
Rocky Enterprise Linux 9.2 Manual Pages on command 'syscall.2'

$ man syscall.2

SYSCALL(2) Linux Programmer's Manual SYSCALL(2)

NAME

 syscall - indirect system call

SYNOPSIS

 #include <unistd.h>

 #include <sys/syscall.h> /* For SYS_xxx definitions */

 long syscall(long number, ...);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 syscall():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Before glibc 2.19:

 _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 syscall() is a small library function that invokes the system call

 whose assembly language interface has the specified number with the

 specified arguments. Employing syscall() is useful, for example, when

 invoking a system call that has no wrapper function in the C library. Page 1/7

 syscall() saves CPU registers before making the system call, restores

 the registers upon return from the system call, and stores any error

 returned by the system call in errno(3).

 Symbolic constants for system call numbers can be found in the header

 file <sys/syscall.h>.

RETURN VALUE

 The return value is defined by the system call being invoked. In gen?

 eral, a 0 return value indicates success. A -1 return value indicates

 an error, and an error number is stored in errno.

NOTES

 syscall() first appeared in 4BSD.

 Architecture-specific requirements

 Each architecture ABI has its own requirements on how system call argu?

 ments are passed to the kernel. For system calls that have a glibc

 wrapper (e.g., most system calls), glibc handles the details of copying

 arguments to the right registers in a manner suitable for the architec?

 ture. However, when using syscall() to make a system call, the caller

 might need to handle architecture-dependent details; this requirement

 is most commonly encountered on certain 32-bit architectures.

 For example, on the ARM architecture Embedded ABI (EABI), a 64-bit

 value (e.g., long long) must be aligned to an even register pair.

 Thus, using syscall() instead of the wrapper provided by glibc, the

 readahead(2) system call would be invoked as follows on the ARM archi?

 tecture with the EABI in little endian mode:

 syscall(SYS_readahead, fd, 0,

 (unsigned int) (offset & 0xFFFFFFFF),

 (unsigned int) (offset >> 32),

 count);

 Since the offset argument is 64 bits, and the first argument (fd) is

 passed in r0, the caller must manually split and align the 64-bit value

 so that it is passed in the r2/r3 register pair. That means inserting

 a dummy value into r1 (the second argument of 0). Care also must be

 taken so that the split follows endian conventions (according to the C Page 2/7

 ABI for the platform).

 Similar issues can occur on MIPS with the O32 ABI, on PowerPC and

 parisc with the 32-bit ABI, and on Xtensa.

 Note that while the parisc C ABI also uses aligned register pairs, it

 uses a shim layer to hide the issue from user space.

 The affected system calls are fadvise64_64(2), ftruncate64(2),

 posix_fadvise(2), pread64(2), pwrite64(2), readahead(2),

 sync_file_range(2), and truncate64(2).

 This does not affect syscalls that manually split and assemble 64-bit

 values such as _llseek(2), preadv(2), preadv2(2), pwritev(2), and

 pwritev2(2). Welcome to the wonderful world of historical baggage.

 Architecture calling conventions

 Every architecture has its own way of invoking and passing arguments to

 the kernel. The details for various architectures are listed in the

 two tables below.

 The first table lists the instruction used to transition to kernel mode

 (which might not be the fastest or best way to transition to the ker?

 nel, so you might have to refer to vdso(7)), the register used to indi?

 cate the system call number, the register(s) used to return the system

 call result, and the register used to signal an error.

 Arch/ABI Instruction System Ret Ret Error Notes

 call # val val2

 ???

 alpha callsys v0 v0 a4 a3 1, 6

 arc trap0 r8 r0 - -

 arm/OABI swi NR - r0 - - 2

 arm/EABI swi 0x0 r7 r0 r1 -

 arm64 svc #0 w8 x0 x1 -

 blackfin excpt 0x0 P0 R0 - -

 i386 int $0x80 eax eax edx -

 ia64 break 0x100000 r15 r8 r9 r10 1, 6

 m68k trap #0 d0 d0 - -

 microblaze brki r14,8 r12 r3 - - Page 3/7

 mips syscall v0 v0 v1 a3 1, 6

 nios2 trap r2 r2 - r7

 parisc ble 0x100(%sr2, %r0) r20 r28 - -

 powerpc sc r0 r3 - r0 1

 powerpc64 sc r0 r3 - cr0.SO 1

 riscv ecall a7 a0 a1 -

 s390 svc 0 r1 r2 r3 - 3

 s390x svc 0 r1 r2 r3 - 3

 superh trap #0x17 r3 r0 r1 - 4, 6

 sparc/32 t 0x10 g1 o0 o1 psr/csr 1, 6

 sparc/64 t 0x6d g1 o0 o1 psr/csr 1, 6

 tile swint1 R10 R00 - R01 1

 x86-64 syscall rax rax rdx - 5

 x32 syscall rax rax rdx - 5

 xtensa syscall a2 a2 - -

 Notes:

 [1] On a few architectures, a register is used as a boolean (0 indicat?

 ing no error, and -1 indicating an error) to signal that the system

 call failed. The actual error value is still contained in the re?

 turn register. On sparc, the carry bit (csr) in the processor sta?

 tus register (psr) is used instead of a full register. On pow?

 erpc64, the summary overflow bit (SO) in field 0 of the condition

 register (cr0) is used.

