectHostname=, ProtectKernelLogs=, ProtectKernelModules=,

 ProtectKernelTunables=, RestrictAddressFamilies=,

 RestrictNamespaces=, RestrictRealtime=, RestrictSUIDSGID=,

 SystemCallArchitectures=, SystemCallFilter=, or SystemCallLog= are

 specified. Note that even if this setting is overridden by them,

 systemctl show shows the original value of this setting. In case

 the service will be run in a new mount namespace anyway and SELinux

 is disabled, all file systems are mounted with MS_NOSUID flag. Also

 see No New Privileges Flag[4].

 Note that this setting only has an effect on the unit's processes

 themselves (or any processes directly or indirectly forked off

 them). It has no effect on processes potentially invoked on request

 of them through tools such as at(1p), crontab(1p), systemd-run(1),

 or arbitrary IPC services.

 SecureBits= Page 19/106

 Controls the secure bits set for the executed process. Takes a

 space-separated combination of options from the following list:

 keep-caps, keep-caps-locked, no-setuid-fixup,

 no-setuid-fixup-locked, noroot, and noroot-locked. This option may

 appear more than once, in which case the secure bits are ORed. If

 the empty string is assigned to this option, the bits are reset to

 0. This does not affect commands prefixed with "+". See

 capabilities(7) for details.

MANDATORY ACCESS CONTROL

 These options are only available for system services and are not

 supported for services running in per-user instances of the service

 manager.

 SELinuxContext=

 Set the SELinux security context of the executed process. If set,

 this will override the automated domain transition. However, the

 policy still needs to authorize the transition. This directive is

 ignored if SELinux is disabled. If prefixed by "-", failing to set

 the SELinux security context will be ignored, but it's still

 possible that the subsequent execve() may fail if the policy

 doesn't allow the transition for the non-overridden context. This

 does not affect commands prefixed with "+". See setexeccon(3) for

 details.

 AppArmorProfile=

 Takes a profile name as argument. The process executed by the unit

 will switch to this profile when started. Profiles must already be

 loaded in the kernel, or the unit will fail. If prefixed by "-",

 all errors will be ignored. This setting has no effect if AppArmor

 is not enabled. This setting does not affect commands prefixed with

 "+".

 SmackProcessLabel=

 Takes a SMACK64 security label as argument. The process executed by

 the unit will be started under this label and SMACK will decide

 whether the process is allowed to run or not, based on it. The Page 20/106

 process will continue to run under the label specified here unless

 the executable has its own SMACK64EXEC label, in which case the

 process will transition to run under that label. When not

 specified, the label that systemd is running under is used. This

 directive is ignored if SMACK is disabled.

 The value may be prefixed by "-", in which case all errors will be

 ignored. An empty value may be specified to unset previous

 assignments. This does not affect commands prefixed with "+".

PROCESS PROPERTIES

 LimitCPU=, LimitFSIZE=, LimitDATA=, LimitSTACK=, LimitCORE=, LimitRSS=,

 LimitNOFILE=, LimitAS=, LimitNPROC=, LimitMEMLOCK=, LimitLOCKS=,

 LimitSIGPENDING=, LimitMSGQUEUE=, LimitNICE=, LimitRTPRIO=,

 LimitRTTIME=

 Set soft and hard limits on various resources for executed

 processes. See setrlimit(2) for details on the process resource

 limit concept. Process resource limits may be specified in two

 formats: either as single value to set a specific soft and hard

 limit to the same value, or as colon-separated pair soft:hard to

 set both limits individually (e.g. "LimitAS=4G:16G"). Use the

 string infinity to configure no limit on a specific resource. The

 multiplicative suffixes K, M, G, T, P and E (to the base 1024) may

 be used for resource limits measured in bytes (e.g.

 "LimitAS=16G"). For the limits referring to time values, the usual

 time units ms, s, min, h and so on may be used (see systemd.time(7)

 for details). Note that if no time unit is specified for LimitCPU=

 the default unit of seconds is implied, while for LimitRTTIME= the

 default unit of microseconds is implied. Also, note that the

 effective granularity of the limits might influence their

 enforcement. For example, time limits specified for LimitCPU= will

 be rounded up implicitly to multiples of 1s. For LimitNICE= the

 value may be specified in two syntaxes: if prefixed with "+" or

 "-", the value is understood as regular Linux nice value in the

 range -20...19. If not prefixed like this the value is understood Page 21/106

 as raw resource limit parameter in the range 0...40 (with 0 being

 equivalent to 1).

 Note that most process resource limits configured with these

 options are per-process, and processes may fork in order to acquire

 a new set of resources that are accounted independently of the

 original process, and may thus escape limits set. Also note that

 LimitRSS= is not implemented on Linux, and setting it has no

 effect. Often it is advisable to prefer the resource controls

 listed in systemd.resource-control(5) over these per-process

 limits, as they apply to services as a whole, may be altered

 dynamically at runtime, and are generally more expressive. For

 example, MemoryMax= is a more powerful (and working) replacement

 for LimitRSS=.

 Note that LimitNPROC= will limit the number of processes from one

 (real) UID and not the number of processes started (forked) by the

 service. Therefore the limit is cumulative for all processes

 running under the same UID. Please also note that the LimitNPROC=

 will not be enforced if the service is running as root (and not

 dropping privileges). Due to these limitations, TasksMax= (see

 systemd.resource-control(5)) is typically a better choice than

 LimitNPROC=.

 Resource limits not configured explicitly for a unit default to the

 value configured in the various DefaultLimitCPU=,

 DefaultLimitFSIZE=, ... options available in systemd-

 system.conf(5), and ? if not configured there ? the kernel or

 per-user defaults, as defined by the OS (the latter only for user

 services, see below).

 For system units these resource limits may be chosen freely. When

 these settings are configured in a user service (i.e. a service run

 by the per-user instance of the service manager) they cannot be

 used to raise the limits above those set for the user manager

 itself when it was first invoked, as the user's service manager

 generally lacks the privileges to do so. In user context these Page 22/106

 configuration options are hence only useful to lower the limits

 passed in or to raise the soft limit to the maximum of the hard

 limit as configured for the user. To raise the user's limits

 further, the available configuration mechanisms differ between

 operating systems, but typically require privileges. In most cases

 it is possible to configure higher per-user resource limits via PAM

 or by setting limits on the system service encapsulating the user's

 service manager, i.e. the user's instance of user@.service. After

 making such changes, make sure to restart the user's service

 manager.

 Table 1. Resource limit directives, their equivalent ulimit shell

 commands and the unit used

 ???

 ?Directive ? ulimit ? Unit ? Notes ?

 ? ? equivalent ? ? ?

 ???

 ?LimitCPU= ? ulimit -t ? Seconds ? - ?

 ???

 ?LimitFSIZE= ? ulimit -f ? Bytes ? - ?

 ???

 ?LimitDATA= ? ulimit -d ? Bytes ? Don't use. This ?

 ? ? ? ? limits the ?

 ? ? ? ? allowed address ?

 ? ? ? ? range, not ?

 ? ? ? ? memory use! ?

 ? ? ? ? Defaults to ?

 ? ? ? ? unlimited and ?

 ? ? ? ? should not be ?

 ? ? ? ? lowered. To ?

 ? ? ? ? limit memory ?

 ? ? ? ? use, see ?

 ? ? ? ? MemoryMax= in ?

 ? ? ? ? systemd.resource- ? Page 23/106

 ? ? ? ? control(5). ?

 ???

 ?LimitSTACK= ? ulimit -s ? Bytes ? - ?

 ???

 ?LimitCORE= ? ulimit -c ? Bytes ? - ?

 ???

 ?LimitRSS= ? ulimit -m ? Bytes ? Don't use. No ?

 ? ? ? ? effect on Linux. ?

 ???

 ?LimitNOFILE= ? ulimit -n ? Number of File ? Don't use. Be ?

 ? ? ? Descriptors ? careful when ?

 ? ? ? ? raising the soft ?

 ? ? ? ? limit above 1024, ?

 ? ? ? ? since select() ?

 ? ? ? ? cannot function ?

 ? ? ? ? with file ?

 ? ? ? ? descriptors above ?

 ? ? ? ? 1023 on Linux. ?

 ? ? ? ? Nowadays, the ?

 ? ? ? ? hard limit ?

 ? ? ? ? defaults to ?

 ? ? ? ? 524288, a very ?

 ? ? ? ? high value ?

 ? ? ? ? compared to ?

 ? ? ? ? historical ?

 ? ? ? ? defaults. ?

 ? ? ? ? Typically ?

 ? ? ? ? applications ?

 ? ? ? ? should increase ?

 ? ? ? ? their soft limit ?

 ? ? ? ? to the hard limit ?

 ? ? ? ? on their own, if ?

 ? ? ? ? they are OK with ? Page 24/106

 ? ? ? ? working with file ?

 ? ? ? ? descriptors above ?

 ? ? ? ? 1023, i.e. do not ?

 ? ? ? ? use select(). ?

 ? ? ? ? Note that file ?

 ? ? ? ? descriptors are ?

 ? ? ? ? nowadays ?

 ? ? ? ? accounted like ?

 ? ? ? ? any other form of ?

 ? ? ? ? memory, thus ?

 ? ? ? ? there should not ?

 ? ? ? ? be any need to ?

 ? ? ? ? lower the hard ?

 ? ? ? ? limit. Use ?

 ? ? ? ? MemoryMax= to ?

 ? ? ? ? control overall ?

 ? ? ? ? service memory ?

 ? ? ? ? use, including ?

 ? ? ? ? file descriptor ?

 ? ? ? ? memory. ?

 ???

 ?LimitAS= ? ulimit -v ? Bytes ? Don't use. This ?

 ? ? ? ? limits the ?

 ? ? ? ? allowed address ?

 ? ? ? ? range, not memory ?

 ? ? ? ? use! Defaults to ?

 ? ? ? ? unlimited and ?

 ? ? ? ? should not be ?

 ? ? ? ? lowered. To limit ?

 ? ? ? ? memory use, see ?

 ? ? ? ? MemoryMax= in ?

 ? ? ? ? systemd.resource- ?

 ? ? ? ? control(5). ? Page 25/106

 ???

 ?LimitNPROC= ? ulimit -u ? Number of ? This limit is ?

 ? ? ? Processes ? enforced based on ?

 ? ? ? ? the number of ?

 ? ? ? ? processes ?

 ? ? ? ? belonging to the ?

 ? ? ? ? user. Typically ?

 ? ? ? ? it's better to ?

 ? ? ? ? track processes ?

 ? ? ? ? per service, i.e. ?

 ? ? ? ? use TasksMax=, ?

 ? ? ? ? see ?

 ? ? ? ? systemd.resource- ?

 ? ? ? ? control(5). ?

 ???

 ?LimitMEMLOCK= ? ulimit -l ? Bytes ? - ?

 ???

 ?LimitLOCKS= ? ulimit -x ? Number of Locks ? - ?

 ???

 ?LimitSIGPENDING= ? ulimit -i ? Number of Queued ? - ?

 ? ? ? Signals ? ?

 ???

 ?LimitMSGQUEUE= ? ulimit -q ? Bytes ? - ?

 ???

 ?LimitNICE= ? ulimit -e ? Nice Level ? - ?

 ???

 ?LimitRTPRIO= ? ulimit -r ? Realtime ? - ?

 ? ? ? Priority ? ?

 ???

 ?LimitRTTIME= ? ulimit -R ? Microseconds ? - ?

 ???

 UMask=

 Controls the file mode creation mask. Takes an access mode in octal Page 26/106

 notation. See umask(2) for details. Defaults to 0022 for system

 units. For user units the default value is inherited from the

 per-user service manager (whose default is in turn inherited from

 the system service manager, and thus typically also is 0022 ?

 unless overridden by a PAM module). In order to change the per-user

 mask for all user services, consider setting the UMask= setting of

 the user's user@.service system service instance. The per-user

 umask may also be set via the umask field of a user's JSON User

 Record[5] (for users managed by systemd-homed.service(8) this field

 may be controlled via homectl --umask=). It may also be set via a

 PAM module, such as pam_umask(8).

 CoredumpFilter=

 Controls which types of memory mappings will be saved if the

 process dumps core (using the /proc/pid/coredump_filter file).

 Takes a whitespace-separated combination of mapping type names or

 numbers (with the default base 16). Mapping type names are

 private-anonymous, shared-anonymous, private-file-backed,

 shared-file-backed, elf-headers, private-huge, shared-huge,

 private-dax, shared-dax, and the special values all (all types) and

 default (the kernel default of "private-anonymous shared-anonymous

 elf-headers private-huge"). See core(5) for the meaning of the

 mapping types. When specified multiple times, all specified masks

 are ORed. When not set, or if the empty value is assigned, the

 inherited value is not changed.

 Example 2. Add DAX pages to the dump filter

 CoredumpFilter=default private-dax shared-dax

 KeyringMode=

 Controls how the kernel session keyring is set up for the service

 (see session-keyring(7) for details on the session keyring). Takes

 one of inherit, private, shared. If set to inherit no special

 keyring setup is done, and the kernel's default behaviour is

 applied. If private is used a new session keyring is allocated when

 a service process is invoked, and it is not linked up with any user Page 27/106

 keyring. This is the recommended setting for system services, as

 this ensures that multiple services running under the same system

 user ID (in particular the root user) do not share their key

 material among each other. If shared is used a new session keyring

 is allocated as for private, but the user keyring of the user

 configured with User= is linked into it, so that keys assigned to

 the user may be requested by the unit's processes. In this modes

 multiple units running processes under the same user ID may share

 key material. Unless inherit is selected the unique invocation ID

 for the unit (see below) is added as a protected key by the name

 "invocation_id" to the newly created session keyring. Defaults to

 private for services of the system service manager and to inherit

 for non-service units and for services of the user service manager.

 OOMScoreAdjust=

 Sets the adjustment value for the Linux kernel's Out-Of-Memory

 (OOM) killer score for executed processes. Takes an integer between

 -1000 (to disable OOM killing of processes of this unit) and 1000

 (to make killing of processes of this unit under memory pressure

 very likely). See The /proc Filesystem[6] for details. If not

 specified defaults to the OOM score adjustment level of the service

 manager itself, which is normally at 0.

 Use the OOMPolicy= setting of service units to configure how the

 service manager shall react to the kernel OOM killer or

 systemd-oomd terminating a process of the service. See

 systemd.service(5) for details.

 TimerSlackNSec=

 Sets the timer slack in nanoseconds for the executed processes. The

 timer slack controls the accuracy of wake-ups triggered by timers.

 See prctl(2) for more information. Note that in contrast to most

 other time span definitions this parameter takes an integer value

 in nano-seconds if no unit is specified. The usual time units are

 understood too.

 Personality= Page 28/106

 Controls which kernel architecture uname(2) shall report, when

 invoked by unit processes. Takes one of the architecture

 identifiers x86, x86-64, ppc, ppc-le, ppc64, ppc64-le, s390 or

 s390x. Which personality architectures are supported depends on the

 system architecture. Usually the 64bit versions of the various

 system architectures support their immediate 32bit personality

 architecture counterpart, but no others. For example, x86-64

 systems support the x86-64 and x86 personalities but no others. The

 personality feature is useful when running 32-bit services on a

 64-bit host system. If not specified, the personality is left

 unmodified and thus reflects the personality of the host system's

 kernel.

 IgnoreSIGPIPE=

 Takes a boolean argument. If true, causes SIGPIPE to be ignored in

 the executed process. Defaults to true because SIGPIPE generally is

 useful only in shell pipelines.

SCHEDULING

 Nice=

 Sets the default nice level (scheduling priority) for executed

 processes. Takes an integer between -20 (highest priority) and 19

 (lowest priority). In case of resource contention, smaller values

 mean more resources will be made available to the unit's processes,

 larger values mean less resources will be made available. See

 setpriority(2) for details.

 CPUSchedulingPolicy=

 Sets the CPU scheduling policy for executed processes. Takes one of

 other, batch, idle, fifo or rr. See sched_setscheduler(2) for

 details.

 CPUSchedulingPriority=

 Sets the CPU scheduling priority for executed processes. The

 available priority range depends on the selected CPU scheduling

 policy (see above). For real-time scheduling policies an integer

 between 1 (lowest priority) and 99 (highest priority) can be used. Page 29/106

 In case of CPU resource contention, smaller values mean less CPU

 time is made available to the service, larger values mean more. See

 sched_setscheduler(2) for details.

 CPUSchedulingResetOnFork=

 Takes a boolean argument. If true, elevated CPU scheduling

 priorities and policies will be reset when the executed processes

 call fork(2), and can hence not leak into child processes. See

 sched_setscheduler(2) for details. Defaults to false.

