
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd-cryptenroll.1'

$ man systemd-cryptenroll.1

SYSTEMD-CRYPTENROLL(1) systemd-cryptenroll SYSTEMD-CRYPTENROLL(1)

NAME

 systemd-cryptenroll - Enroll PKCS#11, FIDO2, TPM2 token/devices to

 LUKS2 encrypted volumes

SYNOPSIS

 systemd-cryptenroll [OPTIONS...] [DEVICE]

DESCRIPTION

 systemd-cryptenroll is a tool for enrolling hardware security tokens

 and devices into a LUKS2 encrypted volume, which may then be used to

 unlock the volume during boot. Specifically, it supports tokens and

 credentials of the following kind to be enrolled:

 1. PKCS#11 security tokens and smartcards that may carry an RSA key

 pair (e.g. various YubiKeys)

 2. FIDO2 security tokens that implement the "hmac-secret" extension

 (most FIDO2 keys, including YubiKeys)

 3. TPM2 security devices

 4. Regular passphrases

 5. Recovery keys. These are similar to regular passphrases, however Page 1/12

 are randomly generated on the computer and thus generally have

 higher entropy than user-chosen passphrases. Their character set

 has been designed to ensure they are easy to type in, while having

 high entropy. They may also be scanned off screen using QR codes.

 Recovery keys may be used for unlocking LUKS2 volumes wherever

 passphrases are accepted. They are intended to be used in

 combination with an enrolled hardware security token, as a recovery

 option when the token is lost.

 In addition, the tool may be used to enumerate currently enrolled

 security tokens and wipe a subset of them. The latter may be combined

 with the enrollment operation of a new security token, in order to

 update or replace enrollments.

 The tool supports only LUKS2 volumes, as it stores token

 meta-information in the LUKS2 JSON token area, which is not available

 in other encryption formats.

LIMITATIONS

 Note that currently when enrolling a new key of one of the five

 supported types listed above, it is required to first provide a

 passphrase or recovery key (i.e. one of the latter two key types). For

 example, it's currently not possible to unlock a device with a FIDO2

 key in order to enroll a new FIDO2 key. Instead, in order to enroll a

 new FIDO2 key, it is necessary to provide an already enrolled regular

 passphrase or recovery key. Thus, if in future key roll-over is desired

 it's generally recommended to combine TPM2, FIDO2, PKCS#11 key

 enrollment with enrolling a regular passphrase or recovery key.

 Also note that support for enrolling multiple FIDO2 tokens is currently

 not too useful, as while unlocking systemd-cryptsetup cannot identify

 which token is currently plugged in and thus does not know which

 authentication request to send to the device. This limitation does not

 apply to tokens enrolled via PKCS#11 ? because tokens of this type may

 be identified immediately, before authentication.

OPTIONS

 The following options are understood: Page 2/12

 --password

 Enroll a regular password/passphrase. This command is mostly

 equivalent to cryptsetup luksAddKey, however may be combined with

 --wipe-slot= in one call, see below.

 --recovery-key

 Enroll a recovery key. Recovery keys are mostly identical to

 passphrases, but are computer-generated instead of being chosen by

 a human, and thus have a guaranteed high entropy. The key uses a

 character set that is easy to type in, and may be scanned off

 screen via a QR code.

 --unlock-key-file=PATH

 Use a file instead of a password/passphrase read from stdin to

 unlock the volume. Expects the PATH to the file containing your key

 to unlock the volume. Currently there is nothing like

 --key-file-offset= or --key-file-size= so this file has to only

 contain the full key.

 --pkcs11-token-uri=URI

 Enroll a PKCS#11 security token or smartcard (e.g. a YubiKey).

 Expects a PKCS#11 smartcard URI referring to the token.

 Alternatively the special value "auto" may be specified, in order

 to automatically determine the URI of a currently plugged in

 security token (of which there must be exactly one). The special

 value "list" may be used to enumerate all suitable PKCS#11 tokens

 currently plugged in. The security token must contain an RSA key

 pair which is used to encrypt the randomly generated key that is

 used to unlock the LUKS2 volume. The encrypted key is then stored

 in the LUKS2 JSON token header area.

 In order to unlock a LUKS2 volume with an enrolled PKCS#11 security

 token, specify the pkcs11-uri= option in the respective

 /etc/crypttab line:

 myvolume /dev/sda1 - pkcs11-uri=auto

 See crypttab(5) for a more comprehensive example of a

 systemd-cryptenroll invocation and its matching /etc/crypttab line. Page 3/12

 --fido2-credential-algorithm=STRING

 Specify COSE algorithm used in credential generation. The default

 value is "es256". Supported values are "es256", "rs256" and

 "eddsa".

