
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd-coredump@.service.8'

$ man systemd-coredump@.service.8

SYSTEMD-COREDUMP(8) systemd-coredump SYSTEMD-COREDUMP(8)

NAME

 systemd-coredump, systemd-coredump.socket, systemd-coredump@.service -

 Acquire, save and process core dumps

SYNOPSIS

 /usr/lib/systemd/systemd-coredump

 /usr/lib/systemd/systemd-coredump --backtrace

 systemd-coredump@.service

 systemd-coredump.socket

DESCRIPTION

 systemd-coredump@.service is a system service to process core dumps. It

 will log a summary of the event to systemd-journald.service(8),

 including information about the process identifier, owner, the signal

 that killed the process, and the stack trace if possible. It may also

 save the core dump for later processing. See the "Information about the

 crashed process" section below.

 The behavior of a specific program upon reception of a signal is

 governed by a few factors which are described in detail in core(5). In Page 1/8

 particular, the core dump will only be processed when the related

 resource limits are sufficient.

 Core dumps can be written to the journal or saved as a file. In both

 cases, they can be retrieved for further processing, for example in

 gdb(1). See coredumpctl(1), in particular the list and debug verbs.

 By default, systemd-coredump will log the core dump to the journal,

 including a backtrace if possible, and store the core dump (an image of

 the memory contents of the process) itself in an external file in

 /var/lib/systemd/coredump. These core dumps are deleted after a few

 days by default; see /usr/lib/tmpfiles.d/systemd.conf for details. Note

 that the removal of core files from the file system and the purging of

 journal entries are independent, and the core file may be present

 without the journal entry, and journal entries may point to

 since-removed core files. Some metadata is attached to core files in

 the form of extended attributes, so the core files are useful for some

 purposes even without the full metadata available in the journal entry.

 Invocation of systemd-coredump

 The systemd-coredump executable does the actual work. It is invoked

 twice: once as the handler by the kernel, and the second time in the

 systemd-coredump@.service to actually write the data to the journal and

 process and save the core file.

 When the kernel invokes systemd-coredump to handle a core dump, it runs

 in privileged mode, and will connect to the socket created by the

 systemd-coredump.socket unit, which in turn will spawn an unprivileged

 systemd-coredump@.service instance to process the core dump. Hence

 systemd-coredump.socket and systemd-coredump@.service are helper units

 which do the actual processing of core dumps and are subject to normal

 service management.

 It is also possible to invoke systemd-coredump with --backtrace option.

 In this case, systemd-coredump expects a journal entry in the journal

 Journal Export Format[1] on standard input. The entry should contain a

 MESSAGE= field and any additional metadata fields the caller deems

 reasonable. systemd-coredump will append additional metadata fields in Page 2/8

 the same way it does for core dumps received from the kernel. In this

 mode, no core dump is stored in the journal.

CONFIGURATION

 For programs started by systemd, process resource limits can be set by

 directive LimitCORE=, see systemd.exec(5).

 In order to be used by the kernel to handle core dumps,

 systemd-coredump must be configured in sysctl(8) parameter

 kernel.core_pattern. The syntax of this parameter is explained in

 core(5). systemd installs the file /usr/lib/sysctl.d/50-coredump.conf

 which configures kernel.core_pattern accordingly. This file may be

 masked or overridden to use a different setting following normal

 sysctl.d(5) rules. If the sysctl configuration is modified, it must be

 updated in the kernel before it takes effect, see sysctl(8) and

 systemd-sysctl(8).

 In order to be used in the --backtrace mode, an appropriate backtrace

 handler must be installed on the sender side. For example, in case of

 python(1), this means a sys.excepthook must be installed, see

 systemd-coredump-python[2].

 The behavior of systemd-coredump itself is configured through the

 configuration file /etc/systemd/coredump.conf and corresponding

 snippets /etc/systemd/coredump.conf.d/*.conf, see coredump.conf(5). A

 new instance of systemd-coredump is invoked upon receiving every core

 dump. Therefore, changes in these files will take effect the next time

 a core dump is received.

 Resources used by core dump files are restricted in two ways.

 Parameters like maximum size of acquired core dumps and files can be

 set in files /etc/systemd/coredump.conf and snippets mentioned above.

