
Rocky Enterprise Linux 9.2 Manual Pages on command 'symlink.7'

$ man symlink.7

SYMLINK(7) Linux Programmer's Manual SYMLINK(7)

NAME

 symlink - symbolic link handling

DESCRIPTION

 Symbolic links are files that act as pointers to other files. To un?

 derstand their behavior, you must first understand how hard links work.

 A hard link to a file is indistinguishable from the original file be?

 cause it is a reference to the object underlying the original filename.

 (To be precise: each of the hard links to a file is a reference to the

 same inode number, where an inode number is an index into the inode ta?

 ble, which contains metadata about all files on a filesystem. See

 stat(2).) Changes to a file are independent of the name used to refer?

 ence the file. Hard links may not refer to directories (to prevent the

 possibility of loops within the filesystem tree, which would confuse

 many programs) and may not refer to files on different filesystems (be?

 cause inode numbers are not unique across filesystems).

 A symbolic link is a special type of file whose contents are a string

 that is the pathname of another file, the file to which the link Page 1/8

 refers. (The contents of a symbolic link can be read using read?

 link(2).) In other words, a symbolic link is a pointer to another

 name, and not to an underlying object. For this reason, symbolic links

 may refer to directories and may cross filesystem boundaries.

 There is no requirement that the pathname referred to by a symbolic

 link should exist. A symbolic link that refers to a pathname that does

 not exist is said to be a dangling link.

 Because a symbolic link and its referenced object coexist in the

 filesystem name space, confusion can arise in distinguishing between

 the link itself and the referenced object. On historical systems, com?

 mands and system calls adopted their own link-following conventions in

 a somewhat ad-hoc fashion. Rules for a more uniform approach, as they

 are implemented on Linux and other systems, are outlined here. It is

 important that site-local applications also conform to these rules, so

 that the user interface can be as consistent as possible.

 Magic links

 There is a special class of symbolic-link-like objects known as "magic

 links", which can be found in certain pseudofilesystems such as proc(5)

 (examples include /proc/[pid]/exe and /proc/[pid]/fd/*). Unlike normal

 symbolic links, magic links are not resolved through pathname-expan?

 sion, but instead act as direct references to the kernel's own repre?

 sentation of a file handle. As such, these magic links allow users to

 access files which cannot be referenced with normal paths (such as un?

 linked files still referenced by a running program).

 Because they can bypass ordinary mount_namespaces(7)-based restric?

 tions, magic links have been used as attack vectors in various ex?

 ploits.

 Symbolic link ownership, permissions, and timestamps

 The owner and group of an existing symbolic link can be changed using

 lchown(2). The only time that the ownership of a symbolic link matters

 is when the link is being removed or renamed in a directory that has

 the sticky bit set (see stat(2)).

 The last access and last modification timestamps of a symbolic link can Page 2/8

 be changed using utimensat(2) or lutimes(3).

 On Linux, the permissions of an ordinary symbolic link are not used in

 any operations; the permissions are always 0777 (read, write, and exe?

 cute for all user categories), and can't be changed.

 However, magic links do not follow this rule. They can have a non-0777

 mode, though this mode is not currently used in any permission checks.

 Obtaining a file descriptor that refers to a symbolic link

 Using the combination of the O_PATH and O_NOFOLLOW flags to open(2)

 yields a file descriptor that can be passed as the dirfd argument in

 system calls such as fstatat(2), fchownat(2), fchmodat(2), linkat(2),

 and readlinkat(2), in order to operate on the symbolic link itself

 (rather than the file to which it refers).

 By default (i.e., if the AT_SYMLINK_FOLLOW flag is not specified), if

 name_to_handle_at(2) is applied to a symbolic link, it yields a handle

 for the symbolic link (rather than the file to which it refers). One

 can then obtain a file descriptor for the symbolic link (rather than

 the file to which it refers) by specifying the O_PATH flag in a subse?

 quent call to open_by_handle_at(2). Again, that file descriptor can be

 used in the aforementioned system calls to operate on the symbolic link

 itself.