 CPUAffinity=

 Controls the CPU affinity of the executed processes. Takes a list

 of CPU indices or ranges separated by either whitespace or commas.

 Alternatively, takes a special "numa" value in which case systemd

 automatically derives allowed CPU range based on the value of

 NUMAMask= option. CPU ranges are specified by the lower and upper

 CPU indices separated by a dash. This option may be specified more

 than once, in which case the specified CPU affinity masks are

 merged. If the empty string is assigned, the mask is reset, all

 assignments prior to this will have no effect. See

 sched_setaffinity(2) for details.

 NUMAPolicy=

 Controls the NUMA memory policy of the executed processes. Takes a

 policy type, one of: default, preferred, bind, interleave and

 local. A list of NUMA nodes that should be associated with the

 policy must be specified in NUMAMask=. For more details on each

 policy please see, set_mempolicy(2). For overall overview of NUMA

 support in Linux see, numa(7).

 NUMAMask=

 Controls the NUMA node list which will be applied alongside with

 selected NUMA policy. Takes a list of NUMA nodes and has the same

 syntax as a list of CPUs for CPUAffinity= option or special "all"

 value which will include all available NUMA nodes in the mask. Note

 that the list of NUMA nodes is not required for default and local

 policies and for preferred policy we expect a single NUMA node. Page 30/106

 IOSchedulingClass=

 Sets the I/O scheduling class for executed processes. Takes one of

 the strings realtime, best-effort or idle. The kernel's default

 scheduling class is best-effort at a priority of 4. If the empty

 string is assigned to this option, all prior assignments to both

 IOSchedulingClass= and IOSchedulingPriority= have no effect. See

 ioprio_set(2) for details.

 IOSchedulingPriority=

 Sets the I/O scheduling priority for executed processes. Takes an

 integer between 0 (highest priority) and 7 (lowest priority). In

 case of I/O contention, smaller values mean more I/O bandwidth is

 made available to the unit's processes, larger values mean less

 bandwidth. The available priorities depend on the selected I/O

 scheduling class (see above). If the empty string is assigned to

 this option, all prior assignments to both IOSchedulingClass= and

 IOSchedulingPriority= have no effect. For the kernel's default

 scheduling class (best-effort) this defaults to 4. See

 ioprio_set(2) for details.

SANDBOXING

 The following sandboxing options are an effective way to limit the

 exposure of the system towards the unit's processes. It is recommended

 to turn on as many of these options for each unit as is possible

 without negatively affecting the process' ability to operate. Note that

 many of these sandboxing features are gracefully turned off on systems

 where the underlying security mechanism is not available. For example,

 ProtectSystem= has no effect if the kernel is built without file system

 namespacing or if the service manager runs in a container manager that

 makes file system namespacing unavailable to its payload. Similarly,

 RestrictRealtime= has no effect on systems that lack support for

 SECCOMP system call filtering, or in containers where support for this

 is turned off.

 Also note that some sandboxing functionality is generally not available

 in user services (i.e. services run by the per-user service manager). Page 31/106

 Specifically, the various settings requiring file system namespacing

 support (such as ProtectSystem=) are not available, as the underlying

 kernel functionality is only accessible to privileged processes.

 However, most namespacing settings, that will not work on their own in

 user services, will work when used in conjunction with

 PrivateUsers=true.

 ProtectSystem=

 Takes a boolean argument or the special values "full" or "strict".

 If true, mounts the /usr/ and the boot loader directories (/boot

 and /efi) read-only for processes invoked by this unit. If set to

 "full", the /etc/ directory is mounted read-only, too. If set to

 "strict" the entire file system hierarchy is mounted read-only,

 except for the API file system subtrees /dev/, /proc/ and /sys/

 (protect these directories using PrivateDevices=,

 ProtectKernelTunables=, ProtectControlGroups=). This setting

 ensures that any modification of the vendor-supplied operating

 system (and optionally its configuration, and local mounts) is

 prohibited for the service. It is recommended to enable this

 setting for all long-running services, unless they are involved

 with system updates or need to modify the operating system in other

 ways. If this option is used, ReadWritePaths= may be used to

 exclude specific directories from being made read-only. This

 setting is implied if DynamicUser= is set. This setting cannot

 ensure protection in all cases. In general it has the same

 limitations as ReadOnlyPaths=, see below. Defaults to off.

 ProtectHome=

 Takes a boolean argument or the special values "read-only" or

 "tmpfs". If true, the directories /home/, /root, and /run/user are

 made inaccessible and empty for processes invoked by this unit. If

 set to "read-only", the three directories are made read-only

 instead. If set to "tmpfs", temporary file systems are mounted on

 the three directories in read-only mode. The value "tmpfs" is

 useful to hide home directories not relevant to the processes Page 32/106

 invoked by the unit, while still allowing necessary directories to

 be made visible when listed in BindPaths= or BindReadOnlyPaths=.

 Setting this to "yes" is mostly equivalent to setting the three

 directories in InaccessiblePaths=. Similarly, "read-only" is mostly

 equivalent to ReadOnlyPaths=, and "tmpfs" is mostly equivalent to

 TemporaryFileSystem= with ":ro".

 It is recommended to enable this setting for all long-running

 services (in particular network-facing ones), to ensure they cannot

 get access to private user data, unless the services actually

 require access to the user's private data. This setting is implied

 if DynamicUser= is set. This setting cannot ensure protection in

 all cases. In general it has the same limitations as

 ReadOnlyPaths=, see below.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=,

 ConfigurationDirectory=

 These options take a whitespace-separated list of directory names.

 The specified directory names must be relative, and may not include

 "..". If set, when the unit is started, one or more directories by

 the specified names will be created (including their parents) below

 the locations defined in the following table. Also, the

 corresponding environment variable will be defined with the full

 paths of the directories. If multiple directories are set, then in

 the environment variable the paths are concatenated with colon

 (":").

 Table 2. Automatic directory creation and environment variables

??

 ?Directory ? Below path for ? Below path for ? Environment ?

 ? ? system units ? user units ? variable set ?

 Page 33/106

??

 ?RuntimeDirectory= ? /run/ ? $XDG_RUNTIME_DIR ? $RUNTIME_DIRECTORY ?

??

 ?StateDirectory= ? /var/lib/ ? $XDG_CONFIG_HOME ? $STATE_DIRECTORY ?

??

 ?CacheDirectory= ? /var/cache/ ? $XDG_CACHE_HOME ? $CACHE_DIRECTORY ?

??

 ?LogsDirectory= ? /var/log/ ? $XDG_CONFIG_HOME/log/ ? $LOGS_DIRECTORY ?

??

 ?ConfigurationDirectory= ? /etc/ ? $XDG_CONFIG_HOME ? $CONFIGURATION_DIRECTORY ?

??

 In case of RuntimeDirectory= the innermost subdirectories are

 removed when the unit is stopped. It is possible to preserve the

 specified directories in this case if RuntimeDirectoryPreserve= is

 configured to restart or yes (see below). The directories specified

 with StateDirectory=, CacheDirectory=, LogsDirectory=,

 ConfigurationDirectory= are not removed when the unit is stopped.

 Except in case of ConfigurationDirectory=, the innermost specified

 directories will be owned by the user and group specified in User=

 and Group=. If the specified directories already exist and their

 owning user or group do not match the configured ones, all files

 and directories below the specified directories as well as the

 directories themselves will have their file ownership recursively

 changed to match what is configured. As an optimization, if the

 specified directories are already owned by the right user and

 group, files and directories below of them are left as-is, even if

 they do not match what is requested. The innermost specified

 directories will have their access mode adjusted to the what is Page 34/106

 specified in RuntimeDirectoryMode=, StateDirectoryMode=,

 CacheDirectoryMode=, LogsDirectoryMode= and

 ConfigurationDirectoryMode=.

 These options imply BindPaths= for the specified paths. When

 combined with RootDirectory= or RootImage= these paths always

 reside on the host and are mounted from there into the unit's file

 system namespace.

 If DynamicUser= is used, the logic for CacheDirectory=,

 LogsDirectory= and StateDirectory= is slightly altered: the

 directories are created below /var/cache/private, /var/log/private

 and /var/lib/private, respectively, which are host directories made

 inaccessible to unprivileged users, which ensures that access to

 these directories cannot be gained through dynamic user ID

 recycling. Symbolic links are created to hide this difference in

 behaviour. Both from perspective of the host and from inside the

 unit, the relevant directories hence always appear directly below

 /var/cache, /var/log and /var/lib.

 Use RuntimeDirectory= to manage one or more runtime directories for

 the unit and bind their lifetime to the daemon runtime. This is

 particularly useful for unprivileged daemons that cannot create

 runtime directories in /run/ due to lack of privileges, and to make

 sure the runtime directory is cleaned up automatically after use.

 For runtime directories that require more complex or different

 configuration or lifetime guarantees, please consider using

 tmpfiles.d(5).

 RuntimeDirectory=, StateDirectory=, CacheDirectory= and

 LogsDirectory= optionally support a second parameter, separated by

 ":". The second parameter will be interpreted as a destination path

 that will be created as a symlink to the directory. The symlinks

 will be created after any BindPaths= or TemporaryFileSystem=

 options have been set up, to make ephemeral symlinking possible.

 The same source can have multiple symlinks, by using the same first

 parameter, but a different second parameter. Page 35/106

 The directories defined by these options are always created under

 the standard paths used by systemd (/var/, /run/, /etc/, ...). If

 the service needs directories in a different location, a different

 mechanism has to be used to create them.

 tmpfiles.d(5) provides functionality that overlaps with these

 options. Using these options is recommended, because the lifetime

 of the directories is tied directly to the lifetime of the unit,

 and it is not necessary to ensure that the tmpfiles.d configuration

 is executed before the unit is started.

 To remove any of the directories created by these settings, use the

 systemctl clean ... command on the relevant units, see

 systemctl(1) for details.

 Example: if a system service unit has the following,

 RuntimeDirectory=foo/bar baz

 the service manager creates /run/foo (if it does not exist),

 /run/foo/bar, and /run/baz. The directories /run/foo/bar and

 /run/baz except /run/foo are owned by the user and group specified

 in User= and Group=, and removed when the service is stopped.

 Example: if a system service unit has the following,

 RuntimeDirectory=foo/bar

 StateDirectory=aaa/bbb ccc

 then the environment variable "RUNTIME_DIRECTORY" is set with

 "/run/foo/bar", and "STATE_DIRECTORY" is set with

 "/var/lib/aaa/bbb:/var/lib/ccc".

 Example: if a system service unit has the following,

 RuntimeDirectory=foo:bar foo:baz

 the service manager creates /run/foo (if it does not exist), and

 /run/bar plus /run/baz as symlinks to /run/foo.

 RuntimeDirectoryMode=, StateDirectoryMode=, CacheDirectoryMode=,

 LogsDirectoryMode=, ConfigurationDirectoryMode=

 Specifies the access mode of the directories specified in

 RuntimeDirectory=, StateDirectory=, CacheDirectory=,

 LogsDirectory=, or ConfigurationDirectory=, respectively, as an Page 36/106

 octal number. Defaults to 0755. See "Permissions" in

 path_resolution(7) for a discussion of the meaning of permission

 bits.

 RuntimeDirectoryPreserve=

 Takes a boolean argument or restart. If set to no (the default),

 the directories specified in RuntimeDirectory= are always removed

 when the service stops. If set to restart the directories are

 preserved when the service is both automatically and manually

 restarted. Here, the automatic restart means the operation

 specified in Restart=, and manual restart means the one triggered

 by systemctl restart foo.service. If set to yes, then the

 directories are not removed when the service is stopped. Note that

 since the runtime directory /run/ is a mount point of "tmpfs", then

 for system services the directories specified in RuntimeDirectory=

 are removed when the system is rebooted.

 TimeoutCleanSec=

 Configures a timeout on the clean-up operation requested through

 systemctl clean ..., see systemctl(1) for details. Takes the usual

 time values and defaults to infinity, i.e. by default no timeout is

 applied. If a timeout is configured the clean operation will be

 aborted forcibly when the timeout is reached, potentially leaving

 resources on disk.

 ReadWritePaths=, ReadOnlyPaths=, InaccessiblePaths=, ExecPaths=,

 NoExecPaths=

 Sets up a new file system namespace for executed processes. These

 options may be used to limit access a process has to the file

 system. Each setting takes a space-separated list of paths relative

 to the host's root directory (i.e. the system running the service

 manager). Note that if paths contain symlinks, they are resolved

 relative to the root directory set with RootDirectory=/RootImage=.

 Paths listed in ReadWritePaths= are accessible from within the

 namespace with the same access modes as from outside of it. Paths

 listed in ReadOnlyPaths= are accessible for reading only, writing Page 37/106

 will be refused even if the usual file access controls would permit

 this. Nest ReadWritePaths= inside of ReadOnlyPaths= in order to

 provide writable subdirectories within read-only directories. Use

 ReadWritePaths= in order to allow-list specific paths for write

 access if ProtectSystem=strict is used.

 Paths listed in InaccessiblePaths= will be made inaccessible for

 processes inside the namespace along with everything below them in

 the file system hierarchy. This may be more restrictive than

 desired, because it is not possible to nest ReadWritePaths=,

 ReadOnlyPaths=, BindPaths=, or BindReadOnlyPaths= inside it. For a

 more flexible option, see TemporaryFileSystem=.

 Content in paths listed in NoExecPaths= are not executable even if

 the usual file access controls would permit this. Nest ExecPaths=

 inside of NoExecPaths= in order to provide executable content

 within non-executable directories.

 Non-directory paths may be specified as well. These options may be

 specified more than once, in which case all paths listed will have

 limited access from within the namespace. If the empty string is

 assigned to this option, the specific list is reset, and all prior

 assignments have no effect.

 Paths in ReadWritePaths=, ReadOnlyPaths=, InaccessiblePaths=,

 ExecPaths= and NoExecPaths= may be prefixed with "-", in which case

 they will be ignored when they do not exist. If prefixed with "+"

 the paths are taken relative to the root directory of the unit, as

 configured with RootDirectory=/RootImage=, instead of relative to

 the root directory of the host (see above). When combining "-" and

 "+" on the same path make sure to specify "-" first, and "+"

 second.

 Note that these settings will disconnect propagation of mounts from

 the unit's processes to the host. This means that this setting may

 not be used for services which shall be able to install mount

 points in the main mount namespace. For ReadWritePaths= and

 ReadOnlyPaths=, propagation in the other direction is not affected, Page 38/106

 i.e. mounts created on the host generally appear in the unit

 processes' namespace, and mounts removed on the host also disappear

 there too. In particular, note that mount propagation from host to

 unit will result in unmodified mounts to be created in the unit's

 namespace, i.e. writable mounts appearing on the host will be

 writable in the unit's namespace too, even when propagated below a

 path marked with ReadOnlyPaths=! Restricting access with these

 options hence does not extend to submounts of a directory that are

 created later on. This means the lock-down offered by that setting

 is not complete, and does not offer full protection.

 Note that the effect of these settings may be undone by privileged

 processes. In order to set up an effective sandboxed environment

 for a unit it is thus recommended to combine these settings with

 either CapabilityBoundingSet=~CAP_SYS_ADMIN or

 SystemCallFilter=~@mount.

 Simple allow-list example using these directives:

 [Service]

 ReadOnlyPaths=/

 ReadWritePaths=/var /run

 InaccessiblePaths=-/lost+found

 NoExecPaths=/

 ExecPaths=/usr/sbin/my_daemon /usr/lib /usr/lib64

 These options are only available for system services, or for

 services running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 TemporaryFileSystem=

 Takes a space-separated list of mount points for temporary file

 systems (tmpfs). If set, a new file system namespace is set up for

 executed processes, and a temporary file system is mounted on each

 mount point. This option may be specified more than once, in which

 case temporary file systems are mounted on all listed mount points.

 If the empty string is assigned to this option, the list is reset,

 and all prior assignments have no effect. Each mount point may Page 39/106

 optionally be suffixed with a colon (":") and mount options such as

 "size=10%" or "ro". By default, each temporary file system is

 mounted with "nodev,strictatime,mode=0755". These can be disabled

 by explicitly specifying the corresponding mount options, e.g.,

 "dev" or "nostrictatime".