 "es256" denotes ECDSA over NIST P-256 with SHA-256. "rs256"

 denotes 2048-bit RSA with PKCS#1.5 padding and SHA-256. "eddsa"

 denotes EDDSA over Curve25519 with SHA-512.

 Note that your authenticator may not support some algorithms.

 --fido2-device=PATH

 Enroll a FIDO2 security token that implements the "hmac-secret"

 extension (e.g. a YubiKey). Expects a hidraw device referring to

 the FIDO2 device (e.g. /dev/hidraw1). Alternatively the special

 value "auto" may be specified, in order to automatically determine

 the device node of a currently plugged in security token (of which

 there must be exactly one). The special value "list" may be used to

 enumerate all suitable FIDO2 tokens currently plugged in. Note that

 many hardware security tokens that implement FIDO2 also implement

 the older PKCS#11 standard. Typically FIDO2 is preferable, given

 it's simpler to use and more modern.

 In order to unlock a LUKS2 volume with an enrolled FIDO2 security

 token, specify the fido2-device= option in the respective

 /etc/crypttab line:

 myvolume /dev/sda1 - fido2-device=auto

 See crypttab(5) for a more comprehensive example of a

 systemd-cryptenroll invocation and its matching /etc/crypttab line.

 --fido2-with-client-pin=BOOL

 When enrolling a FIDO2 security token, controls whether to require

 the user to enter a PIN when unlocking the volume (the FIDO2

 "clientPin" feature). Defaults to "yes". (Note: this setting is

 without effect if the security token does not support the

 "clientPin" feature at all, or does not allow enabling or disabling

 it.)

 --fido2-with-user-presence=BOOL Page 4/12

 When enrolling a FIDO2 security token, controls whether to require

 the user to verify presence (tap the token, the FIDO2 "up" feature)

 when unlocking the volume. Defaults to "yes". (Note: this setting

 is without effect if the security token does not support the "up"

 feature at all, or does not allow enabling or disabling it.)

 --fido2-with-user-verification=BOOL

 When enrolling a FIDO2 security token, controls whether to require

 user verification when unlocking the volume (the FIDO2 "uv"

 feature). Defaults to "no". (Note: this setting is without effect

 if the security token does not support the "uv" feature at all, or

 does not allow enabling or disabling it.)

 --tpm2-device=PATH

 Enroll a TPM2 security chip. Expects a device node path referring

 to the TPM2 chip (e.g. /dev/tpmrm0). Alternatively the special

 value "auto" may be specified, in order to automatically determine

 the device node of a currently discovered TPM2 device (of which

 there must be exactly one). The special value "list" may be used to

 enumerate all suitable TPM2 devices currently discovered.

 In order to unlock a LUKS2 volume with an enrolled TPM2 security

 chip, specify the tpm2-device= option in the respective

 /etc/crypttab line:

 myvolume /dev/sda1 - tpm2-device=auto

 See crypttab(5) for a more comprehensive example of a

 systemd-cryptenroll invocation and its matching /etc/crypttab line.

 Use --tpm2-pcrs= (see below) to configure which TPM2 PCR indexes to

 bind the enrollment to.

 --tpm2-pcrs= [PCR...]

 Configures the TPM2 PCRs (Platform Configuration Registers) to bind

 the enrollment requested via --tpm2-device= to. Takes a "+"

 separated list of numeric PCR indexes in the range 0...23. If not

 used, defaults to PCR 7 only. If an empty string is specified,

 binds the enrollment to no PCRs at all. PCRs allow binding the

 enrollment to specific software versions and system state, so that Page 5/12

 the enrolled unlocking key is only accessible (may be "unsealed")

 if specific trusted software and/or configuration is used.

 Table 1. Well-known PCR Definitions

 ???????????????????????????????????

 ?PCR ? Explanation ?

 ???????????????????????????????????

 ?0 ? Core system firmware ?

 ? ? executable code; changes ?

 ? ? on firmware updates ?

 ???????????????????????????????????

 ?1 ? Core system firmware ?

 ? ? data/host platform ?

 ? ? configuration; typically ?

 ? ? contains serial and model ?

 ? ? numbers, changes on basic ?

 ? ? hardware/CPU/RAM ?

 ? ? replacements ?

 ???????????????????????????????????

 ?2 ? Extended or pluggable ?

 ? ? executable code; includes ?

 ? ? option ROMs on pluggable ?

 ? ? hardware ?

 ???????????????????????????????????

 ?3 ? Extended or pluggable ?

 ? ? firmware data; includes ?

 ? ? information about ?

 ? ? pluggable hardware ?