 Handling of symbolic links by system calls and commands

 Symbolic links are handled either by operating on the link itself, or

 by operating on the object referred to by the link. In the latter

 case, an application or system call is said to follow the link. Sym?

 bolic links may refer to other symbolic links, in which case the links

 are dereferenced until an object that is not a symbolic link is found,

 a symbolic link that refers to a file which does not exist is found, or

 a loop is detected. (Loop detection is done by placing an upper limit

 on the number of links that may be followed, and an error results if

 this limit is exceeded.)

 There are three separate areas that need to be discussed. They are as

 follows:

 1. Symbolic links used as filename arguments for system calls. Page 3/8

 2. Symbolic links specified as command-line arguments to utilities that

 are not traversing a file tree.

 3. Symbolic links encountered by utilities that are traversing a file

 tree (either specified on the command line or encountered as part of

 the file hierarchy walk).

 Before describing the treatment of symbolic links by system calls and

 commands, we require some terminology. Given a pathname of the form

 a/b/c, the part preceding the final slash (i.e., a/b) is called the

 dirname component, and the part following the final slash (i.e., c) is

 called the basename component.

 Treatment of symbolic links in system calls

 The first area is symbolic links used as filename arguments for system

 calls.

 The treatment of symbolic links within a pathname passed to a system

 call is as follows:

 1. Within the dirname component of a pathname, symbolic links are al?

 ways followed in nearly every system call. (This is also true for

 commands.) The one exception is openat2(2), which provides flags

 that can be used to explicitly prevent following of symbolic links

 in the dirname component.

 2. Except as noted below, all system calls follow symbolic links in the

 basename component of a pathname. For example, if there were a sym?

 bolic link slink which pointed to a file named afile, the system

 call open("slink" ...) would return a file descriptor referring to

 the file afile.

 Various system calls do not follow links in the basename component of a

 pathname, and operate on the symbolic link itself. They are:

 lchown(2), lgetxattr(2), llistxattr(2), lremovexattr(2), lsetxattr(2),

 lstat(2), readlink(2), rename(2), rmdir(2), and unlink(2).

 Certain other system calls optionally follow symbolic links in the

 basename component of a pathname. They are: faccessat(2), fchownat(2),

 fstatat(2), linkat(2), name_to_handle_at(2), open(2), openat(2),

 open_by_handle_at(2), and utimensat(2); see their manual pages for de? Page 4/8

 tails. Because remove(3) is an alias for unlink(2), that library func?

 tion also does not follow symbolic links. When rmdir(2) is applied to

 a symbolic link, it fails with the error ENOTDIR.

 link(2) warrants special discussion. POSIX.1-2001 specifies that

 link(2) should dereference oldpath if it is a symbolic link. However,

 Linux does not do this. (By default, Solaris is the same, but the

 POSIX.1-2001 specified behavior can be obtained with suitable compiler

 options.) POSIX.1-2008 changed the specification to allow either be?

 havior in an implementation.

 Commands not traversing a file tree

 The second area is symbolic links, specified as command-line filename

 arguments, to commands which are not traversing a file tree.

 Except as noted below, commands follow symbolic links named as command-

 line arguments. For example, if there were a symbolic link slink which

 pointed to a file named afile, the command cat slink would display the

 contents of the file afile.

 It is important to realize that this rule includes commands which may

 optionally traverse file trees; for example, the command chown file is

 included in this rule, while the command chown -R file, which performs

 a tree traversal, is not. (The latter is described in the third area,

 below.)

 If it is explicitly intended that the command operate on the symbolic

 link instead of following the symbolic link?for example, it is desired

 that chown slink change the ownership of the file that slink is,

 whether it is a symbolic link or not?then the -h option should be used.

 In the above example, chown root slink would change the ownership of

 the file referred to by slink, while chown -h root slink would change

 the ownership of slink itself.

 There are some exceptions to this rule:

 * The mv(1) and rm(1) commands do not follow symbolic links named as

 arguments, but respectively attempt to rename and delete them.

 (Note, if the symbolic link references a file via a relative path,

 moving it to another directory may very well cause it to stop work? Page 5/8

 ing, since the path may no longer be correct.)

 * The ls(1) command is also an exception to this rule. For compatibil?

 ity with historic systems (when ls(1) is not doing a tree walk?that

 is, -R option is not specified), the ls(1) command follows symbolic

 links named as arguments if the -H or -L option is specified, or if

 the -F, -d, or -l options are not specified. (The ls(1) command is

 the only command where the -H and -L options affect its behavior even

 though it is not doing a walk of a file tree.)