 In addition the storage time of core dump files is restricted by

 systemd-tmpfiles, corresponding settings are by default in

 /usr/lib/tmpfiles.d/systemd.conf. The default is to delete core dumps

 after a few days; see the above file for details.

 Disabling coredump processing

 To disable potentially resource-intensive processing by Page 3/8

 systemd-coredump, set

 Storage=none ProcessSizeMax=0

 in coredump.conf(5).

INFORMATION ABOUT THE CRASHED PROCESS

 coredumpctl(1) can be used to retrieve saved core dumps independently

 of their location, to display information, and to process them e.g. by

 passing to the GNU debugger (gdb).

 Data stored in the journal can be also viewed with journalctl(1) as

 usual (or from any other process, using the sd-journal(3) API). The

 relevant messages have MESSAGE_ID=fc2e22bc6ee647b6b90729ab34a250b1:

 $ journalctl MESSAGE_ID=fc2e22bc6ee647b6b90729ab34a250b1 -o verbose

 ...

 MESSAGE_ID=fc2e22bc6ee647b6b90729ab34a250b1

 COREDUMP_PID=552351

 COREDUMP_UID=1000

 COREDUMP_GID=1000

 COREDUMP_SIGNAL_NAME=SIGSEGV

 COREDUMP_SIGNAL=11

 COREDUMP_TIMESTAMP=1614342930000000

 COREDUMP_COMM=Web Content

 COREDUMP_EXE=/usr/lib64/firefox/firefox

 COREDUMP_USER_UNIT=app-gnome-firefox-552136.scope

 COREDUMP_CMDLINE=/usr/lib64/firefox/firefox -contentproc -childID 5 -isForBrowser ...

 COREDUMP_CGROUP=/user.slice/user-1000.slice/user@1000.service/app.slice/app-....scope

 COREDUMP_FILENAME=/var/lib/systemd/coredump/core.Web....552351.....zst

 ...

 The following fields are saved (if known) with the journal entry

 COREDUMP_UID=, COREDUMP_PID=, COREDUMP_GID=

 The process number (PID), owner user number (UID), and group number

 (GID) of the crashed process.

 When the crashed process was part of a container (or in a process

 or user namespace in general), those are the values as seen

 outside, in the namespace where systemd-coredump is running. Page 4/8

 COREDUMP_TIMESTAMP=

 The time of the crash as reported by the kernel (in ?s since the

 epoch).

 COREDUMP_RLIMIT=

 The core file size soft resource limit, see getrlimit(2).

 COREDUMP_UNIT=, COREDUMP_SLICE=

 The system unit and slice names.

 When the crashed process was in container, those are the units

 names outside, in the main system manager.

 COREDUMP_CGROUP=

 Control group information in the format used in /proc/self/cgroup.

 On systems with the unified cgroup hierarchy, this is a single path

 prefixed with "0::", and multiple paths prefixed with controller

 numbers on legacy systems.

 When the crashed process was in a container, this is the full path,

 as seen outside of the container.

 COREDUMP_OWNER_UID=, COREDUMP_USER_UNIT=

 The numerical UID of the user owning the login session or systemd

 user unit of the crashed process, and the user manager unit. Both

 fields are only present for user processes.

 When the crashed process was in container, those are the values

 outside, in the main system.

 COREDUMP_SIGNAL_NAME=, COREDUMP_SIGNAL=

 The terminating signal name (with the "SIG" prefix [3]) and

 numerical value. (Both are included because signal numbers vary by

 architecture.)

 COREDUMP_CWD=, COREDUMP_ROOT=

 The current working directory and root directory of the crashed

 process.

 When the crashed process is in a container, those paths are

 relative to the root of the container's mount namespace.

 COREDUMP_OPEN_FDS=

 Information about open file descriptors, in the following format: Page 5/8

 fd:/path/to/file

 pos: ...

 flags: ...

 ...

 fd:/path/to/file

 pos: ...

 flags: ...

 ...

 The first line contains the file descriptor number fd and the path,

 while subsequent lines show the contents of /proc/pid/fdinfo/fd.

 COREDUMP_EXE=

 The destination of the /proc/pid/exe symlink.

 When the crashed process is in a container, that path is relative

 to the root of the container's mount namespace.