 ???????????????????????????????????

 ?4 ? Boot loader and additional ?

 ? ? drivers; changes on boot ?

 ? ? loader updates. The shim ?

 ? ? project will measure the ?

 ? ? PE binary it chain loads ? Page 6/12

 ? ? into this PCR. If the ?

 ? ? Linux kernel is invoked as ?

 ? ? UEFI PE binary, it is ?

 ? ? measured here, too. sd- ?

 ? ? stub(7) measures system ?

 ? ? extension images read from ?

 ? ? the ESP here too (see ?

 ? ? systemd-sysext(8)). ?

 ???????????????????????????????????

 ?5 ? GPT/Partition table; ?

 ? ? changes when the ?

 ? ? partitions are added, ?

 ? ? modified or removed ?

 ???????????????????????????????????

 ?6 ? Power state events; ?

 ? ? changes on system ?

 ? ? suspend/sleep ?

 ???????????????????????????????????

 ?7 ? Secure boot state; changes ?

 ? ? when UEFI SecureBoot mode ?

 ? ? is enabled/disabled, or ?

 ? ? firmware certificates (PK, ?

 ? ? KEK, db, dbx, ...) ?

 ? ? changes. The shim project ?

 ? ? will measure most of its ?

 ? ? (non-MOK) certificates and ?

 ? ? SBAT data into this PCR. ?

 ???????????????????????????????????

 ?9 ? The Linux kernel measures ?

 ? ? all initrds it receives ?

 ? ? into this PCR. ?

 ???????????????????????????????????

 ?10 ? The IMA project measures ? Page 7/12

 ? ? its runtime state into ?

 ? ? this PCR. ?

 ???????????????????????????????????

 ?11 ? systemd-stub(7) measures ?

 ? ? the ELF kernel image, ?

 ? ? embedded initrd and other ?

 ? ? payload of the PE image it ?

 ? ? is placed in into this ?

 ? ? PCR. Unlike PCR 4 (where ?

 ? ? the same data should be ?

 ? ? measured into), this PCR ?

 ? ? value should be easy to ?

 ? ? pre-calculate, as this ?

 ? ? only contains static parts ?

 ? ? of the PE binary. Use this ?

 ? ? PCR to bind TPM policies ?

 ? ? to a specific kernel ?

 ? ? image, possibly with an ?

 ? ? embedded initrd. systemd- ?

 ? ? pcrphase.service(8) ?

 ? ? measures boot phase ?

 ? ? strings into this PCR at ?

 ? ? various milestones of the ?

 ? ? boot process. ?

 ???????????????????????????????????

 ?12 ? systemd-boot(7) measures ?

 ? ? any specified kernel ?

 ? ? command line into this ?

 ? ? PCR. systemd-stub(7) ?

 ? ? measures any manually ?

 ? ? specified kernel command ?

 ? ? line (i.e. a kernel ?

 ? ? command line that ? Page 8/12

 ? ? overrides the one embedded ?

 ? ? in the unified PE image) ?

 ? ? and loaded credentials ?

 ? ? into this PCR. (Note that ?

 ? ? if systemd-boot and ?

 ? ? systemd-stub are used in ?

 ? ? combination the command ?

 ? ? line might be measured ?

 ? ? twice!) ?

 ???????????????????????????????????

 ?13 ? systemd-stub(7) measures ?

 ? ? any systemd-sysext(8) ?

 ? ? images it loads and passed ?

 ? ? to the booted kernel into ?

 ? ? this PCR. ?

 ???????????????????????????????????

 ?14 ? The shim project measures ?

 ? ? its "MOK" certificates and ?

 ? ? hashes into this PCR. ?

 ???????????????????????????????????

 For most applications it should be sufficient to bind against PCR 7

 (and possibly PCR 14, if shim/MOK is desired), as this includes

 measurements of the trusted certificates (and possibly hashes) that

 are used to validate all components of the boot process up to and

 including the OS kernel. In order to simplify firmware and OS

 version updates it's typically not advisable to include PCRs such

 as 0 and 2 in the binding of the enrollment, since the program code

 they cover should already be protected indirectly through the

 certificates measured into PCR 7. Validation through these

 certificates is typically preferable over validation through direct

 measurements as it is less brittle in context of OS/firmware

 updates: the measurements will change on every update, but code

 signatures likely will validate against pre-existing certificates. Page 9/12

 --tpm2-with-pin=BOOL

 When enrolling a TPM2 device, controls whether to require the user

 to enter a PIN when unlocking the volume in addition to PCR

 binding, based on TPM2 policy authentication. Defaults to "no".

 Despite being called PIN, any character can be used, not just

 numbers.