 * The file(1) command is also an exception to this rule. The file(1)

 command does not follow symbolic links named as argument by default.

 The file(1) command does follow symbolic links named as argument if

 the -L option is specified.

 Commands traversing a file tree

 The following commands either optionally or always traverse file trees:

 chgrp(1), chmod(1), chown(1), cp(1), du(1), find(1), ls(1), pax(1),

 rm(1), and tar(1).

 It is important to realize that the following rules apply equally to

 symbolic links encountered during the file tree traversal and symbolic

 links listed as command-line arguments.

 The first rule applies to symbolic links that reference files other

 than directories. Operations that apply to symbolic links are per?

 formed on the links themselves, but otherwise the links are ignored.

 The command rm -r slink directory will remove slink, as well as any

 symbolic links encountered in the tree traversal of directory, because

 symbolic links may be removed. In no case will rm(1) affect the file

 referred to by slink.

 The second rule applies to symbolic links that refer to directories.

 Symbolic links that refer to directories are never followed by default.

 This is often referred to as a "physical" walk, as opposed to a "logi?

 cal" walk (where symbolic links that refer to directories are fol?

 lowed).

 Certain conventions are (should be) followed as consistently as possi?

 ble by commands that perform file tree walks: Page 6/8

 * A command can be made to follow any symbolic links named on the com?

 mand line, regardless of the type of file they reference, by specify?

 ing the -H (for "half-logical") flag. This flag is intended to make

 the command-line name space look like the logical name space. (Note,

 for commands that do not always do file tree traversals, the -H flag

 will be ignored if the -R flag is not also specified.)

 For example, the command chown -HR user slink will traverse the file

 hierarchy rooted in the file pointed to by slink. Note, the -H is

 not the same as the previously discussed -h flag. The -H flag causes

 symbolic links specified on the command line to be dereferenced for

 the purposes of both the action to be performed and the tree walk,

 and it is as if the user had specified the name of the file to which

 the symbolic link pointed.

 * A command can be made to follow any symbolic links named on the com?

 mand line, as well as any symbolic links encountered during the tra?

 versal, regardless of the type of file they reference, by specifying

 the -L (for "logical") flag. This flag is intended to make the en?

 tire name space look like the logical name space. (Note, for com?

 mands that do not always do file tree traversals, the -L flag will be

 ignored if the -R flag is not also specified.)

 For example, the command chown -LR user slink will change the owner

 of the file referred to by slink. If slink refers to a directory,

 chown will traverse the file hierarchy rooted in the directory that

 it references. In addition, if any symbolic links are encountered in

 any file tree that chown traverses, they will be treated in the same

 fashion as slink.

 * A command can be made to provide the default behavior by specifying

 the -P (for "physical") flag. This flag is intended to make the en?

 tire name space look like the physical name space.

 For commands that do not by default do file tree traversals, the -H,

 -L, and -P flags are ignored if the -R flag is not also specified. In

 addition, you may specify the -H, -L, and -P options more than once;

 the last one specified determines the command's behavior. This is in? Page 7/8

 tended to permit you to alias commands to behave one way or the other,

 and then override that behavior on the command line.

 The ls(1) and rm(1) commands have exceptions to these rules:

 * The rm(1) command operates on the symbolic link, and not the file it

 references, and therefore never follows a symbolic link. The rm(1)

 command does not support the -H, -L, or -P options.

 * To maintain compatibility with historic systems, the ls(1) command

 acts a little differently. If you do not specify the -F, -d or -l

 options, ls(1) will follow symbolic links specified on the command

 line. If the -L flag is specified, ls(1) follows all symbolic links,

 regardless of their type, whether specified on the command line or

 encountered in the tree walk.

SEE ALSO

 chgrp(1), chmod(1), find(1), ln(1), ls(1), mv(1), namei(1), rm(1),

 lchown(2), link(2), lstat(2), readlink(2), rename(2), symlink(2), un?

 link(2), utimensat(2), lutimes(3), path_resolution(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SYMLINK(7)

Page 8/8