 COREDUMP_COMM=, COREDUMP_PROC_STATUS=, COREDUMP_PROC_MAPS=,

 COREDUMP_PROC_LIMITS=, COREDUMP_PROC_MOUNTINFO=, COREDUMP_ENVIRON=

 Fields that map the per-process entries in the /proc/ filesystem:

 /proc/pid/comm (the command name associated with the process),

 /proc/pid/exe (the filename of the executed command),

 /proc/pid/status (various metadata about the process),

 /proc/pid/maps (memory regions visible to the process and their

 access permissions), /proc/pid/limits (the soft and hard resource

 limits), /proc/pid/mountinfo (mount points in the process's mount

 namespace), /proc/pid/environ (the environment block of the crashed

 process).

 See proc(5) for more information.

 COREDUMP_HOSTNAME=

 The system hostname.

 When the crashed process was in container, this is the container

 hostname.

 COREDUMP_CONTAINER_CMDLINE=

 For processes running in a container, the commandline of the

 process spawning the container (the first parent process with a Page 6/8

 different mount namespace).

 COREDUMP=

 When the core is stored in the journal, the core image itself.

 COREDUMP_FILENAME=

 When the core is stored externally, the path to the core file.

 COREDUMP_TRUNCATED=

 Set to "1" when the saved coredump was truncated. (A partial core

 image may still be processed by some tools, though obviously not

 all information is available.)

 COREDUMP_PACKAGE_NAME=, COREDUMP_PACKAGE_VERSION=,

 COREDUMP_PACKAGE_JSON=

 If the executable contained .package metadata ELF notes, they will

 be parsed and attached. The package and packageVersion of the

 'main' ELF module (ie: the executable) will be appended

 individually. The JSON-formatted content of all modules will be

 appended as a single JSON object, each with the module name as the

 key. For more information about this metadata format and content,

 see the coredump metadata spec[4].

 MESSAGE=

 The message generated by systemd-coredump that includes the

 backtrace if it was successfully generated. When systemd-coredump

 is invoked with --backtrace, this field is provided by the caller.

 Various other fields exist in the journal entry, but pertain to the

 logging process, i.e. systemd-coredump, not the crashed process. See

 systemd.journal-fields(7).

 The following fields are saved (if known) with the external file listed

 in COREDUMP_FILENAME= as extended attributes:

 user.coredump.pid, user.coredump.uid, user.coredump.gid,

 user.coredump.signal, user.coredump.timestamp, user.coredump.rlimit,

 user.coredump.hostname, user.coredump.comm, user.coredump.exe

 Those are the same as COREDUMP_PID=, COREDUMP_UID=, COREDUMP_GID=,

 COREDUMP_SIGNAL=, COREDUMP_TIMESTAMP=, COREDUMP_RLIMIT=,

 COREDUMP_HOSTNAME=, COREDUMP_COMM=, and COREDUMP_EXE=, described Page 7/8

 above.

 Those can be viewed using getfattr(1). For the core file described in

 the journal entry shown above:

 $ getfattr --absolute-names -d /var/lib/systemd/coredump/core.Web....552351.....zst

 # file: /var/lib/systemd/coredump/core.Web....552351.....zst

 user.coredump.pid="552351"

 user.coredump.uid="1000"

 user.coredump.gid="1000"

 user.coredump.signal="11"

 user.coredump.timestamp="1614342930000000"

 user.coredump.comm="Web Content"

 user.coredump.exe="/usr/lib64/firefox/firefox"

 ...

SEE ALSO

 coredump.conf(5), coredumpctl(1), systemd-journald.service(8), systemd-

 tmpfiles(8), core(5), sysctl.d(5), systemd-sysctl.service(8).

NOTES

 1. Journal Export Format

 https://systemd.io/JOURNAL_EXPORT_FORMATS#journal-export-format

 2. systemd-coredump-python

 https://github.com/systemd/systemd-coredump-python

 3. kill(1) expects signal names without the prefix; kill(2) uses the

 prefix; all systemd tools accept signal names both with and without

 the prefix.

 4. the coredump metadata spec

 https://systemd.io/COREDUMP_PACKAGE_METADATA/

systemd 252 SYSTEMD-COREDUMP(8)

Page 8/8