 [2] NR is the system call number.

 [3] For s390 and s390x, NR (the system call number) may be passed di?

 rectly with svc NR if it is less than 256.

 [4] On SuperH, the trap number controls the maximum number of arguments

 passed. A trap #0x10 can be used with only 0-argument system

 calls, a trap #0x11 can be used with 0- or 1-argument system calls,

 and so on up to trap #0x17 for 7-argument system calls.

 [5] The x32 ABI shares syscall table with x86-64 ABI, but there are

 some nuances:

 ? In order to indicate that a system call is called under the x32 Page 4/7

 ABI, an additional bit, __X32_SYSCALL_BIT, is bitwise-ORed with

 the system call number. The ABI used by a process affects some

 process behaviors, including signal handling or system call

 restarting.

 ? Since x32 has different sizes for long and pointer types, lay?

 outs of some (but not all; struct timeval or struct rlimit are

 64-bit, for example) structures are different. In order to han?

 dle this, additional system calls are added to the system call

 table, starting from number 512 (without the __X32_SYSCALL_BIT).

 For example, __NR_readv is defined as 19 for the x86-64 ABI and

 as __X32_SYSCALL_BIT | 515 for the x32 ABI. Most of these addi?

 tional system calls are actually identical to the system calls

 used for providing i386 compat. There are some notable excep?

 tions, however, such as preadv2(2), which uses struct iovec en?

 tities with 4-byte pointers and sizes ("compat_iovec" in kernel

 terms), but passes an 8-byte pos argument in a single register

 and not two, as is done in every other ABI.

 [6] Some architectures (namely, Alpha, IA-64, MIPS, SuperH, sparc/32,

 and sparc/64) use an additional register ("Retval2" in the above

 table) to pass back a second return value from the pipe(2) system

 call; Alpha uses this technique in the architecture-specific getx?

 pid(2), getxuid(2), and getxgid(2) system calls as well. Other ar?

 chitectures do not use the second return value register in the sys?

 tem call interface, even if it is defined in the System V ABI.

 The second table shows the registers used to pass the system call argu?

 ments.

 Arch/ABI arg1 arg2 arg3 arg4 arg5 arg6 arg7 Notes

 ??

 alpha a0 a1 a2 a3 a4 a5 -

 arc r0 r1 r2 r3 r4 r5 -

 arm/OABI r0 r1 r2 r3 r4 r5 r6

 arm/EABI r0 r1 r2 r3 r4 r5 r6

 arm64 x0 x1 x2 x3 x4 x5 - Page 5/7

 blackfin R0 R1 R2 R3 R4 R5 -

 i386 ebx ecx edx esi edi ebp -

 ia64 out0 out1 out2 out3 out4 out5 -

 m68k d1 d2 d3 d4 d5 a0 -

 microblaze r5 r6 r7 r8 r9 r10 -

 mips/o32 a0 a1 a2 a3 - - - 1

 mips/n32,64 a0 a1 a2 a3 a4 a5 -

 nios2 r4 r5 r6 r7 r8 r9 -

 parisc r26 r25 r24 r23 r22 r21 -

 powerpc r3 r4 r5 r6 r7 r8 r9

 powerpc64 r3 r4 r5 r6 r7 r8 -

 riscv a0 a1 a2 a3 a4 a5 -

 s390 r2 r3 r4 r5 r6 r7 -

 s390x r2 r3 r4 r5 r6 r7 -

 superh r4 r5 r6 r7 r0 r1 r2

 sparc/32 o0 o1 o2 o3 o4 o5 -

 sparc/64 o0 o1 o2 o3 o4 o5 -

 tile R00 R01 R02 R03 R04 R05 -

 x86-64 rdi rsi rdx r10 r8 r9 -

 x32 rdi rsi rdx r10 r8 r9 -

 xtensa a6 a3 a4 a5 a8 a9 -

 Notes:

 [1] The mips/o32 system call convention passes arguments 5 through 8 on

 the user stack.

 Note that these tables don't cover the entire calling convention?some

 architectures may indiscriminately clobber other registers not listed

 here.

EXAMPLES

 #define _GNU_SOURCE

 #include <unistd.h>

 #include <sys/syscall.h>

 #include <sys/types.h>

 #include <signal.h> Page 6/7

 int

 main(int argc, char *argv[])

 {

 pid_t tid;

 tid = syscall(SYS_gettid);

 syscall(SYS_tgkill, getpid(), tid, SIGHUP);

 }

SEE ALSO

 _syscall(2), intro(2), syscalls(2), errno(3), vdso(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SYSCALL(2)

Page 7/7