 This is useful to hide files or directories not relevant to the

 processes invoked by the unit, while necessary files or directories

 can be still accessed by combining with BindPaths= or

 BindReadOnlyPaths=:

 Example: if a unit has the following,

 TemporaryFileSystem=/var:ro

 BindReadOnlyPaths=/var/lib/systemd

 then the invoked processes by the unit cannot see any files or

 directories under /var/ except for /var/lib/systemd or its

 contents.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 PrivateTmp=

 Takes a boolean argument. If true, sets up a new file system

 namespace for the executed processes and mounts private /tmp/ and

 /var/tmp/ directories inside it that are not shared by processes

 outside of the namespace. This is useful to secure access to

 temporary files of the process, but makes sharing between processes

 via /tmp/ or /var/tmp/ impossible. If true, all temporary files

 created by a service in these directories will be removed after the

 service is stopped. Defaults to false. It is possible to run two or

 more units within the same private /tmp/ and /var/tmp/ namespace by

 using the JoinsNamespaceOf= directive, see systemd.unit(5) for

 details. This setting is implied if DynamicUser= is set. For this

 setting, the same restrictions regarding mount propagation and

 privileges apply as for ReadOnlyPaths= and related calls, see

 above. Enabling this setting has the side effect of adding Page 40/106

 Requires= and After= dependencies on all mount units necessary to

 access /tmp/ and /var/tmp/. Moreover an implicitly After= ordering

 on systemd-tmpfiles-setup.service(8) is added.

 Note that the implementation of this setting might be impossible

 (for example if mount namespaces are not available), and the unit

 should be written in a way that does not solely rely on this

 setting for security.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 PrivateDevices=

 Takes a boolean argument. If true, sets up a new /dev/ mount for

 the executed processes and only adds API pseudo devices such as

 /dev/null, /dev/zero or /dev/random (as well as the pseudo TTY

 subsystem) to it, but no physical devices such as /dev/sda, system

 memory /dev/mem, system ports /dev/port and others. This is useful

 to turn off physical device access by the executed process.

 Defaults to false.

 Enabling this option will install a system call filter to block

 low-level I/O system calls that are grouped in the @raw-io set,

 remove CAP_MKNOD and CAP_SYS_RAWIO from the capability bounding set

 for the unit, and set DevicePolicy=closed (see systemd.resource-

 control(5) for details). Note that using this setting will

 disconnect propagation of mounts from the service to the host

 (propagation in the opposite direction continues to work). This

 means that this setting may not be used for services which shall be

 able to install mount points in the main mount namespace. The new

 /dev/ will be mounted read-only and 'noexec'. The latter may break

 old programs which try to set up executable memory by using mmap(2)

 of /dev/zero instead of using MAP_ANON. For this setting the same

 restrictions regarding mount propagation and privileges apply as

 for ReadOnlyPaths= and related calls, see above. If turned on and

 if running in user mode, or in system mode, but without the Page 41/106

 CAP_SYS_ADMIN capability (e.g. setting User=), NoNewPrivileges=yes

 is implied.

 Note that the implementation of this setting might be impossible

 (for example if mount namespaces are not available), and the unit

 should be written in a way that does not solely rely on this

 setting for security.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 When access to some but not all devices must be possible, the

 DeviceAllow= setting might be used instead. See systemd.resource-

 control(5).

 PrivateNetwork=

 Takes a boolean argument. If true, sets up a new network namespace

 for the executed processes and configures only the loopback network

 device "lo" inside it. No other network devices will be available

 to the executed process. This is useful to turn off network access

 by the executed process. Defaults to false. It is possible to run

 two or more units within the same private network namespace by

 using the JoinsNamespaceOf= directive, see systemd.unit(5) for

 details. Note that this option will disconnect all socket families

 from the host, including AF_NETLINK and AF_UNIX. Effectively, for

 AF_NETLINK this means that device configuration events received

 from systemd-udevd.service(8) are not delivered to the unit's

 processes. And for AF_UNIX this has the effect that AF_UNIX sockets

 in the abstract socket namespace of the host will become

 unavailable to the unit's processes (however, those located in the

 file system will continue to be accessible).

 Note that the implementation of this setting might be impossible

 (for example if network namespaces are not available), and the unit

 should be written in a way that does not solely rely on this

 setting for security.

 When this option is used on a socket unit any sockets bound on Page 42/106

 behalf of this unit will be bound within a private network

 namespace. This may be combined with JoinsNamespaceOf= to listen on

 sockets inside of network namespaces of other services.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 NetworkNamespacePath=

 Takes an absolute file system path refererring to a Linux network

 namespace pseudo-file (i.e. a file like /proc/$PID/ns/net or a bind

 mount or symlink to one). When set the invoked processes are added

 to the network namespace referenced by that path. The path has to

 point to a valid namespace file at the moment the processes are

 forked off. If this option is used PrivateNetwork= has no effect.

 If this option is used together with JoinsNamespaceOf= then it only

 has an effect if this unit is started before any of the listed

 units that have PrivateNetwork= or NetworkNamespacePath=

 configured, as otherwise the network namespace of those units is

 reused.

 When this option is used on a socket unit any sockets bound on

 behalf of this unit will be bound within the specified network

 namespace.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 PrivateIPC=

 Takes a boolean argument. If true, sets up a new IPC namespace for

 the executed processes. Each IPC namespace has its own set of

 System V IPC identifiers and its own POSIX message queue file

 system. This is useful to avoid name clash of IPC identifiers.

 Defaults to false. It is possible to run two or more units within

 the same private IPC namespace by using the JoinsNamespaceOf=

 directive, see systemd.unit(5) for details.

 Note that IPC namespacing does not have an effect on AF_UNIX Page 43/106

 sockets, which are the most common form of IPC used on Linux.

 Instead, AF_UNIX sockets in the file system are subject to mount

 namespacing, and those in the abstract namespace are subject to

 network namespacing. IPC namespacing only has an effect on SysV IPC

 (which is mostly legacy) as well as POSIX message queues (for which

 AF_UNIX/SOCK_SEQPACKET sockets are typically a better replacement).

 IPC namespacing also has no effect on POSIX shared memory (which is

 subject to mount namespacing) either. See ipc_namespaces(7) for the

 details.

 Note that the implementation of this setting might be impossible

 (for example if IPC namespaces are not available), and the unit

 should be written in a way that does not solely rely on this

 setting for security.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 IPCNamespacePath=

 Takes an absolute file system path refererring to a Linux IPC

 namespace pseudo-file (i.e. a file like /proc/$PID/ns/ipc or a bind

 mount or symlink to one). When set the invoked processes are added

 to the network namespace referenced by that path. The path has to

 point to a valid namespace file at the moment the processes are

 forked off. If this option is used PrivateIPC= has no effect. If

 this option is used together with JoinsNamespaceOf= then it only

 has an effect if this unit is started before any of the listed

 units that have PrivateIPC= or IPCNamespacePath= configured, as

 otherwise the network namespace of those units is reused.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 PrivateUsers=

 Takes a boolean argument. If true, sets up a new user namespace for

 the executed processes and configures a minimal user and group Page 44/106

 mapping, that maps the "root" user and group as well as the unit's

 own user and group to themselves and everything else to the

 "nobody" user and group. This is useful to securely detach the user

 and group databases used by the unit from the rest of the system,

 and thus to create an effective sandbox environment. All files,

 directories, processes, IPC objects and other resources owned by

 users/groups not equaling "root" or the unit's own will stay

 visible from within the unit but appear owned by the "nobody" user

 and group. If this mode is enabled, all unit processes are run

 without privileges in the host user namespace (regardless if the

 unit's own user/group is "root" or not). Specifically this means

 that the process will have zero process capabilities on the host's

 user namespace, but full capabilities within the service's user

 namespace. Settings such as CapabilityBoundingSet= will affect only

 the latter, and there's no way to acquire additional capabilities

 in the host's user namespace. Defaults to off.

 When this setting is set up by a per-user instance of the service

 manager, the mapping of the "root" user and group to itself is

 omitted (unless the user manager is root). Additionally, in the

 per-user instance manager case, the user namespace will be set up

 before most other namespaces. This means that combining

 PrivateUsers=true with other namespaces will enable use of features

 not normally supported by the per-user instances of the service

 manager.

 This setting is particularly useful in conjunction with

 RootDirectory=/RootImage=, as the need to synchronize the user and

 group databases in the root directory and on the host is reduced,

 as the only users and groups who need to be matched are "root",

 "nobody" and the unit's own user and group.

 Note that the implementation of this setting might be impossible

 (for example if user namespaces are not available), and the unit

 should be written in a way that does not solely rely on this

 setting for security. Page 45/106

 ProtectHostname=

 Takes a boolean argument. When set, sets up a new UTS namespace for

 the executed processes. In addition, changing hostname or

 domainname is prevented. Defaults to off.

 Note that the implementation of this setting might be impossible

 (for example if UTS namespaces are not available), and the unit

 should be written in a way that does not solely rely on this

 setting for security.

 Note that when this option is enabled for a service hostname

 changes no longer propagate from the system into the service, it is

 hence not suitable for services that need to take notice of system

 hostname changes dynamically.

 If this setting is on, but the unit doesn't have the CAP_SYS_ADMIN

 capability (e.g. services for which User= is set),

 NoNewPrivileges=yes is implied.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 ProtectClock=

 Takes a boolean argument. If set, writes to the hardware clock or

 system clock will be denied. It is recommended to turn this on for

 most services that do not need modify the clock. Defaults to off.

 Enabling this option removes CAP_SYS_TIME and CAP_WAKE_ALARM from

 the capability bounding set for this unit, installs a system call

 filter to block calls that can set the clock, and

 DeviceAllow=char-rtc r is implied. This ensures /dev/rtc0,

 /dev/rtc1, etc. are made read-only to the service. See

 systemd.resource-control(5) for the details about DeviceAllow=. If

 this setting is on, but the unit doesn't have the CAP_SYS_ADMIN

 capability (e.g. services for which User= is set),

 NoNewPrivileges=yes is implied.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when Page 46/106

 PrivateUsers= is enabled.

 ProtectKernelTunables=

 Takes a boolean argument. If true, kernel variables accessible

 through /proc/sys/, /sys/, /proc/sysrq-trigger,

 /proc/latency_stats, /proc/acpi, /proc/timer_stats, /proc/fs and

 /proc/irq will be made read-only to all processes of the unit.

 Usually, tunable kernel variables should be initialized only at

 boot-time, for example with the sysctl.d(5) mechanism. Few services

 need to write to these at runtime; it is hence recommended to turn

 this on for most services. For this setting the same restrictions

 regarding mount propagation and privileges apply as for

 ReadOnlyPaths= and related calls, see above. Defaults to off. If

 this setting is on, but the unit doesn't have the CAP_SYS_ADMIN

 capability (e.g. services for which User= is set),

 NoNewPrivileges=yes is implied. Note that this option does not

 prevent indirect changes to kernel tunables effected by IPC calls

 to other processes. However, InaccessiblePaths= may be used to make

 relevant IPC file system objects inaccessible. If

 ProtectKernelTunables= is set, MountAPIVFS=yes is implied.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 ProtectKernelModules=

 Takes a boolean argument. If true, explicit module loading will be

 denied. This allows module load and unload operations to be turned

 off on modular kernels. It is recommended to turn this on for most

 services that do not need special file systems or extra kernel

 modules to work. Defaults to off. Enabling this option removes

 CAP_SYS_MODULE from the capability bounding set for the unit, and

 installs a system call filter to block module system calls, also

 /usr/lib/modules is made inaccessible. For this setting the same

 restrictions regarding mount propagation and privileges apply as

 for ReadOnlyPaths= and related calls, see above. Note that limited Page 47/106

 automatic module loading due to user configuration or kernel

 mapping tables might still happen as side effect of requested user

 operations, both privileged and unprivileged. To disable module

 auto-load feature please see sysctl.d(5) kernel.modules_disabled

 mechanism and /proc/sys/kernel/modules_disabled documentation. If

 this setting is on, but the unit doesn't have the CAP_SYS_ADMIN

 capability (e.g. services for which User= is set),

 NoNewPrivileges=yes is implied.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 ProtectKernelLogs=

 Takes a boolean argument. If true, access to the kernel log ring

 buffer will be denied. It is recommended to turn this on for most

 services that do not need to read from or write to the kernel log

 ring buffer. Enabling this option removes CAP_SYSLOG from the

 capability bounding set for this unit, and installs a system call

 filter to block the syslog(2) system call (not to be confused with

 the libc API syslog(3) for userspace logging). The kernel exposes

 its log buffer to userspace via /dev/kmsg and /proc/kmsg. If

 enabled, these are made inaccessible to all the processes in the

 unit. If this setting is on, but the unit doesn't have the

 CAP_SYS_ADMIN capability (e.g. services for which User= is set),

 NoNewPrivileges=yes is implied.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 ProtectControlGroups=

 Takes a boolean argument. If true, the Linux Control Groups

 (cgroups(7)) hierarchies accessible through /sys/fs/cgroup/ will be

 made read-only to all processes of the unit. Except for container

 managers no services should require write access to the control

 groups hierarchies; it is hence recommended to turn this on for Page 48/106

 most services. For this setting the same restrictions regarding

 mount propagation and privileges apply as for ReadOnlyPaths= and

 related calls, see above. Defaults to off. If ProtectControlGroups=

 is set, MountAPIVFS=yes is implied.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 RestrictAddressFamilies=

 Restricts the set of socket address families accessible to the

 processes of this unit. Takes "none", or a space-separated list of

 address family names to allow-list, such as AF_UNIX, AF_INET or

 AF_INET6. When "none" is specified, then all address families will

 be denied. When prefixed with "~" the listed address families will

 be applied as deny list, otherwise as allow list. Note that this

 restricts access to the socket(2) system call only. Sockets passed

 into the process by other means (for example, by using socket

 activation with socket units, see systemd.socket(5)) are

 unaffected. Also, sockets created with socketpair() (which creates

 connected AF_UNIX sockets only) are unaffected. Note that this

 option has no effect on 32-bit x86, s390, s390x, mips, mips-le,

 ppc, ppc-le, ppc64, ppc64-le and is ignored (but works correctly on

 other ABIs, including x86-64). Note that on systems supporting

 multiple ABIs (such as x86/x86-64) it is recommended to turn off

 alternative ABIs for services, so that they cannot be used to

 circumvent the restrictions of this option. Specifically, it is

 recommended to combine this option with

 SystemCallArchitectures=native or similar. If running in user mode,

 or in system mode, but without the CAP_SYS_ADMIN capability (e.g.

 setting User=), NoNewPrivileges=yes is implied. By default, no

 restrictions apply, all address families are accessible to

 processes. If assigned the empty string, any previous address

 family restriction changes are undone. This setting does not affect

 commands prefixed with "+". Page 49/106

 Use this option to limit exposure of processes to remote access, in

 particular via exotic and sensitive network protocols, such as

 AF_PACKET. Note that in most cases, the local AF_UNIX address

 family should be included in the configured allow list as it is

 frequently used for local communication, including for syslog(2)

 logging.

 RestrictFileSystems=

 Restricts the set of filesystems processes of this unit can open

 files on. Takes a space-separated list of filesystem names. Any

 filesystem listed is made accessible to the unit's processes,

 access to filesystem types not listed is prohibited

 (allow-listing). If the first character of the list is "~", the

 effect is inverted: access to the filesystems listed is prohibited

 (deny-listing). If the empty string is assigned, access to

 filesystems is not restricted.

 If you specify both types of this option (i.e. allow-listing and

 deny-listing), the first encountered will take precedence and will

 dictate the default action (allow access to the filesystem or deny

 it). Then the next occurrences of this option will add or delete

 the listed filesystems from the set of the restricted filesystems,

 depending on its type and the default action.

 Example: if a unit has the following,

 RestrictFileSystems=ext4 tmpfs

 RestrictFileSystems=ext2 ext4

 then access to ext4, tmpfs, and ext2 is allowed and access to other

 filesystems is denied.

 Example: if a unit has the following,

 RestrictFileSystems=ext4 tmpfs

 RestrictFileSystems=~ext4

 then only access tmpfs is allowed.

 Example: if a unit has the following,

 RestrictFileSystems=~ext4 tmpfs

 RestrictFileSystems=ext4 Page 50/106

 then only access to tmpfs is denied.

 As the number of possible filesystems is large, predefined sets of

 filesystems are provided. A set starts with "@" character, followed

 by name of the set.

 Table 3. Currently predefined filesystem sets

 ???

 ?Set ? Description ?

 ???

 ?@basic-api ? Basic filesystem API. ?

 ???

 ?@auxiliary-api ? Auxiliary filesystem API. ?

 ???

 ?@common-block ? Common block device ?

 ? ? filesystems. ?

 ???

 ?@historical-block ? Historical block device ?

 ? ? filesystems. ?

 ???

 ?@network ? Well-known network ?

 ? ? filesystems. ?

 ???

 ?@privileged-api ? Privileged filesystem API. ?

 ???

 ?@temporary ? Temporary filesystems: ?