 Note that incorrect PIN entry when unlocking increments the TPM

 dictionary attack lockout mechanism, and may lock out users for a

 prolonged time, depending on its configuration. The lockout

 mechanism is a global property of the TPM, systemd-cryptenroll does

 not control or configure the lockout mechanism. You may use

 tpm2-tss tools to inspect or configure the dictionary attack

 lockout, with tpm2_getcap(1) and tpm2_dictionarylockout(1)

 commands, respectively.

 --tpm2-public-key= [PATH], --tpm2-public-key-pcrs= [PCR...],

 --tpm2-signature= [PATH]

 Configures a TPM2 signed PCR policy to bind encryption to. The

 --tpm2-public-key= option accepts a path to a PEM encoded RSA

 public key, to bind the encryption to. If this is not specified

 explicitly, but a file tpm2-pcr-public-key.pem exists in one of the

 directories /etc/systemd/, /run/systemd/, /usr/lib/systemd/

 (searched in this order), it is automatically used. The

 --tpm2-public-key-pcrs= option takes a list of TPM2 PCR indexes to

 bind to (same syntax as --tpm2-pcrs= described above). If not

 specified defaults to 11 (i.e. this binds the policy to any unified

 kernel image for which a PCR signature can be provided).

 Note the difference between --tpm2-pcrs= and

 --tpm2-public-key-pcrs=: the former binds decryption to the

 current, specific PCR values; the latter binds decryption to any

 set of PCR values for which a signature by the specified public key

 can be provided. The latter is hence more useful in scenarios where

 software updates shell be possible without losing access to all

 previously encrypted LUKS2 volumes. Page 10/12

 The --tpm2-signature= option takes a path to a TPM2 PCR signature

 file as generated by the systemd-measure(1) tool. If this this is

 not specified explicitly a suitable signature file

 tpm2-pcr-signature.json is searched for in /etc/systemd/,

 /run/systemd/, /usr/lib/systemd/ (in this order) and used. If a

 signature file is specified or found it is used to verify if the

 volume can be unlocked with it given the current PCR state, before

 the new slot is written to disk. This is intended as safety net to

 ensure that access to a volume is not lost if a public key is

 enrolled for which no valid signature for the current PCR state is

 available. If the supplied signature does not unlock the current

 PCR state and public key combination, no slot is enrolled and the

 operation will fail. If no signature file is specified or found no

 such safety verification is done.

 --wipe-slot= [SLOT...]

 Wipes one or more LUKS2 key slots. Takes a comma separated list of

 numeric slot indexes, or the special strings "all" (for wiping all

 key slots), "empty" (for wiping all key slots that are unlocked by

 an empty passphrase), "password" (for wiping all key slots that are

 unlocked by a traditional passphrase), "recovery" (for wiping all

 key slots that are unlocked by a recovery key), "pkcs11" (for

 wiping all key slots that are unlocked by a PKCS#11 token), "fido2"

 (for wiping all key slots that are unlocked by a FIDO2 token),

 "tpm2" (for wiping all key slots that are unlocked by a TPM2 chip),

 or any combination of these strings or numeric indexes, in which

 case all slots matching either are wiped. As safety precaution an

 operation that wipes all slots without exception (so that the

 volume cannot be unlocked at all anymore, unless the volume key is

 known) is refused.

 This switch may be used alone, in which case only the requested

 wipe operation is executed. It may also be used in combination with

 any of the enrollment options listed above, in which case the

 enrollment is completed first, and only when successful the wipe Page 11/12

 operation executed ? and the newly added slot is always excluded

 from the wiping. Combining enrollment and slot wiping may thus be

 used to update existing enrollments:

 systemd-cryptenroll /dev/sda1 --wipe-slot=tpm2 --tpm2-device=auto

 The above command will enroll the TPM2 chip, and then wipe all

 previously created TPM2 enrollments on the LUKS2 volume, leaving

 only the newly created one. Combining wiping and enrollment may

 also be used to replace enrollments of different types, for example

 for changing from a PKCS#11 enrollment to a FIDO2 one:

 systemd-cryptenroll /dev/sda1 --wipe-slot=pkcs11 --fido2-device=auto

 Or for replacing an enrolled empty password by TPM2:

 systemd-cryptenroll /dev/sda1 --wipe-slot=empty --tpm2-device=auto

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

EXIT STATUS

 On success, 0 is returned, a non-zero failure code otherwise.

SEE ALSO

 systemd(1), systemd-cryptsetup@.service(8), crypttab(5), cryptsetup(8),

 systemd-measure(1)

systemd 252 SYSTEMD-CRYPTENROLL(1)

Page 12/12

