
Rocky Enterprise Linux 9.2 Manual Pages on command 'system.3'

$ man system.3

SYSTEM(3) Linux Programmer's Manual SYSTEM(3)

NAME

 system - execute a shell command

SYNOPSIS

 #include <stdlib.h>

 int system(const char *command);

DESCRIPTION

 The system() library function uses fork(2) to create a child process

 that executes the shell command specified in command using execl(3) as

 follows:

 execl("/bin/sh", "sh", "-c", command, (char *) NULL);

 system() returns after the command has been completed.

 During execution of the command, SIGCHLD will be blocked, and SIGINT

 and SIGQUIT will be ignored, in the process that calls system().

 (These signals will be handled according to their defaults inside the

 child process that executes command.)

 If command is NULL, then system() returns a status indicating whether a

 shell is available on the system. Page 1/4

RETURN VALUE

 The return value of system() is one of the following:

 * If command is NULL, then a nonzero value if a shell is available, or

 0 if no shell is available.

 * If a child process could not be created, or its status could not be

 retrieved, the return value is -1 and errno is set to indicate the

 error.

 * If a shell could not be executed in the child process, then the re?

 turn value is as though the child shell terminated by calling

 _exit(2) with the status 127.

 * If all system calls succeed, then the return value is the termina?

 tion status of the child shell used to execute command. (The termi?

 nation status of a shell is the termination status of the last com?

 mand it executes.)

 In the last two cases, the return value is a "wait status" that can be

 examined using the macros described in waitpid(2). (i.e., WIFEXITED(),

 WEXITSTATUS(), and so on).

 system() does not affect the wait status of any other children.

ERRORS

 system() can fail with any of the same errors as fork(2).

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??????????????????????????????????????

 ?Interface ? Attribute ? Value ?

 ??????????????????????????????????????

 ?system() ? Thread safety ? MT-Safe ?

 ??????????????????????????????????????

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, C89, C99.

NOTES

 system() provides simplicity and convenience: it handles all of the de?

 tails of calling fork(2), execl(3), and waitpid(2), as well as the nec? Page 2/4

 essary manipulations of signals; in addition, the shell performs the

 usual substitutions and I/O redirections for command. The main cost of

 system() is inefficiency: additional system calls are required to cre?

 ate the process that runs the shell and to execute the shell.

 If the _XOPEN_SOURCE feature test macro is defined (before including

 any header files), then the macros described in waitpid(2) (WEXITSTA?

 TUS(), etc.) are made available when including <stdlib.h>.

 As mentioned, system() ignores SIGINT and SIGQUIT. This may make pro?

 grams that call it from a loop uninterruptible, unless they take care

 themselves to check the exit status of the child. For example:

 while (something) {

 int ret = system("foo");

 if (WIFSIGNALED(ret) &&

 (WTERMSIG(ret) == SIGINT || WTERMSIG(ret) == SIGQUIT))

 break;

 }

 According to POSIX.1, it is unspecified whether handlers registered us?

 ing pthread_atfork(3) are called during the execution of system(). In

 the glibc implementation, such handlers are not called.

 In versions of glibc before 2.1.3, the check for the availability of

 /bin/sh was not actually performed if command was NULL; instead it was

 always assumed to be available, and system() always returned 1 in this

 case. Since glibc 2.1.3, this check is performed because, even though

 POSIX.1-2001 requires a conforming implementation to provide a shell,

 that shell may not be available or executable if the calling program

 has previously called chroot(2) (which is not specified by

 POSIX.1-2001).

 It is possible for the shell command to terminate with a status of 127,

 which yields a system() return value that is indistinguishable from the

 case where a shell could not be executed in the child process.

 Caveats

 Do not use system() from a privileged program (a set-user-ID or set-

 group-ID program, or a program with capabilities) because strange val? Page 3/4

 ues for some environment variables might be used to subvert system in?

 tegrity. For example, PATH could be manipulated so that an arbitrary

 program is executed with privilege. Use the exec(3) family of func?

 tions instead, but not execlp(3) or execvp(3) (which also use the PATH

 environment variable to search for an executable).

 system() will not, in fact, work properly from programs with set-user-

 ID or set-group-ID privileges on systems on which /bin/sh is bash ver?

 sion 2: as a security measure, bash 2 drops privileges on startup.

 (Debian uses a different shell, dash(1), which does not do this when

 invoked as sh.)

 Any user input that is employed as part of command should be carefully

 sanitized, to ensure that unexpected shell commands or command options

 are not executed. Such risks are especially grave when using system()

 from a privileged program.

SEE ALSO

 sh(1), execve(2), fork(2), sigaction(2), sigprocmask(2), wait(2),

 exec(3), signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2019-03-06 SYSTEM(3)

Page 4/4