 ? ? tmpfs, ramfs. ?

 ???

 ?@known ? All known filesystems ?

 ? ? defined by the kernel. ?

 ? ? This list is defined ?

 ? ? statically in systemd ?

 ? ? based on a kernel version ?

 ? ? that was available when ?

 ? ? this systemd version was ? Page 51/106

 ? ? released. It will become ?

 ? ? progressively more ?

 ? ? out-of-date as the kernel ?

 ? ? is updated. ?

 ???

 Use systemd-analyze(1)'s filesystems command to retrieve a list of

 filesystems defined on the local system.

 Note that this setting might not be supported on some systems (for

 example if the LSM eBPF hook is not enabled in the underlying

 kernel or if not using the unified control group hierarchy). In

 that case this setting has no effect.

 RestrictNamespaces=

 Restricts access to Linux namespace functionality for the processes

 of this unit. For details about Linux namespaces, see

 namespaces(7). Either takes a boolean argument, or a

 space-separated list of namespace type identifiers. If false (the

 default), no restrictions on namespace creation and switching are

 made. If true, access to any kind of namespacing is prohibited.

 Otherwise, a space-separated list of namespace type identifiers

 must be specified, consisting of any combination of: cgroup, ipc,

 net, mnt, pid, user and uts. Any namespace type listed is made

 accessible to the unit's processes, access to namespace types not

 listed is prohibited (allow-listing). By prepending the list with a

 single tilde character ("~") the effect may be inverted: only the

 listed namespace types will be made inaccessible, all unlisted ones

 are permitted (deny-listing). If the empty string is assigned, the

 default namespace restrictions are applied, which is equivalent to

 false. This option may appear more than once, in which case the

 namespace types are merged by OR, or by AND if the lines are

 prefixed with "~" (see examples below). Internally, this setting

 limits access to the unshare(2), clone(2) and setns(2) system

 calls, taking the specified flags parameters into account. Note

 that ? if this option is used ? in addition to restricting creation Page 52/106

 and switching of the specified types of namespaces (or all of them,

 if true) access to the setns() system call with a zero flags

 parameter is prohibited. This setting is only supported on x86,

 x86-64, mips, mips-le, mips64, mips64-le, mips64-n32,

 mips64-le-n32, ppc64, ppc64-le, s390 and s390x, and enforces no

 restrictions on other architectures. If running in user mode, or in

 system mode, but without the CAP_SYS_ADMIN capability (e.g. setting

 User=), NoNewPrivileges=yes is implied.

 Example: if a unit has the following,

 RestrictNamespaces=cgroup ipc

 RestrictNamespaces=cgroup net

 then cgroup, ipc, and net are set. If the second line is prefixed

 with "~", e.g.,

 RestrictNamespaces=cgroup ipc

 RestrictNamespaces=~cgroup net

 then, only ipc is set.

 LockPersonality=

 Takes a boolean argument. If set, locks down the personality(2)

 system call so that the kernel execution domain may not be changed

 from the default or the personality selected with Personality=

 directive. This may be useful to improve security, because odd

 personality emulations may be poorly tested and source of

 vulnerabilities. If running in user mode, or in system mode, but

 without the CAP_SYS_ADMIN capability (e.g. setting User=),

 NoNewPrivileges=yes is implied.

 MemoryDenyWriteExecute=

 Takes a boolean argument. If set, attempts to create memory

 mappings that are writable and executable at the same time, or to

 change existing memory mappings to become executable, or mapping

 shared memory segments as executable, are prohibited. Specifically,

 a system call filter is added that rejects mmap(2) system calls

 with both PROT_EXEC and PROT_WRITE set, mprotect(2) or

 pkey_mprotect(2) system calls with PROT_EXEC set and shmat(2) Page 53/106

 system calls with SHM_EXEC set. Note that this option is

 incompatible with programs and libraries that generate program code

 dynamically at runtime, including JIT execution engines, executable

 stacks, and code "trampoline" feature of various C compilers. This

 option improves service security, as it makes harder for software

 exploits to change running code dynamically. However, the

 protection can be circumvented, if the service can write to a

 filesystem, which is not mounted with noexec (such as /dev/shm), or

 it can use memfd_create(). This can be prevented by making such

 file systems inaccessible to the service (e.g.

 InaccessiblePaths=/dev/shm) and installing further system call

 filters (SystemCallFilter=~memfd_create). Note that this feature is

 fully available on x86-64, and partially on x86. Specifically, the

 shmat() protection is not available on x86. Note that on systems

 supporting multiple ABIs (such as x86/x86-64) it is recommended to

 turn off alternative ABIs for services, so that they cannot be used

 to circumvent the restrictions of this option. Specifically, it is

 recommended to combine this option with

 SystemCallArchitectures=native or similar. If running in user mode,

 or in system mode, but without the CAP_SYS_ADMIN capability (e.g.

 setting User=), NoNewPrivileges=yes is implied.

 RestrictRealtime=

 Takes a boolean argument. If set, any attempts to enable realtime

 scheduling in a process of the unit are refused. This restricts

 access to realtime task scheduling policies such as SCHED_FIFO,

 SCHED_RR or SCHED_DEADLINE. See sched(7) for details about these

 scheduling policies. If running in user mode, or in system mode,

 but without the CAP_SYS_ADMIN capability (e.g. setting User=),

 NoNewPrivileges=yes is implied. Realtime scheduling policies may be

 used to monopolize CPU time for longer periods of time, and may

 hence be used to lock up or otherwise trigger Denial-of-Service

 situations on the system. It is hence recommended to restrict

 access to realtime scheduling to the few programs that actually Page 54/106

 require them. Defaults to off.

 RestrictSUIDSGID=

 Takes a boolean argument. If set, any attempts to set the

 set-user-ID (SUID) or set-group-ID (SGID) bits on files or

 directories will be denied (for details on these bits see

 inode(7)). If running in user mode, or in system mode, but without

 the CAP_SYS_ADMIN capability (e.g. setting User=),

 NoNewPrivileges=yes is implied. As the SUID/SGID bits are

 mechanisms to elevate privileges, and allow users to acquire the

 identity of other users, it is recommended to restrict creation of

 SUID/SGID files to the few programs that actually require them.

 Note that this restricts marking of any type of file system object

 with these bits, including both regular files and directories

 (where the SGID is a different meaning than for files, see

 documentation). This option is implied if DynamicUser= is enabled.

 Defaults to off.

 RemoveIPC=

 Takes a boolean parameter. If set, all System V and POSIX IPC

 objects owned by the user and group the processes of this unit are

 run as are removed when the unit is stopped. This setting only has

 an effect if at least one of User=, Group= and DynamicUser= are

 used. It has no effect on IPC objects owned by the root user.

 Specifically, this removes System V semaphores, as well as System V

 and POSIX shared memory segments and message queues. If multiple

 units use the same user or group the IPC objects are removed when

 the last of these units is stopped. This setting is implied if

 DynamicUser= is set.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 PrivateMounts=

 Takes a boolean parameter. If set, the processes of this unit will

 be run in their own private file system (mount) namespace with all Page 55/106

 mount propagation from the processes towards the host's main file

 system namespace turned off. This means any file system mount

 points established or removed by the unit's processes will be

 private to them and not be visible to the host. However, file

 system mount points established or removed on the host will be

 propagated to the unit's processes. See mount_namespaces(7) for

 details on file system namespaces. Defaults to off.

 When turned on, this executes three operations for each invoked

 process: a new CLONE_NEWNS namespace is created, after which all

 existing mounts are remounted to MS_SLAVE to disable propagation

 from the unit's processes to the host (but leaving propagation in

 the opposite direction in effect). Finally, the mounts are

 remounted again to the propagation mode configured with

 MountFlags=, see below.

 File system namespaces are set up individually for each process

 forked off by the service manager. Mounts established in the

 namespace of the process created by ExecStartPre= will hence be

 cleaned up automatically as soon as that process exits and will not

 be available to subsequent processes forked off for ExecStart= (and

 similar applies to the various other commands configured for

 units). Similarly, JoinsNamespaceOf= does not permit sharing kernel

 mount namespaces between units, it only enables sharing of the

 /tmp/ and /var/tmp/ directories.

 Other file system namespace unit settings ? PrivateMounts=,

 PrivateTmp=, PrivateDevices=, ProtectSystem=, ProtectHome=,

 ReadOnlyPaths=, InaccessiblePaths=, ReadWritePaths=, ... ? also

 enable file system namespacing in a fashion equivalent to this

 option. Hence it is primarily useful to explicitly request this

 behaviour if none of the other settings are used.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

 MountFlags= Page 56/106

 Takes a mount propagation setting: shared, slave or private, which

 controls whether file system mount points in the file system

 namespaces set up for this unit's processes will receive or

 propagate mounts and unmounts from other file system namespaces.

 See mount(2) for details on mount propagation, and the three

 propagation flags in particular.

 This setting only controls the final propagation setting in effect

 on all mount points of the file system namespace created for each

 process of this unit. Other file system namespacing unit settings

 (see the discussion in PrivateMounts= above) will implicitly

 disable mount and unmount propagation from the unit's processes

 towards the host by changing the propagation setting of all mount

 points in the unit's file system namespace to slave first. Setting

 this option to shared does not reestablish propagation in that

 case.

 If not set ? but file system namespaces are enabled through another

 file system namespace unit setting ? shared mount propagation is

 used, but ? as mentioned ? as slave is applied first, propagation

 from the unit's processes to the host is still turned off.

 It is not recommended to use private mount propagation for units,

 as this means temporary mounts (such as removable media) of the

 host will stay mounted and thus indefinitely busy in forked off

 processes, as unmount propagation events won't be received by the

 file system namespace of the unit.

 Usually, it is best to leave this setting unmodified, and use

 higher level file system namespacing options instead, in particular

 PrivateMounts=, see above.

 This option is only available for system services, or for services

 running in per-user instances of the service manager when

 PrivateUsers= is enabled.

SYSTEM CALL FILTERING

 SystemCallFilter=

 Takes a space-separated list of system call names. If this setting Page 57/106

 is used, all system calls executed by the unit processes except for

 the listed ones will result in immediate process termination with

 the SIGSYS signal (allow-listing). (See SystemCallErrorNumber=

 below for changing the default action). If the first character of

 the list is "~", the effect is inverted: only the listed system

 calls will result in immediate process termination (deny-listing).

 Deny-listed system calls and system call groups may optionally be

 suffixed with a colon (":") and "errno" error number (between 0 and

 4095) or errno name such as EPERM, EACCES or EUCLEAN (see errno(3)

 for a full list). This value will be returned when a deny-listed

 system call is triggered, instead of terminating the processes

 immediately. Special setting "kill" can be used to explicitly

 specify killing. This value takes precedence over the one given in

 SystemCallErrorNumber=, see below. If running in user mode, or in

 system mode, but without the CAP_SYS_ADMIN capability (e.g. setting

 User=), NoNewPrivileges=yes is implied. This feature makes use of

 the Secure Computing Mode 2 interfaces of the kernel ('seccomp

 filtering') and is useful for enforcing a minimal sandboxing

 environment. Note that the execve(), exit(), exit_group(),

 getrlimit(), rt_sigreturn(), sigreturn() system calls and the

 system calls for querying time and sleeping are implicitly

 allow-listed and do not need to be listed explicitly. This option

 may be specified more than once, in which case the filter masks are

 merged. If the empty string is assigned, the filter is reset, all

 prior assignments will have no effect. This does not affect

 commands prefixed with "+".

 Note that on systems supporting multiple ABIs (such as x86/x86-64)

 it is recommended to turn off alternative ABIs for services, so

 that they cannot be used to circumvent the restrictions of this

 option. Specifically, it is recommended to combine this option with

 SystemCallArchitectures=native or similar.

 Note that strict system call filters may impact execution and error

 handling code paths of the service invocation. Specifically, access Page 58/106

 to the execve() system call is required for the execution of the

 service binary ? if it is blocked service invocation will

 necessarily fail. Also, if execution of the service binary fails

 for some reason (for example: missing service executable), the

 error handling logic might require access to an additional set of

 system calls in order to process and log this failure correctly. It

 might be necessary to temporarily disable system call filters in

 order to simplify debugging of such failures.

 If you specify both types of this option (i.e. allow-listing and

 deny-listing), the first encountered will take precedence and will

 dictate the default action (termination or approval of a system

 call). Then the next occurrences of this option will add or delete

 the listed system calls from the set of the filtered system calls,

 depending of its type and the default action. (For example, if you

 have started with an allow list rule for read() and write(), and

 right after it add a deny list rule for write(), then write() will

 be removed from the set.)

 As the number of possible system calls is large, predefined sets of

 system calls are provided. A set starts with "@" character,

 followed by name of the set.

 Table 4. Currently predefined system call sets

 ???

 ?Set ? Description ?

 ???

 ?@aio ? Asynchronous I/O ?

 ? ? (io_setup(2), ?

 ? ? io_submit(2), and related ?

 ? ? calls) ?

 ???

 ?@basic-io ? System calls for basic ?

 ? ? I/O: reading, writing, ?

 ? ? seeking, file descriptor ?

 ? ? duplication and closing ? Page 59/106

 ? ? (read(2), write(2), and ?

 ? ? related calls) ?

 ???

 ?@chown ? Changing file ownership ?

 ? ? (chown(2), fchownat(2), ?

 ? ? and related calls) ?

 ???

 ?@clock ? System calls for changing ?

 ? ? the system clock ?

 ? ? (adjtimex(2), ?

 ? ? settimeofday(2), and ?

 ? ? related calls) ?

 ???

 ?@cpu-emulation ? System calls for CPU ?

 ? ? emulation functionality ?

 ? ? (vm86(2) and related ?

 ? ? calls) ?

 ???

 ?@debug ? Debugging, performance ?

 ? ? monitoring and tracing ?

 ? ? functionality (ptrace(2), ?

 ? ? perf_event_open(2) and ?

 ? ? related calls) ?

 ???

 ?@file-system ? File system operations: ?

 ? ? opening, creating files ?

 ? ? and directories for read ?

 ? ? and write, renaming and ?

 ? ? removing them, reading ?

 ? ? file properties, or ?

 ? ? creating hard and symbolic ?

 ? ? links ?

 ??? Page 60/106

 ?@io-event ? Event loop system calls ?

 ? ? (poll(2), select(2), ?

 ? ? epoll(7), eventfd(2) and ?

 ? ? related calls) ?

 ???

 ?@ipc ? Pipes, SysV IPC, POSIX ?

 ? ? Message Queues and other ?

 ? ? IPC (mq_overview(7), ?

 ? ? svipc(7)) ?

 ???

 ?@keyring ? Kernel keyring access ?

 ? ? (keyctl(2) and related ?

 ? ? calls) ?

 ???

 ?@memlock ? Locking of memory in RAM ?

 ? ? (mlock(2), mlockall(2) and ?

 ? ? related calls) ?

 ???

 ?@module ? Loading and unloading of ?

 ? ? kernel modules ?

 ? ? (init_module(2), ?

 ? ? delete_module(2) and ?

 ? ? related calls) ?

 ???

 ?@mount ? Mounting and unmounting of ?

 ? ? file systems (mount(2), ?

 ? ? chroot(2), and related ?

 ? ? calls) ?

 ???

 ?@network-io ? Socket I/O (including ?

 ? ? local AF_UNIX): socket(7), ?

 ? ? unix(7) ?

 ??? Page 61/106

 ?@obsolete ? Unusual, obsolete or ?

 ? ? unimplemented ?

 ? ? (create_module(2), ?

 ? ? gtty(2), ...) ?

 ???

 ?@privileged ? All system calls which ?

 ? ? need super-user ?

 ? ? capabilities ?

 ? ? (capabilities(7)) ?

 ???

 ?@process ? Process control, ?

 ? ? execution, namespacing ?

 ? ? operations (clone(2), ?

 ? ? kill(2), namespaces(7), ?

 ? ? ...) ?

 ???

 ?@raw-io ? Raw I/O port access ?

 ? ? (ioperm(2), iopl(2), ?

 ? ? pciconfig_read(), ...) ?

 ???

 ?@reboot ? System calls for rebooting ?

 ? ? and reboot preparation ?

 ? ? (reboot(2), kexec(), ...) ?

 ???

 ?@resources ? System calls for changing ?

 ? ? resource limits, memory ?

 ? ? and scheduling parameters ?

 ? ? (setrlimit(2), ?

 ? ? setpriority(2), ...) ?

 ???

 ?@setuid ? System calls for changing ?

 ? ? user ID and group ID ?

 ? ? credentials, (setuid(2), ? Page 62/106

 ? ? setgid(2), setresuid(2), ?

 ? ? ...) ?

 ???

 ?@signal ? System calls for ?

 ? ? manipulating and handling ?

 ? ? process signals ?

 ? ? (signal(2), ?

 ? ? sigprocmask(2), ...) ?

 ???

 ?@swap ? System calls for ?

 ? ? enabling/disabling swap ?

 ? ? devices (swapon(2), ?

 ? ? swapoff(2)) ?

 ???

 ?@sync ? Synchronizing files and ?

 ? ? memory to disk (fsync(2), ?

 ? ? msync(2), and related ?

 ? ? calls) ?

 ???

 ?@system-service ? A reasonable set of system ?

 ? ? calls used by common ?

 ? ? system services, excluding ?

 ? ? any special purpose calls. ?

 ? ? This is the recommended ?

 ? ? starting point for ?

 ? ? allow-listing system calls ?

 ? ? for system services, as it ?

 ? ? contains what is typically ?

 ? ? needed by system services, ?

 ? ? but excludes overly ?

 ? ? specific interfaces. For ?

 ? ? example, the following ?

 ? ? APIs are excluded: ? Page 63/106

 ? ? "@clock", "@mount", ?

 ? ? "@swap", "@reboot". ?

 ???

 ?@timer ? System calls for ?

 ? ? scheduling operations by ?

 ? ? time (alarm(2), ?

 ? ? timer_create(2), ...) ?

 ???

 ?@known ? All system calls defined ?

 ? ? by the kernel. This list ?

 ? ? is defined statically in ?

 ? ? systemd based on a kernel ?

 ? ? version that was available ?

 ? ? when this systemd version ?

 ? ? was released. It will ?

 ? ? become progressively more ?

 ? ? out-of-date as the kernel ?

 ? ? is updated. ?

 ???

 Note, that as new system calls are added to the kernel, additional

 system calls might be added to the groups above. Contents of the

 sets may also change between systemd versions. In addition, the

 list of system calls depends on the kernel version and architecture

 for which systemd was compiled. Use systemd-analyze syscall-filter

 to list the actual list of system calls in each filter.

 Generally, allow-listing system calls (rather than deny-listing) is

 the safer mode of operation. It is recommended to enforce system

 call allow lists for all long-running system services.

 Specifically, the following lines are a relatively safe basic

 choice for the majority of system services:

 [Service]

 SystemCallFilter=@system-service

 SystemCallErrorNumber=EPERM Page 64/106

 Note that various kernel system calls are defined redundantly:

 there are multiple system calls for executing the same operation.

 For example, the pidfd_send_signal() system call may be used to

 execute operations similar to what can be done with the older

 kill() system call, hence blocking the latter without the former

 only provides weak protection. Since new system calls are added

 regularly to the kernel as development progresses, keeping system

 call deny lists comprehensive requires constant work. It is thus

 recommended to use allow-listing instead, which offers the benefit

 that new system calls are by default implicitly blocked until the

 allow list is updated.

 Also note that a number of system calls are required to be

 accessible for the dynamic linker to work. The dynamic linker is

 required for running most regular programs (specifically: all

 dynamic ELF binaries, which is how most distributions build

 packaged programs). This means that blocking these system calls

 (which include open(), openat() or mmap()) will make most programs

 typically shipped with generic distributions unusable.

 It is recommended to combine the file system namespacing related

 options with SystemCallFilter=~@mount, in order to prohibit the

 unit's processes to undo the mappings. Specifically these are the

 options PrivateTmp=, PrivateDevices=, ProtectSystem=, ProtectHome=,

 ProtectKernelTunables=, ProtectControlGroups=, ProtectKernelLogs=,

 ProtectClock=, ReadOnlyPaths=, InaccessiblePaths= and

 ReadWritePaths=.

 SystemCallErrorNumber=

 Takes an "errno" error number (between 1 and 4095) or errno name

 such as EPERM, EACCES or EUCLEAN, to return when the system call

 filter configured with SystemCallFilter= is triggered, instead of

 terminating the process immediately. See errno(3) for a full list

 of error codes. When this setting is not used, or when the empty

 string or the special setting "kill" is assigned, the process will

 be terminated immediately when the filter is triggered. Page 65/106

 SystemCallArchitectures=

 Takes a space-separated list of architecture identifiers to include

 in the system call filter. The known architecture identifiers are

 the same as for ConditionArchitecture= described in

 systemd.unit(5), as well as x32, mips64-n32, mips64-le-n32, and the

 special identifier native. The special identifier native implicitly

 maps to the native architecture of the system (or more precisely:

 to the architecture the system manager is compiled for). If running

 in user mode, or in system mode, but without the CAP_SYS_ADMIN

 capability (e.g. setting User=), NoNewPrivileges=yes is implied. By

 default, this option is set to the empty list, i.e. no filtering is

 applied.

 If this setting is used, processes of this unit will only be

 permitted to call native system calls, and system calls of the

 specified architectures. For the purposes of this option, the x32

 architecture is treated as including x86-64 system calls. However,

 this setting still fulfills its purpose, as explained below, on

 x32.

 System call filtering is not equally effective on all

 architectures. For example, on x86 filtering of network

 socket-related calls is not possible, due to ABI limitations ? a

 limitation that x86-64 does not have, however. On systems

 supporting multiple ABIs at the same time ? such as x86/x86-64 ? it

 is hence recommended to limit the set of permitted system call

 architectures so that secondary ABIs may not be used to circumvent

 the restrictions applied to the native ABI of the system. In

 particular, setting SystemCallArchitectures=native is a good choice

 for disabling non-native ABIs.

 System call architectures may also be restricted system-wide via

 the SystemCallArchitectures= option in the global configuration.

 See systemd-system.conf(5) for details.

 SystemCallLog=

 Takes a space-separated list of system call names. If this setting Page 66/106

 is used, all system calls executed by the unit processes for the

 listed ones will be logged. If the first character of the list is

 "~", the effect is inverted: all system calls except the listed

 system calls will be logged. If running in user mode, or in system

 mode, but without the CAP_SYS_ADMIN capability (e.g. setting

 User=), NoNewPrivileges=yes is implied. This feature makes use of

 the Secure Computing Mode 2 interfaces of the kernel ('seccomp

 filtering') and is useful for auditing or setting up a minimal

 sandboxing environment. This option may be specified more than

 once, in which case the filter masks are merged. If the empty

 string is assigned, the filter is reset, all prior assignments will

 have no effect. This does not affect commands prefixed with "+".

ENVIRONMENT

 Environment=

 Sets environment variables for executed processes. Each line is

 unquoted using the rules described in "Quoting" section in

 systemd.syntax(7) and becomes a list of variable assignments. If

 you need to assign a value containing spaces or the equals sign to

 a variable, put quotes around the whole assignment. Variable

 expansion is not performed inside the strings and the "$" character

 has no special meaning. Specifier expansion is performed, see the

 "Specifiers" section in systemd.unit(5).

 This option may be specified more than once, in which case all

 listed variables will be set. If the same variable is listed twice,

 the later setting will override the earlier setting. If the empty

 string is assigned to this option, the list of environment

 variables is reset, all prior assignments have no effect.

 The names of the variables can contain ASCII letters, digits, and

 the underscore character. Variable names cannot be empty or start

 with a digit. In variable values, most characters are allowed, but

 non-printable characters are currently rejected.

 Example:

 Environment="VAR1=word1 word2" VAR2=word3 "VAR3=$word 5 6" Page 67/106

 gives three variables "VAR1", "VAR2", "VAR3" with the values "word1

 word2", "word3", "$word 5 6".

 See environ(7) for details about environment variables.

 Note that environment variables are not suitable for passing

 secrets (such as passwords, key material, ...) to service

 processes. Environment variables set for a unit are exposed to

 unprivileged clients via D-Bus IPC, and generally not understood as

 being data that requires protection. Moreover, environment

 variables are propagated down the process tree, including across

 security boundaries (such as setuid/setgid executables), and hence

 might leak to processes that should not have access to the secret

 data. Use LoadCredential=, LoadCredentialEncrypted= or

 SetCredentialEncrypted= (see below) to pass data to unit processes

 securely.

 EnvironmentFile=

 Similar to Environment=, but reads the environment variables from a

 text file. The text file should contain newline-separated variable

 assignments. Empty lines, lines without an "=" separator, or lines

 starting with ";" or "#" will be ignored, which may be used for

 commenting. The file must be UTF-8 encoded. Valid characters are

 unicode scalar values[7] other than noncharacters[8], U+0000 NUL,

 and U+FEFF byte order mark[9]. Control codes other than NUL are

 allowed.

 In the file, an unquoted value after the "=" is parsed with the

 same backslash-escape rules as unquoted text[10] in a POSIX shell,

 but unlike in a shell, interior whitespace is preserved and quotes

 after the first non-whitespace character are preserved. Leading and

 trailing whitespace (space, tab, carriage return) is discarded, but

 interior whitespace within the line is preserved verbatim. A line

 ending with a backslash will be continued to the following one,

 with the newline itself discarded. A backslash "\" followed by any

 character other than newline will preserve the following character,

 so that "\\" will become the value "\". Page 68/106

 In the file, a "'"-quoted value after the "=" can span multiple

 lines and contain any character verbatim other than single quote,

 like single-quoted text[11] in a POSIX shell. No backslash-escape

 sequences are recognized. Leading and trailing whitespace outside

 of the single quotes is discarded.

 In the file, a """-quoted value after the "=" can span multiple

 lines, and the same escape sequences are recognized as in

 double-quoted text[12] of a POSIX shell. Backslash ("\") followed

 by any of ""\`$" will preserve that character. A backslash followed

 by newline is a line continuation, and the newline itself is

 discarded. A backslash followed by any other character is ignored;

 both the backslash and the following character are preserved

 verbatim. Leading and trailing whitespace outside of the double

 quotes is discarded.

 The argument passed should be an absolute filename or wildcard

 expression, optionally prefixed with "-", which indicates that if

 the file does not exist, it will not be read and no error or

 warning message is logged. This option may be specified more than

 once in which case all specified files are read. If the empty

 string is assigned to this option, the list of file to read is

 reset, all prior assignments have no effect.

 The files listed with this directive will be read shortly before

 the process is executed (more specifically, after all processes

 from a previous unit state terminated. This means you can generate

 these files in one unit state, and read it with this option in the

 next. The files are read from the file system of the service

 manager, before any file system changes like bind mounts take

 place).

 Settings from these files override settings made with Environment=.

 If the same variable is set twice from these files, the files will

 be read in the order they are specified and the later setting will

 override the earlier setting.

 PassEnvironment= Page 69/106

 Pass environment variables set for the system service manager to

 executed processes. Takes a space-separated list of variable names.

 This option may be specified more than once, in which case all

 listed variables will be passed. If the empty string is assigned to

 this option, the list of environment variables to pass is reset,

 all prior assignments have no effect. Variables specified that are

 not set for the system manager will not be passed and will be

 silently ignored. Note that this option is only relevant for the

 system service manager, as system services by default do not

 automatically inherit any environment variables set for the service

 manager itself. However, in case of the user service manager all

 environment variables are passed to the executed processes anyway,

 hence this option is without effect for the user service manager.

 Variables set for invoked processes due to this setting are subject

 to being overridden by those configured with Environment= or

 EnvironmentFile=.

 Example:

 PassEnvironment=VAR1 VAR2 VAR3

 passes three variables "VAR1", "VAR2", "VAR3" with the values set

 for those variables in PID1.

 See environ(7) for details about environment variables.

 UnsetEnvironment=

 Explicitly unset environment variable assignments that would

 normally be passed from the service manager to invoked processes of

 this unit. Takes a space-separated list of variable names or

 variable assignments. This option may be specified more than once,

 in which case all listed variables/assignments will be unset. If

 the empty string is assigned to this option, the list of

 environment variables/assignments to unset is reset. If a variable

 assignment is specified (that is: a variable name, followed by "=",

 followed by its value), then any environment variable matching this

 precise assignment is removed. If a variable name is specified

 (that is a variable name without any following "=" or value), then Page 70/106

 any assignment matching the variable name, regardless of its value

 is removed. Note that the effect of UnsetEnvironment= is applied as

 final step when the environment list passed to executed processes

 is compiled. That means it may undo assignments from any

 configuration source, including assignments made through

 Environment= or EnvironmentFile=, inherited from the system

 manager's global set of environment variables, inherited via

 PassEnvironment=, set by the service manager itself (such as

 $NOTIFY_SOCKET and such), or set by a PAM module (in case PAMName=

 is used).

 See "Environment Variables in Spawned Processes" below for a

 description of how those settings combine to form the inherited

 environment. See environ(7) for general information about

 environment variables.

LOGGING AND STANDARD INPUT/OUTPUT

 StandardInput=

 Controls where file descriptor 0 (STDIN) of the executed processes

 is connected to. Takes one of null, tty, tty-force, tty-fail, data,

 file:path, socket or fd:name.

 If null is selected, standard input will be connected to /dev/null,

 i.e. all read attempts by the process will result in immediate EOF.

 If tty is selected, standard input is connected to a TTY (as

 configured by TTYPath=, see below) and the executed process becomes

 the controlling process of the terminal. If the terminal is already

 being controlled by another process, the executed process waits

 until the current controlling process releases the terminal.

 tty-force is similar to tty, but the executed process is forcefully

 and immediately made the controlling process of the terminal,

 potentially removing previous controlling processes from the

 terminal.

 tty-fail is similar to tty, but if the terminal already has a

 controlling process start-up of the executed process fails.

 The data option may be used to configure arbitrary textual or Page 71/106

 binary data to pass via standard input to the executed process. The

 data to pass is configured via

 StandardInputText=/StandardInputData= (see below). Note that the

 actual file descriptor type passed (memory file, regular file, UNIX

 pipe, ...) might depend on the kernel and available privileges. In

 any case, the file descriptor is read-only, and when read returns

 the specified data followed by EOF.

 The file:path option may be used to connect a specific file system

 object to standard input. An absolute path following the ":"

 character is expected, which may refer to a regular file, a FIFO or

 special file. If an AF_UNIX socket in the file system is specified,

 a stream socket is connected to it. The latter is useful for

 connecting standard input of processes to arbitrary system

 services.

 The socket option is valid in socket-activated services only, and

 requires the relevant socket unit file (see systemd.socket(5) for

 details) to have Accept=yes set, or to specify a single socket

 only. If this option is set, standard input will be connected to

 the socket the service was activated from, which is primarily

 useful for compatibility with daemons designed for use with the

 traditional inetd(8) socket activation daemon.

 The fd:name option connects standard input to a specific, named

 file descriptor provided by a socket unit. The name may be

 specified as part of this option, following a ":" character (e.g.

 "fd:foobar"). If no name is specified, the name "stdin" is implied

 (i.e. "fd" is equivalent to "fd:stdin"). At least one socket unit

 defining the specified name must be provided via the Sockets=

 option, and the file descriptor name may differ from the name of

 its containing socket unit. If multiple matches are found, the

 first one will be used. See FileDescriptorName= in

 systemd.socket(5) for more details about named file descriptors and

 their ordering.

 This setting defaults to null, unless Page 72/106

 StandardInputText=/StandardInputData= are set, in which case it

 defaults to data.

 StandardOutput=

 Controls where file descriptor 1 (stdout) of the executed processes

 is connected to. Takes one of inherit, null, tty, journal, kmsg,

 journal+console, kmsg+console, file:path, append:path,

 truncate:path, socket or fd:name.

 inherit duplicates the file descriptor of standard input for

 standard output.

 null connects standard output to /dev/null, i.e. everything written

 to it will be lost.

 tty connects standard output to a tty (as configured via TTYPath=,

 see below). If the TTY is used for output only, the executed

 process will not become the controlling process of the terminal,

 and will not fail or wait for other processes to release the

 terminal.

 journal connects standard output with the journal, which is

 accessible via journalctl(1). Note that everything that is written

 to kmsg (see below) is implicitly stored in the journal as well,

 the specific option listed below is hence a superset of this one.

 (Also note that any external, additional syslog daemons receive

 their log data from the journal, too, hence this is the option to

 use when logging shall be processed with such a daemon.)

 kmsg connects standard output with the kernel log buffer which is

 accessible via dmesg(1), in addition to the journal. The journal

 daemon might be configured to send all logs to kmsg anyway, in

 which case this option is no different from journal.

 journal+console and kmsg+console work in a similar way as the two

 options above but copy the output to the system console as well.

 The file:path option may be used to connect a specific file system

 object to standard output. The semantics are similar to the same

 option of StandardInput=, see above. If path refers to a regular

 file on the filesystem, it is opened (created if it doesn't exist Page 73/106

 yet) for writing at the beginning of the file, but without

 truncating it. If standard input and output are directed to the

 same file path, it is opened only once ? for reading as well as

 writing ? and duplicated. This is particularly useful when the

 specified path refers to an AF_UNIX socket in the file system, as

 in that case only a single stream connection is created for both

 input and output.

 append:path is similar to file:path above, but it opens the file in

 append mode.

 truncate:path is similar to file:path above, but it truncates the

 file when opening it. For units with multiple command lines, e.g.

 Type=oneshot services with multiple ExecStart=, or services with

 ExecCondition=, ExecStartPre= or ExecStartPost=, the output file is

 reopened and therefore re-truncated for each command line. If the

 output file is truncated while another process still has the file

 open, e.g. by an ExecReload= running concurrently with an

 ExecStart=, and the other process continues writing to the file

 without adjusting its offset, then the space between the file

 pointers of the two processes may be filled with NUL bytes,

 producing a sparse file. Thus, truncate:path is typically only

 useful for units where only one process runs at a time, such as

 services with a single ExecStart= and no ExecStartPost=,

 ExecReload=, ExecStop= or similar.

 socket connects standard output to a socket acquired via socket

 activation. The semantics are similar to the same option of

 StandardInput=, see above.

 The fd:name option connects standard output to a specific, named

 file descriptor provided by a socket unit. A name may be specified

 as part of this option, following a ":" character (e.g.

 "fd:foobar"). If no name is specified, the name "stdout" is implied

 (i.e. "fd" is equivalent to "fd:stdout"). At least one socket unit

 defining the specified name must be provided via the Sockets=

 option, and the file descriptor name may differ from the name of Page 74/106

 its containing socket unit. If multiple matches are found, the

 first one will be used. See FileDescriptorName= in

 systemd.socket(5) for more details about named descriptors and

 their ordering.

 If the standard output (or error output, see below) of a unit is

 connected to the journal or the kernel log buffer, the unit will

 implicitly gain a dependency of type After= on

 systemd-journald.socket (also see the "Implicit Dependencies"

 section above). Also note that in this case stdout (or stderr, see

 below) will be an AF_UNIX stream socket, and not a pipe or FIFO

 that can be re-opened. This means when executing shell scripts the

 construct echo "hello" > /dev/stderr for writing text to stderr

 will not work. To mitigate this use the construct echo "hello" >&2

 instead, which is mostly equivalent and avoids this pitfall.

 If StandardInput= is set to one of tty, tty-force, tty-fail,

 socket, or fd:name, this setting defaults to inherit.

 In other cases, this setting defaults to the value set with

 DefaultStandardOutput= in systemd-system.conf(5), which defaults to

 journal. Note that setting this parameter might result in

 additional dependencies to be added to the unit (see above).

 StandardError=

 Controls where file descriptor 2 (stderr) of the executed processes

 is connected to. The available options are identical to those of

 StandardOutput=, with some exceptions: if set to inherit the file

 descriptor used for standard output is duplicated for standard

 error, while fd:name will use a default file descriptor name of

 "stderr".

 This setting defaults to the value set with DefaultStandardError=

 in systemd-system.conf(5), which defaults to inherit. Note that

 setting this parameter might result in additional dependencies to

 be added to the unit (see above).

 StandardInputText=, StandardInputData=

 Configures arbitrary textual or binary data to pass via file Page 75/106

 descriptor 0 (STDIN) to the executed processes. These settings have

 no effect unless StandardInput= is set to data (which is the

 default if StandardInput= is not set otherwise, but

 StandardInputText=/StandardInputData= is). Use this option to embed

 process input data directly in the unit file.

 StandardInputText= accepts arbitrary textual data. C-style escapes

 for special characters as well as the usual "%"-specifiers are

 resolved. Each time this setting is used the specified text is

 appended to the per-unit data buffer, followed by a newline

 character (thus every use appends a new line to the end of the

 buffer). Note that leading and trailing whitespace of lines

 configured with this option is removed. If an empty line is

 specified the buffer is cleared (hence, in order to insert an empty

 line, add an additional "\n" to the end or beginning of a line).

 StandardInputData= accepts arbitrary binary data, encoded in

 Base64[13]. No escape sequences or specifiers are resolved. Any

 whitespace in the encoded version is ignored during decoding.

 Note that StandardInputText= and StandardInputData= operate on the

 same data buffer, and may be mixed in order to configure both

 binary and textual data for the same input stream. The textual or

 binary data is joined strictly in the order the settings appear in

 the unit file. Assigning an empty string to either will reset the

 data buffer.

 Please keep in mind that in order to maintain readability long unit

 file settings may be split into multiple lines, by suffixing each

 line (except for the last) with a "\" character (see

 systemd.unit(5) for details). This is particularly useful for large

 data configured with these two options. Example:

 ...

 StandardInput=data

StandardInputData=V2XigLJyZSBubyBzdHJhbmdlcnMgdG8gbG92ZQpZb3Uga25vdyB0aGUgcnVsZXMgYW5kIHNvIGRv \

 IEkKQSBmdWxsIGNvbW1pdG1lbnQncyB3aGF0IEnigLJtIHRoaW5raW5nIG9mCllvdSB3b3VsZG4n \Page 76/106

 dCBnZXQgdGhpcyBmcm9tIGFueSBvdGhlciBndXkKSSBqdXN0IHdhbm5hIHRlbGwgeW91IGhvdyBJ \

 J20gZmVlbGluZwpHb3R0YSBtYWtlIHlvdSB1bmRlcnN0YW5kCgpOZXZlciBnb25uYSBnaXZlIHlv \

 dSB1cApOZXZlciBnb25uYSBsZXQgeW91IGRvd24KTmV2ZXIgZ29ubmEgcnVuIGFyb3VuZCBhbmQg

\

 ZGVzZXJ0IHlvdQpOZXZlciBnb25uYSBtYWtlIHlvdSBjcnkKTmV2ZXIgZ29ubmEgc2F5IGdvb2Ri \

 eWUKTmV2ZXIgZ29ubmEgdGVsbCBhIGxpZSBhbmQgaHVydCB5b3UK

 ...

 LogLevelMax=

 Configures filtering by log level of log messages generated by this

 unit. Takes a syslog log level, one of emerg (lowest log level,

 only highest priority messages), alert, crit, err, warning, notice,

 info, debug (highest log level, also lowest priority messages). See

 syslog(3) for details. By default no filtering is applied (i.e. the

 default maximum log level is debug). Use this option to configure

 the logging system to drop log messages of a specific service above

 the specified level. For example, set LogLevelMax=info in order to

 turn off debug logging of a particularly chatty unit. Note that the

 configured level is applied to any log messages written by any of

 the processes belonging to this unit, as well as any log messages

 written by the system manager process (PID 1) in reference to this

 unit, sent via any supported logging protocol. The filtering is

 applied early in the logging pipeline, before any kind of further

 processing is done. Moreover, messages which pass through this

 filter successfully might still be dropped by filters applied at a

 later stage in the logging subsystem. For example, MaxLevelStore=

 configured in journald.conf(5) might prohibit messages of higher

 log levels to be stored on disk, even though the per-unit

 LogLevelMax= permitted it to be processed.

 LogExtraFields=

 Configures additional log metadata fields to include in all log

 records generated by processes associated with this unit. This

 setting takes one or more journal field assignments in the format

 "FIELD=VALUE" separated by whitespace. See systemd.journal- Page 77/106

 fields(7) for details on the journal field concept. Even though the

 underlying journal implementation permits binary field values, this

 setting accepts only valid UTF-8 values. To include space

 characters in a journal field value, enclose the assignment in

 double quotes ("). The usual specifiers are expanded in all

 assignments (see below). Note that this setting is not only useful

 for attaching additional metadata to log records of a unit, but

 given that all fields and values are indexed may also be used to

 implement cross-unit log record matching. Assign an empty string to

 reset the list.

 LogRateLimitIntervalSec=, LogRateLimitBurst=

 Configures the rate limiting that is applied to messages generated

 by this unit. If, in the time interval defined by

 LogRateLimitIntervalSec=, more messages than specified in

 LogRateLimitBurst= are logged by a service, all further messages

 within the interval are dropped until the interval is over. A

 message about the number of dropped messages is generated. The time

 specification for LogRateLimitIntervalSec= may be specified in the

 following units: "s", "min", "h", "ms", "us" (see systemd.time(7)

 for details). The default settings are set by RateLimitIntervalSec=

 and RateLimitBurst= configured in journald.conf(5).

 LogNamespace=

 Run the unit's processes in the specified journal namespace.

 Expects a short user-defined string identifying the namespace. If

 not used the processes of the service are run in the default

 journal namespace, i.e. their log stream is collected and processed

 by systemd-journald.service. If this option is used any log data

 generated by processes of this unit (regardless if via the

 syslog(), journal native logging or stdout/stderr logging) is

 collected and processed by an instance of the

 systemd-journald@.service template unit, which manages the

 specified namespace. The log data is stored in a data store

 independent from the default log namespace's data store. See Page 78/106

 systemd-journald.service(8) for details about journal namespaces.

 Internally, journal namespaces are implemented through Linux mount

 namespacing and over-mounting the directory that contains the

 relevant AF_UNIX sockets used for logging in the unit's mount

 namespace. Since mount namespaces are used this setting disconnects

 propagation of mounts from the unit's processes to the host,

 similarly to how ReadOnlyPaths= and similar settings describe above

 work. Journal namespaces may hence not be used for services that

 need to establish mount points on the host.

 When this option is used the unit will automatically gain ordering

 and requirement dependencies on the two socket units associated

 with the systemd-journald@.service instance so that they are

 automatically established prior to the unit starting up. Note that

 when this option is used log output of this service does not appear

 in the regular journalctl(1) output, unless the --namespace= option

 is used.

 This option is only available for system services and is not

 supported for services running in per-user instances of the service

 manager.

 SyslogIdentifier=

 Sets the process name ("syslog tag") to prefix log lines sent to

 the logging system or the kernel log buffer with. If not set,

 defaults to the process name of the executed process. This option

 is only useful when StandardOutput= or StandardError= are set to

 journal or kmsg (or to the same settings in combination with

 +console) and only applies to log messages written to stdout or

 stderr.

 SyslogFacility=

 Sets the syslog facility identifier to use when logging. One of

 kern, user, mail, daemon, auth, syslog, lpr, news, uucp, cron,

 authpriv, ftp, local0, local1, local2, local3, local4, local5,

 local6 or local7. See syslog(3) for details. This option is only

 useful when StandardOutput= or StandardError= are set to journal or Page 79/106

 kmsg (or to the same settings in combination with +console), and

 only applies to log messages written to stdout or stderr. Defaults

 to daemon.

 SyslogLevel=

 The default syslog log level to use when logging to the logging

 system or the kernel log buffer. One of emerg, alert, crit, err,

 warning, notice, info, debug. See syslog(3) for details. This

 option is only useful when StandardOutput= or StandardError= are

 set to journal or kmsg (or to the same settings in combination with

 +console), and only applies to log messages written to stdout or

 stderr. Note that individual lines output by executed processes may

 be prefixed with a different log level which can be used to

 override the default log level specified here. The interpretation

 of these prefixes may be disabled with SyslogLevelPrefix=, see

 below. For details, see sd-daemon(3). Defaults to info.

 SyslogLevelPrefix=

 Takes a boolean argument. If true and StandardOutput= or

 StandardError= are set to journal or kmsg (or to the same settings

 in combination with +console), log lines written by the executed

 process that are prefixed with a log level will be processed with

 this log level set but the prefix removed. If set to false, the

 interpretation of these prefixes is disabled and the logged lines

 are passed on as-is. This only applies to log messages written to

 stdout or stderr. For details about this prefixing see sd-

 daemon(3). Defaults to true.

 TTYPath=

 Sets the terminal device node to use if standard input, output, or

 error are connected to a TTY (see above). Defaults to /dev/console.

 TTYReset=

 Reset the terminal device specified with TTYPath= before and after

 execution. Defaults to "no".

 TTYVHangup=

 Disconnect all clients which have opened the terminal device Page 80/106

 specified with TTYPath= before and after execution. Defaults to

 "no".

 TTYRows=, TTYColumns=

 Configure the size of the TTY specified with TTYPath=. If unset or

 set to the empty string, the kernel default is used.

 TTYVTDisallocate=

 If the terminal device specified with TTYPath= is a virtual console

 terminal, try to deallocate the TTY before and after execution.

 This ensures that the screen and scrollback buffer is cleared.

 Defaults to "no".

CREDENTIALS

 LoadCredential=ID[:PATH], LoadCredentialEncrypted=ID[:PATH]

 Pass a credential to the unit. Credentials are limited-size binary

 or textual objects that may be passed to unit processes. They are

 primarily used for passing cryptographic keys (both public and

 private) or certificates, user account information or identity

 information from host to services. The data is accessible from the

 unit's processes via the file system, at a read-only location that

 (if possible and permitted) is backed by non-swappable memory. The

 data is only accessible to the user associated with the unit, via

 the User=/DynamicUser= settings (as well as the superuser). When

 available, the location of credentials is exported as the

 $CREDENTIALS_DIRECTORY environment variable to the unit's

 processes.

 The LoadCredential= setting takes a textual ID to use as name for a

 credential plus a file system path, separated by a colon. The ID

 must be a short ASCII string suitable as filename in the

 filesystem, and may be chosen freely by the user. If the specified

 path is absolute it is opened as regular file and the credential

 data is read from it. If the absolute path refers to an AF_UNIX

 stream socket in the file system a connection is made to it (only

 once at unit start-up) and the credential data read from the

 connection, providing an easy IPC integration point for dynamically Page 81/106

 transferring credentials from other services.

 If the specified path is not absolute and itself qualifies as valid

 credential identifier it is attempted to find a credential that the

 service manager itself received under the specified name ? which

 may be used to propagate credentials from an invoking environment

 (e.g. a container manager that invoked the service manager) into a

 service. If no matching system credential is found, the directories

 /etc/credstore/, /run/credstore/ and /usr/lib/credstore/ are

 searched for files under the credential's name ? which hence are

 recommended locations for credential data on disk. If

 LoadCredentialEncrypted= is used /run/credstore.encrypted/,

 /etc/credstore.encrypted/, and /usr/lib/credstore.encrypted/ are

 searched as well.

 If the file system path is omitted it is chosen identical to the

 credential name, i.e. this is a terse way to declare credentials to

 inherit from the service manager into a service. This option may be

 used multiple times, each time defining an additional credential to

 pass to the unit.

 If an absolute path referring to a directory is specified, every

 file in that directory (recursively) will be loaded as a separate

 credential. The ID for each credential will be the provided ID

 suffixed with "_$FILENAME" (e.g., "Key_file1"). When loading from a

 directory, symlinks will be ignored.

 The contents of the file/socket may be arbitrary binary or textual

 data, including newline characters and NUL bytes.

 The LoadCredentialEncrypted= setting is identical to

 LoadCredential=, except that the credential data is decrypted and

 authenticated before being passed on to the executed processes.

 Specifically, the referenced path should refer to a file or socket

 with an encrypted credential, as implemented by systemd-creds(1).

 This credential is loaded, decrypted, authenticated and then passed

 to the application in plaintext form, in the same way a regular

 credential specified via LoadCredential= would be. A credential Page 82/106

 configured this way may be symmetrically encrypted/authenticated

 with a secret key derived from the system's TPM2 security chip, or

 with a secret key stored in /var/lib/systemd/credentials.secret, or

 with both. Using encrypted and authenticated credentials improves

 security as credentials are not stored in plaintext and only

 authenticated and decrypted into plaintext the moment a service

 requiring them is started. Moreover, credentials may be bound to

 the local hardware and installations, so that they cannot easily be

 analyzed offline, or be generated externally.

 The credential files/IPC sockets must be accessible to the service

 manager, but don't have to be directly accessible to the unit's

 processes: the credential data is read and copied into separate,

 read-only copies for the unit that are accessible to appropriately

 privileged processes. This is particularly useful in combination

 with DynamicUser= as this way privileged data can be made available

 to processes running under a dynamic UID (i.e. not a previously

 known one) without having to open up access to all users.

 In order to reference the path a credential may be read from within

 a ExecStart= command line use "${CREDENTIALS_DIRECTORY}/mycred",

 e.g. "ExecStart=cat ${CREDENTIALS_DIRECTORY}/mycred". In order to

 reference the path a credential may be read from within a

 Environment= line use "%d/mycred", e.g.

 "Environment=MYCREDPATH=%d/mycred".

 Currently, an accumulated credential size limit of 1 MB per unit is

 enforced.

 The service manager itself may receive system credentials that can

 be propagated to services from a hosting container manager or VM

 hypervisor. See the Container Interface[14] documentation for

 details about the former. For the latter, pass DMI/SMBIOS[15] OEM

 string table entries (field type 11) with a prefix of

 "io.systemd.credential:" or "io.systemd.credential.binary:". In

 both cases a key/value pair separated by "=" is expected, in the

 latter case the right-hand side is Base64 decoded when parsed (thus Page 83/106

 permitting binary data to be passed in). Example qemu switch:

 "-smbios type=11,value=io.systemd.credential:xx=yy", or "-smbios

 type=11,value=io.systemd.credential.binary:rick=TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=".

 Alternatively, use the qemu "fw_cfg" node

 "opt/io.systemd.credentials/". Example qemu switch: "-fw_cfg

 name=opt/io.systemd.credentials/mycred,string=supersecret". They

 may also be specified on the kernel command line using the

 "systemd.set_credential=" switch (see systemd(1)) and from the UEFI

 firmware environment via systemd-stub(7).

 If referencing an AF_UNIX stream socket to connect to, the

 connection will originate from an abstract namespace socket, that

 includes information about the unit and the credential ID in its

 socket name. Use getpeername(2) to query this information. The

 returned socket name is formatted as NUL RANDOM "/unit/" UNIT "/"

 ID, i.e. a NUL byte (as required for abstract namespace socket

 names), followed by a random string (consisting of alphadecimal

 characters), followed by the literal string "/unit/", followed by

 the requesting unit name, followed by the literal character "/",

 followed by the textual credential ID requested. Example:

 "\0adf9d86b6eda275e/unit/foobar.service/credx" in case the

 credential "credx" is requested for a unit "foobar.service". This

 functionality is useful for using a single listening socket to

 serve credentials to multiple consumers.

 For further information see System and Service Credentials[16]

 documentation.

 SetCredential=ID:VALUE, SetCredentialEncrypted=ID:VALUE

 The SetCredential= setting is similar to LoadCredential= but

 accepts a literal value to use as data for the credential, instead

 of a file system path to read the data from. Do not use this option

 for data that is supposed to be secret, as it is accessible to

 unprivileged processes via IPC. It's only safe to use this for user

 IDs, public key material and similar non-sensitive data. For

 everything else use LoadCredential=. In order to embed binary data Page 84/106

 into the credential data use C-style escaping (i.e. "\n" to embed

 a newline, or "\x00" to embed a NUL byte).

 The SetCredentialEncrypted= setting is identical to SetCredential=

 but expects an encrypted credential in literal form as value. This

 allows embedding confidential credentials securely directly in unit

 files. Use systemd-creds(1)' -p switch to generate suitable

 SetCredentialEncrypted= lines directly from plaintext credentials.

 For further details see LoadCredentialEncrypted= above.

 If a credential of the same ID is listed in both LoadCredential=

 and SetCredential=, the latter will act as default if the former

 cannot be retrieved. In this case not being able to retrieve the

 credential from the path specified in LoadCredential= is not

 considered fatal.

SYSTEM V COMPATIBILITY

 UtmpIdentifier=

 Takes a four character identifier string for an utmp(5) and wtmp

 entry for this service. This should only be set for services such

 as getty implementations (such as agetty(8)) where utmp/wtmp

 entries must be created and cleared before and after execution, or

 for services that shall be executed as if they were run by a getty

 process (see below). If the configured string is longer than four

 characters, it is truncated and the terminal four characters are

 used. This setting interprets %I style string replacements. This

 setting is unset by default, i.e. no utmp/wtmp entries are created

 or cleaned up for this service.

 UtmpMode=

 Takes one of "init", "login" or "user". If UtmpIdentifier= is set,

 controls which type of utmp(5)/wtmp entries for this service are

 generated. This setting has no effect unless UtmpIdentifier= is set

 too. If "init" is set, only an INIT_PROCESS entry is generated and

 the invoked process must implement a getty-compatible utmp/wtmp

 logic. If "login" is set, first an INIT_PROCESS entry, followed by

 a LOGIN_PROCESS entry is generated. In this case, the invoked Page 85/106

 process must implement a login(1)-compatible utmp/wtmp logic. If

 "user" is set, first an INIT_PROCESS entry, then a LOGIN_PROCESS

 entry and finally a USER_PROCESS entry is generated. In this case,

 the invoked process may be any process that is suitable to be run

 as session leader. Defaults to "init".

ENVIRONMENT VARIABLES IN SPAWNED PROCESSES

 Processes started by the service manager are executed with an

 environment variable block assembled from multiple sources. Processes

 started by the system service manager generally do not inherit

 environment variables set for the service manager itself (but this may

 be altered via PassEnvironment=), but processes started by the user

 service manager instances generally do inherit all environment

 variables set for the service manager itself.

 For each invoked process the list of environment variables set is

 compiled from the following sources:

 ? Variables globally configured for the service manager, using the

 DefaultEnvironment= setting in systemd-system.conf(5), the kernel

 command line option systemd.setenv= understood by systemd(1), or

 via systemctl(1) set-environment verb.

 ? Variables defined by the service manager itself (see the list

 below).

 ? Variables set in the service manager's own environment variable

 block (subject to PassEnvironment= for the system service manager).

 ? Variables set via Environment= in the unit file.

 ? Variables read from files specified via EnvironmentFile= in the

 unit file.

 ? Variables set by any PAM modules in case PAMName= is in effect,

 cf. pam_env(8).

 If the same environment variable is set by multiple of these sources,

 the later source ? according to the order of the list above ? wins.

 Note that as the final step all variables listed in UnsetEnvironment=

 are removed from the compiled environment variable list, immediately

 before it is passed to the executed process. Page 86/106

 The general philosophy is to expose a small curated list of environment

 variables to processes. Services started by the system manager (PID 1)

 will be started, without additional service-specific configuration,

 with just a few environment variables. The user manager inherits

 environment variables as any other system service, but in addition may

 receive additional environment variables from PAM, and, typically,

 additional imported variables when the user starts a graphical session.

 It is recommended to keep the environment blocks in both the system and

 user managers lean. Importing all variables inherited by the graphical

 session or by one of the user shells is strongly discouraged.

 Hint: systemd-run -P env and systemd-run --user -P env print the

 effective system and user service environment blocks.

 Environment Variables Set or Propagated by the Service Manager

 The following environment variables are propagated by the service

 manager or generated internally for each invoked process:

 $PATH

 Colon-separated list of directories to use when launching

 executables. systemd uses a fixed value of

 "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin" in the system

 manager. When compiled for systems with "unmerged /usr/" (/bin is

 not a symlink to /usr/bin), ":/sbin:/bin" is appended. In case of

 the user manager, a different path may be configured by the

 distribution. It is recommended to not rely on the order of

 entries, and have only one program with a given name in $PATH.

 $LANG

 Locale. Can be set in locale.conf(5) or on the kernel command line

 (see systemd(1) and kernel-command-line(7)).

 $USER, $LOGNAME, $HOME, $SHELL

 User name (twice), home directory, and the login shell. The

 variables are set for the units that have User= set, which includes

 user systemd instances. See passwd(5).

 $INVOCATION_ID

 Contains a randomized, unique 128bit ID identifying each runtime Page 87/106

 cycle of the unit, formatted as 32 character hexadecimal string. A

 new ID is assigned each time the unit changes from an inactive

 state into an activating or active state, and may be used to

 identify this specific runtime cycle, in particular in data stored

 offline, such as the journal. The same ID is passed to all

 processes run as part of the unit.

 $XDG_RUNTIME_DIR

 The directory to use for runtime objects (such as IPC objects) and

 volatile state. Set for all services run by the user systemd

 instance, as well as any system services that use PAMName= with a

 PAM stack that includes pam_systemd. See below and pam_systemd(8)

 for more information.

 $RUNTIME_DIRECTORY, $STATE_DIRECTORY, $CACHE_DIRECTORY,

 $LOGS_DIRECTORY, $CONFIGURATION_DIRECTORY

 Absolute paths to the directories defined with RuntimeDirectory=,

 StateDirectory=, CacheDirectory=, LogsDirectory=, and

 ConfigurationDirectory= when those settings are used.

 $CREDENTIALS_DIRECTORY

 An absolute path to the per-unit directory with credentials

 configured via LoadCredential=/SetCredential=. The directory is

 marked read-only and is placed in unswappable memory (if supported

 and permitted), and is only accessible to the UID associated with

 the unit via User= or DynamicUser= (and the superuser).

 $MAINPID

 The PID of the unit's main process if it is known. This is only set

 for control processes as invoked by ExecReload= and similar.

 $MANAGERPID

 The PID of the user systemd instance, set for processes spawned by

 it.

 $LISTEN_FDS, $LISTEN_PID, $LISTEN_FDNAMES

 Information about file descriptors passed to a service for socket

 activation. See sd_listen_fds(3).

 $NOTIFY_SOCKET Page 88/106

 The socket sd_notify() talks to. See sd_notify(3).

 $WATCHDOG_PID, $WATCHDOG_USEC

 Information about watchdog keep-alive notifications. See

 sd_watchdog_enabled(3).

 $SYSTEMD_EXEC_PID

 The PID of the unit process (e.g. process invoked by ExecStart=).

 The child process can use this information to determine whether the

 process is directly invoked by the service manager or indirectly as

 a child of another process by comparing this value with the current

 PID (similarly to the scheme used in sd_listen_fds(3) with

 $LISTEN_PID and $LISTEN_FDS).

 $TERM

 Terminal type, set only for units connected to a terminal

 (StandardInput=tty, StandardOutput=tty, or StandardError=tty). See

 termcap(5).

 $LOG_NAMESPACE

 Contains the name of the selected logging namespace when the

 LogNamespace= service setting is used.

 $JOURNAL_STREAM

 If the standard output or standard error output of the executed

 processes are connected to the journal (for example, by setting

 StandardError=journal) $JOURNAL_STREAM contains the device and

 inode numbers of the connection file descriptor, formatted in

 decimal, separated by a colon (":"). This permits invoked processes

 to safely detect whether their standard output or standard error

 output are connected to the journal. The device and inode numbers

 of the file descriptors should be compared with the values set in

 the environment variable to determine whether the process output is

 still connected to the journal. Note that it is generally not

 sufficient to only check whether $JOURNAL_STREAM is set at all as

 services might invoke external processes replacing their standard

 output or standard error output, without unsetting the environment

 variable. Page 89/106

 If both standard output and standard error of the executed

 processes are connected to the journal via a stream socket, this

 environment variable will contain information about the standard

 error stream, as that's usually the preferred destination for log

 data. (Note that typically the same stream is used for both

 standard output and standard error, hence very likely the

 environment variable contains device and inode information matching

 both stream file descriptors.)

 This environment variable is primarily useful to allow services to

 optionally upgrade their used log protocol to the native journal

 protocol (using sd_journal_print(3) and other functions) if their

 standard output or standard error output is connected to the

 journal anyway, thus enabling delivery of structured metadata along

 with logged messages.

 $SERVICE_RESULT

 Only used for the service unit type. This environment variable is

 passed to all ExecStop= and ExecStopPost= processes, and encodes

 the service "result". Currently, the following values are defined:

 Table 5. Defined $SERVICE_RESULT values

 ???

 ?Value ? Meaning ?

 ???

 ?"success" ? The service ran ?

 ? ? successfully and exited ?

 ? ? cleanly. ?

 ???

 ?"protocol" ? A protocol violation ?

 ? ? occurred: the service did ?

 ? ? not take the steps ?

 ? ? required by its unit ?

 ? ? configuration ?

 ? ? (specifically what is ?

 ? ? configured in its Type= ? Page 90/106

 ? ? setting). ?

 ???

 ?"timeout" ? One of the steps timed ?

 ? ? out. ?

 ???

 ?"exit-code" ? Service process exited ?

 ? ? with a non-zero exit code; ?

 ? ? see $EXIT_CODE below for ?

 ? ? the actual exit code ?

 ? ? returned. ?

 ???

 ?"signal" ? A service process was ?

 ? ? terminated abnormally by a ?

 ? ? signal, without dumping ?

 ? ? core. See $EXIT_CODE below ?

 ? ? for the actual signal ?

 ? ? causing the termination. ?

 ???

 ?"core-dump" ? A service process ?

 ? ? terminated abnormally with ?

 ? ? a signal and dumped core. ?

 ? ? See $EXIT_CODE below for ?

 ? ? the signal causing the ?

 ? ? termination. ?

 ???

 ?"watchdog" ? Watchdog keep-alive ping ?

 ? ? was enabled for the ?

 ? ? service, but the deadline ?

 ? ? was missed. ?

 ???

 ?"start-limit-hit" ? A start limit was defined ?

 ? ? for the unit and it was ?

 ? ? hit, causing the unit to ? Page 91/106

 ? ? fail to start. See ?

 ? ? systemd.unit(5)'s ?

 ? ? StartLimitIntervalSec= and ?

 ? ? StartLimitBurst= for ?

 ? ? details. ?

 ???

 ?"resources" ? A catch-all condition in ?

 ? ? case a system operation ?

 ? ? failed. ?

 ???

 This environment variable is useful to monitor failure or

 successful termination of a service. Even though this variable is

 available in both ExecStop= and ExecStopPost=, it is usually a

 better choice to place monitoring tools in the latter, as the

 former is only invoked for services that managed to start up

 correctly, and the latter covers both services that failed during

 their start-up and those which failed during their runtime.

 $EXIT_CODE, $EXIT_STATUS

 Only defined for the service unit type. These environment variables

 are passed to all ExecStop=, ExecStopPost= processes and contain

 exit status/code information of the main process of the service.

 For the precise definition of the exit code and status, see

 wait(2). $EXIT_CODE is one of "exited", "killed", "dumped".

 $EXIT_STATUS contains the numeric exit code formatted as string if

 $EXIT_CODE is "exited", and the signal name in all other cases.

 Note that these environment variables are only set if the service

 manager succeeded to start and identify the main process of the

 service.

 Table 6. Summary of possible service result variable values

 ???

 ?$SERVICE_RESULT ? $EXIT_CODE ? $EXIT_STATUS ?

 ???

 ?"success" ? "killed" ? "HUP", "INT", ? Page 92/106

 ? ? ? "TERM", "PIPE" ?

 ? ??

 ? ? "exited" ? "0" ?

 ???

 ?"protocol" ? not set ? not set ?

 ? ??

 ? ? "exited" ? "0" ?

 ???

 ?"timeout" ? "killed" ? "TERM", "KILL" ?

 ? ??

 ? ? "exited" ? "0", "1", "2", "3", ?

 ? ? ? ..., "255" ?

 ???

 ?"exit-code" ? "exited" ? "1", "2", "3", ..., ?

 ? ? ? "255" ?

 ???

 ?"signal" ? "killed" ? "HUP", "INT", ?

 ? ? ? "KILL", ... ?

 ???

 ?"core-dump" ? "dumped" ? "ABRT", "SEGV", ?

 ? ? ? "QUIT", ... ?

 ???

 ?"watchdog" ? "dumped" ? "ABRT" ?

 ? ??

 ? ? "killed" ? "TERM", "KILL" ?

 ? ??

 ? ? "exited" ? "0", "1", "2", "3", ?

 ? ? ? ..., "255" ?

 ???

 ?"exec-condition" ? "exited" ? "1", "2", "3", "4", ?

 ? ? ? ..., "254" ?

 ???

 ?"oom-kill" ? "killed" ? "TERM", "KILL" ? Page 93/106

 ???

 ?"start-limit-hit" ? not set ? not set ?

 ???

 ?"resources" ? any of the above ? any of the above ?

 ???

 ?Note: the process may be also terminated by a signal not ?

 ?sent by systemd. In particular the process may send an ?

 ?arbitrary signal to itself in a handler for any of the ?

 ?non-maskable signals. Nevertheless, in the "timeout" and ?

 ?"watchdog" rows above only the signals that systemd sends ?

 ?have been included. Moreover, using SuccessExitStatus= ?

 ?additional exit statuses may be declared to indicate clean ?

 ?termination, which is not reflected by this table. ?

 ???

 $MONITOR_SERVICE_RESULT, $MONITOR_EXIT_CODE, $MONITOR_EXIT_STATUS,

 $MONITOR_INVOCATION_ID, $MONITOR_UNIT

 Only defined for the service unit type. Those environment variables

 are passed to all ExecStart= and ExecStartPre= processes which run

 in services triggered by OnFailure= or OnSuccess= dependencies.

 Variables $MONITOR_SERVICE_RESULT, $MONITOR_EXIT_CODE and

 $MONITOR_EXIT_STATUS take the same values as for ExecStop= and

 ExecStopPost= processes. Variables $MONITOR_INVOCATION_ID and

 $MONITOR_UNIT are set to the invocation id and unit name of the

 service which triggered the dependency.

 Note that when multiple services trigger the same unit, those

 variables will be not be passed. Consider using a template handler

 unit for that case instead: "OnFailure=handler@%n.service" for

 non-templated units, or "OnFailure=handler@%p-%i.service" for

 templated units.

 $PIDFILE

 The path to the configured PID file, in case the process is forked

 off on behalf of a service that uses the PIDFile= setting, see

 systemd.service(5) for details. Service code may use this Page 94/106

 environment variable to automatically generate a PID file at the

 location configured in the unit file. This field is set to an

 absolute path in the file system.

 $TRIGGER_UNIT, $TRIGGER_PATH, $TRIGGER_TIMER_REALTIME_USEC,

 $TRIGGER_TIMER_MONOTONIC_USEC

 If the unit was activated dynamically (e.g.: a corresponding path

 unit or timer unit), the unit that triggered it and other

 type-dependent information will be passed via these variables. Note

 that this information is provided in a best-effort way. For

 example, multiple triggers happening one after another will be

 coalesced and only one will be reported, with no guarantee as to

 which one it will be. Because of this, in most cases this variable

 will be primarily informational, i.e. useful for debugging

 purposes, is lossy, and should not be relied upon to propagate a

 comprehensive reason for activation.

 For system services, when PAMName= is enabled and pam_systemd is part

 of the selected PAM stack, additional environment variables defined by

 systemd may be set for services. Specifically, these are $XDG_SEAT,

 $XDG_VTNR, see pam_systemd(8) for details.

PROCESS EXIT CODES

 When invoking a unit process the service manager possibly fails to

 apply the execution parameters configured with the settings above. In

 that case the already created service process will exit with a non-zero

 exit code before the configured command line is executed. (Or in other

 words, the child process possibly exits with these error codes, after

 having been created by the fork(2) system call, but before the matching

 execve(2) system call is called.) Specifically, exit codes defined by

 the C library, by the LSB specification and by the systemd service

 manager itself are used.

 The following basic service exit codes are defined by the C library.

 Table 7. Basic C library exit codes

 ???

 ?Exit Code ? Symbolic Name ? Description ? Page 95/106

 ???

 ?0 ? EXIT_SUCCESS ? Generic success ?

 ? ? ? code. ?

 ???

 ?1 ? EXIT_FAILURE ? Generic failure or ?

 ? ? ? unspecified error. ?

 ???

 The following service exit codes are defined by the LSB

 specification[17].

 Table 8. LSB service exit codes

 ??

 ?Exit Code ? Symbolic Name ? Description ?

 ??

 ?2 ? EXIT_INVALIDARGUMENT ? Invalid or excess ?

 ? ? ? arguments. ?

 ??

 ?3 ? EXIT_NOTIMPLEMENTED ? Unimplemented ?

 ? ? ? feature. ?

 ??

 ?4 ? EXIT_NOPERMISSION ? The user has ?

 ? ? ? insufficient ?

 ? ? ? privileges. ?

 ??

 ?5 ? EXIT_NOTINSTALLED ? The program is not ?

 ? ? ? installed. ?

 ??

 ?6 ? EXIT_NOTCONFIGURED ? The program is not ?

 ? ? ? configured. ?

 ??

 ?7 ? EXIT_NOTRUNNING ? The program is not ?

 ? ? ? running. ?

 ??

 The LSB specification suggests that error codes 200 and above are Page 96/106

 reserved for implementations. Some of them are used by the service

 manager to indicate problems during process invocation:

 Table 9. systemd-specific exit codes

 ???

 ?Exit Code ? Symbolic Name ? Description ?

 ???

 ?200 ? EXIT_CHDIR ? Changing to the ?

 ? ? ? requested working ?

 ? ? ? directory failed. ?

 ? ? ? See ?

 ? ? ? WorkingDirectory= ?

 ? ? ? above. ?

 ???

 ?201 ? EXIT_NICE ? Failed to set up ?

 ? ? ? process scheduling ?

 ? ? ? priority (nice ?

 ? ? ? level). See Nice= ?

 ? ? ? above. ?

 ???

 ?202 ? EXIT_FDS ? Failed to close ?

 ? ? ? unwanted file ?

 ? ? ? descriptors, or to ?

 ? ? ? adjust passed file ?

 ? ? ? descriptors. ?

 ???

 ?203 ? EXIT_EXEC ? The actual process ?

 ? ? ? execution failed ?

 ? ? ? (specifically, the ?

 ? ? ? execve(2) system ?

 ? ? ? call). Most likely ?

 ? ? ? this is caused by a ?

 ? ? ? missing or ?

 ? ? ? non-accessible ? Page 97/106

 ? ? ? executable file. ?

 ???

 ?204 ? EXIT_MEMORY ? Failed to perform ?

 ? ? ? an action due to ?

 ? ? ? memory shortage. ?

 ???

 ?205 ? EXIT_LIMITS ? Failed to adjust ?

 ? ? ? resource limits. ?

 ? ? ? See LimitCPU= and ?

 ? ? ? related settings ?

 ? ? ? above. ?

 ???

 ?206 ? EXIT_OOM_ADJUST ? Failed to adjust ?

 ? ? ? the OOM setting. ?

 ? ? ? See OOMScoreAdjust= ?

 ? ? ? above. ?

 ???

 ?207 ? EXIT_SIGNAL_MASK ? Failed to set ?

 ? ? ? process signal ?

 ? ? ? mask. ?

 ???

 ?208 ? EXIT_STDIN ? Failed to set up ?

 ? ? ? standard input. See ?

 ? ? ? StandardInput= ?

 ? ? ? above. ?

 ???

 ?209 ? EXIT_STDOUT ? Failed to set up ?

 ? ? ? standard output. ?

 ? ? ? See StandardOutput= ?

 ? ? ? above. ?

 ???

 ?210 ? EXIT_CHROOT ? Failed to change ?

 ? ? ? root directory ? Page 98/106

 ? ? ? (chroot(2)). See ?

 ? ? ? RootDirectory=/RootImage= ?

 ? ? ? above. ?

 ???

 ?211 ? EXIT_IOPRIO ? Failed to set up IO ?

 ? ? ? scheduling priority. See ?

 ? ? ? IOSchedulingClass=/IOSchedulingPriority= ?

 ? ? ? above. ?

 ???

 ?212 ? EXIT_TIMERSLACK ? Failed to set up timer slack. See ?

 ? ? ? TimerSlackNSec= above. ?

 ???

 ?213 ? EXIT_SECUREBITS ? Failed to set process secure bits. See ?

 ? ? ? SecureBits= above. ?

 ???

 ?214 ? EXIT_SETSCHEDULER ? Failed to set up CPU scheduling. See ?

 ? ? ? CPUSchedulingPolicy=/CPUSchedulingPriority= ?

 ? ? ? above. ?

 ???

 ?215 ? EXIT_CPUAFFINITY ? Failed to set up CPU affinity. See ?

 ? ? ? CPUAffinity= above. ?

 ???

 ?216 ? EXIT_GROUP ? Failed to determine or change group ?

 ? ? ? credentials. See ?

 ? ? ? Group=/SupplementaryGroups= above. ?

 ???

 ?217 ? EXIT_USER ? Failed to determine or change user ?

 ? ? ? credentials, or to set up user namespacing. ?

 ? ? ? See User=/PrivateUsers= above. ?

 ???

 ?218 ? EXIT_CAPABILITIES ? Failed to drop capabilities, or apply ?

 ? ? ? ambient capabilities. See ?

 ? ? ? CapabilityBoundingSet=/AmbientCapabilities= ? Page 99/106

 ? ? ? above. ?

 ???

 ?219 ? EXIT_CGROUP ? Setting up the service control group ?

 ? ? ? failed. ?

 ???

 ?220 ? EXIT_SETSID ? Failed to create new process session. ?

 ???

 ?221 ? EXIT_CONFIRM ? Execution has been cancelled by the user. ?

 ? ? ? See the systemd.confirm_spawn= kernel ?

 ? ? ? command line setting on kernel-command- ?

 ? ? ? line(7) for details. ?

 ???

 ?222 ? EXIT_STDERR ? Failed to set up standard error output. See ?

 ? ? ? StandardError= above. ?

 ???

 ?224 ? EXIT_PAM ? Failed to set up PAM session. See PAMName= ?

 ? ? ? above. ?

 ???

 ?225 ? EXIT_NETWORK ? Failed to set up network namespacing. See ?

 ? ? ? PrivateNetwork= above. ?

 ???

 ?226 ? EXIT_NAMESPACE ? Failed to set up mount, UTS, or IPC ?

 ? ? ? namespacing. See ReadOnlyPaths=, ?

 ? ? ? ProtectHostname=, PrivateIPC=, and related ?

 ? ? ? settings above. ?

 ???

 ?227 ? EXIT_NO_NEW_PRIVILEGES ? Failed to disable new privileges. See ?

 ? ? ? NoNewPrivileges=yes above. ?

 ???

 ?228 ? EXIT_SECCOMP ? Failed to apply system call filters. See ?

 ? ? ? SystemCallFilter= and related settings ?

 ? ? ? above. ?

 ???Page 100/106

 ?229 ? EXIT_SELINUX_CONTEXT ? Determining or changing SELinux context ?

 ? ? ? failed. See SELinuxContext= above. ?

 ???

 ?230 ? EXIT_PERSONALITY ? Failed to set up an execution domain ?

 ? ? ? (personality). See Personality= above. ?

 ???

 ?231 ? EXIT_APPARMOR_PROFILE ? Failed to prepare changing AppArmor ?

 ? ? ? profile. See AppArmorProfile= above. ?

 ???

 ?232 ? EXIT_ADDRESS_FAMILIES ? Failed to restrict address families. See ?

 ? ? ? RestrictAddressFamilies= above. ?

 ???

 ?233 ? EXIT_RUNTIME_DIRECTORY ? Setting up runtime directory failed. See ?

 ? ? ? RuntimeDirectory= and related settings ?

 ? ? ? above. ?

 ???

 ?235 ? EXIT_CHOWN ? Failed to adjust socket ownership. Used for ?

 ? ? ? socket units only. ?

 ???

 ?236 ? EXIT_SMACK_PROCESS_LABEL ? Failed to set SMACK label. See ?

 ? ? ? SmackProcessLabel= above. ?

 ???

 ?237 ? EXIT_KEYRING ? Failed to set up kernel keyring. ?

 ???

 ?238 ? EXIT_STATE_DIRECTORY ? Failed to set up unit's state directory. ?

 ? ? ? See StateDirectory= above. ?

 ???

 ?239 ? EXIT_CACHE_DIRECTORY ? Failed to set up unit's cache directory. ?

 ? ? ? See CacheDirectory= above. ?

 ???

 ?240 ? EXIT_LOGS_DIRECTORY ? Failed to set up unit's logging directory. ?

 ? ? ? See LogsDirectory= above. ?

 ???Page 101/106

 ?241 ? EXIT_CONFIGURATION_DIRECTORY ? Failed to set up unit's configuration ?

 ? ? ? directory. See ConfigurationDirectory= ?

 ? ? ? above. ?

 ???

 ?242 ? EXIT_NUMA_POLICY ? Failed to set up unit's NUMA memory policy. ?

 ? ? ? See NUMAPolicy= and NUMAMask= above. ?

 ???

 ?243 ? EXIT_CREDENTIALS ? Failed to set up unit's credentials. See ?

 ? ? ? LoadCredential= and SetCredential= above. ?

 ???

 ?245 ? EXIT_BPF ? Failed to apply BPF restrictions. See ?

 ? ? ? RestrictFileSystems= above. ?

 ???

 Finally, the BSD operating systems define a set of exit codes,

 typically defined on Linux systems too:

 Table 10. BSD exit codes

 ???

 ?Exit Code ? Symbolic Name ? Description ?

 ???

 ?64 ? EX_USAGE ? Command line usage ?

 ? ? ? error ?

 ???

 ?65 ? EX_DATAERR ? Data format error ?

 ???

 ?66 ? EX_NOINPUT ? Cannot open input ?

 ???

 ?67 ? EX_NOUSER ? Addressee unknown ?

 ???

 ?68 ? EX_NOHOST ? Host name unknown ?

 ???

 ?69 ? EX_UNAVAILABLE ? Service unavailable ?

 ???

 ?70 ? EX_SOFTWARE ? internal software ? Page 102/106

 ? ? ? error ?

 ???

 ?71 ? EX_OSERR ? System error (e.g., ?

 ? ? ? can't fork) ?

 ???

 ?72 ? EX_OSFILE ? Critical OS file ?

 ? ? ? missing ?

 ???

 ?73 ? EX_CANTCREAT ? Can't create (user) ?

 ? ? ? output file ?

 ???

 ?74 ? EX_IOERR ? Input/output error ?

 ???

 ?75 ? EX_TEMPFAIL ? Temporary failure; ?

 ? ? ? user is invited to ?

 ? ? ? retry ?

 ???

 ?76 ? EX_PROTOCOL ? Remote error in ?

 ? ? ? protocol ?

 ???

 ?77 ? EX_NOPERM ? Permission denied ?

 ???

 ?78 ? EX_CONFIG ? Configuration error ?

 ???

EXAMPLES

 Example 3. $MONITOR_* usage

 A service myfailer.service which can trigger an OnFailure= dependency.

 [Unit]

 Description=Service which can trigger an OnFailure= dependency

 OnFailure=myhandler.service

 [Service]

 ExecStart=/bin/myprogram

 A service mysuccess.service which can trigger an OnSuccess= dependency. Page 103/106

 [Unit]

 Description=Service which can trigger an OnSuccess= dependency

 OnSuccess=myhandler.service

 [Service]

 ExecStart=/bin/mysecondprogram

 A service myhandler.service which can be triggered by any of the above

 services.

 [Unit]

 Description=Acts on service failing or succeeding

 [Service]

 ExecStart=/bin/bash -c "echo $MONITOR_SERVICE_RESULT $MONITOR_EXIT_CODE

$MONITOR_EXIT_STATUS $MONITOR_INVOCATION_ID $MONITOR_UNIT"

 If myfailer.service were to run and exit in failure, then

 myhandler.service would be triggered and the monitor variables would be

 set as follows:

 MONITOR_SERVICE_RESULT=exit-code

 MONITOR_EXIT_CODE=exited

 MONITOR_EXIT_STATUS=1

 MONITOR_INVOCATION_ID=cc8fdc149b2b4ca698d4f259f4054236

 MONITOR_UNIT=myfailer.service

 If mysuccess.service were to run and exit in success, then

 myhandler.service would be triggered and the monitor variables would be

 set as follows:

 MONITOR_SERVICE_RESULT=success

 MONITOR_EXIT_CODE=exited

 MONITOR_EXIT_STATUS=0

 MONITOR_INVOCATION_ID=6ab9af147b8c4a3ebe36e7a5f8611697

 MONITOR_UNIT=mysuccess.service

SEE ALSO

 systemd(1), systemctl(1), systemd-analyze(1), journalctl(1), systemd-

 system.conf(5), systemd.unit(5), systemd.service(5), systemd.socket(5),

 systemd.swap(5), systemd.mount(5), systemd.kill(5), systemd.resource-

 control(5), systemd.time(7), systemd.directives(7), tmpfiles.d(5), Page 104/106

 exec(3), fork(2)

NOTES

 1. Discoverable Partitions Specification

 https://systemd.io/DISCOVERABLE_PARTITIONS

 2. The /proc Filesystem

 https://docs.kernel.org/filesystems/proc.html#mount-options

 3. User/Group Name Syntax

 https://systemd.io/USER_NAMES

 4. No New Privileges Flag

 https://docs.kernel.org/userspace-api/no_new_privs.html

 5. JSON User Record

 https://systemd.io/USER_RECORD

 6. The /proc Filesystem

 https://docs.kernel.org/filesystems/proc.html

 7. unicode scalar values

 https://www.unicode.org/glossary/#unicode_scalar_value

 8. noncharacters

 https://www.unicode.org/glossary/#noncharacter

 9. byte order mark

 https://www.unicode.org/glossary/#byte_order_mark

 10. unquoted text

 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02_01

 11. single-quoted text

 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02_02

 12. double-quoted text

 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02_03

 13. Base64

 https://tools.ietf.org/html/rfc2045#section-6.8

 14. Container Interface

 https://systemd.io/CONTAINER_INTERFACE

 15. DMI/SMBIOS

 https://www.dmtf.org/standards/smbios

 16. System and Service Credentials Page 105/106

 https://systemd.io/CREDENTIALS

 17. LSB specification

 https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

systemd 252 SYSTEMD.EXEC(5)

Page 106/106

