
Rocky Enterprise Linux 9.2 Manual Pages on command 'strtoll.3'

$ man strtoll.3

STRTOL(3) Linux Programmer's Manual STRTOL(3)

NAME

 strtol, strtoll, strtoq - convert a string to a long integer

SYNOPSIS

 #include <stdlib.h>

 long strtol(const char *nptr, char **endptr, int base);

 long long strtoll(const char *nptr, char **endptr, int base);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 strtoll():

 _ISOC99_SOURCE

 || /* Glibc versions <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION

 The strtol() function converts the initial part of the string in nptr

 to a long integer value according to the given base, which must be be?

 tween 2 and 36 inclusive, or be the special value 0.

 The string may begin with an arbitrary amount of white space (as deter?

 mined by isspace(3)) followed by a single optional '+' or '-' sign. If

 base is zero or 16, the string may then include a "0x" or "0X" prefix, Page 1/5

 and the number will be read in base 16; otherwise, a zero base is taken

 as 10 (decimal) unless the next character is '0', in which case it is

 taken as 8 (octal).

 The remainder of the string is converted to a long value in the obvious

 manner, stopping at the first character which is not a valid digit in

 the given base. (In bases above 10, the letter 'A' in either uppercase

 or lowercase represents 10, 'B' represents 11, and so forth, with 'Z'

 representing 35.)

 If endptr is not NULL, strtol() stores the address of the first invalid

 character in *endptr. If there were no digits at all, strtol() stores

 the original value of nptr in *endptr (and returns 0). In particular,

 if *nptr is not '\0' but **endptr is '\0' on return, the entire string

 is valid.

 The strtoll() function works just like the strtol() function but re?

 turns a long long integer value.

RETURN VALUE

 The strtol() function returns the result of the conversion, unless the

 value would underflow or overflow. If an underflow occurs, strtol()

 returns LONG_MIN. If an overflow occurs, strtol() returns LONG_MAX.

 In both cases, errno is set to ERANGE. Precisely the same holds for

 strtoll() (with LLONG_MIN and LLONG_MAX instead of LONG_MIN and

 LONG_MAX).

ERRORS

 EINVAL (not in C99) The given base contains an unsupported value.

 ERANGE The resulting value was out of range.

 The implementation may also set errno to EINVAL in case no conversion

 was performed (no digits seen, and 0 returned).

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ??? Page 2/5

 ?strtol(), strtoll(), strtoq() ? Thread safety ? MT-Safe locale ?

 ???

CONFORMING TO

 strtol(): POSIX.1-2001, POSIX.1-2008, C89, C99 SVr4, 4.3BSD.

 strtoll(): POSIX.1-2001, POSIX.1-2008, C99.

NOTES

 Since strtol() can legitimately return 0, LONG_MAX, or LONG_MIN

 (LLONG_MAX or LLONG_MIN for strtoll()) on both success and failure, the

 calling program should set errno to 0 before the call, and then deter?

 mine if an error occurred by checking whether errno has a nonzero value

 after the call.

 According to POSIX.1, in locales other than "C" and "POSIX", these

 functions may accept other, implementation-defined numeric strings.

 BSD also has

 quad_t strtoq(const char *nptr, char **endptr, int base);

 with completely analogous definition. Depending on the wordsize of the

 current architecture, this may be equivalent to strtoll() or to str?

 tol().

EXAMPLES

 The program shown below demonstrates the use of strtol(). The first

 command-line argument specifies a string from which strtol() should

 parse a number. The second (optional) argument specifies the base to

 be used for the conversion. (This argument is converted to numeric

 form using atoi(3), a function that performs no error checking and has

 a simpler interface than strtol().) Some examples of the results pro?

 duced by this program are the following:

 $./a.out 123

 strtol() returned 123

 $./a.out ' 123'

 strtol() returned 123

 $./a.out 123abc

 strtol() returned 123

 Further characters after number: "abc" Page 3/5

 $./a.out 123abc 55

 strtol: Invalid argument

 $./a.out ''

 No digits were found

 $./a.out 4000000000

 strtol: Numerical result out of range

 Program source

 #include <stdlib.h>

 #include <limits.h>

 #include <stdio.h>

 #include <errno.h>

 int

 main(int argc, char *argv[])

 {

 int base;

 char *endptr, *str;

 long val;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s str [base]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 str = argv[1];

 base = (argc > 2) ? atoi(argv[2]) : 0;

 errno = 0; /* To distinguish success/failure after call */

 val = strtol(str, &endptr, base);

 /* Check for various possible errors */

 if (errno != 0) {

 perror("strtol");

 exit(EXIT_FAILURE);

 }

 if (endptr == str) {

 fprintf(stderr, "No digits were found\n");

 exit(EXIT_FAILURE); Page 4/5

 }

 /* If we got here, strtol() successfully parsed a number */

 printf("strtol() returned %ld\n", val);

 if (*endptr != '\0') /* Not necessarily an error... */

 printf("Further characters after number: \"%s\"\n", endptr);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 atof(3), atoi(3), atol(3), strtod(3), strtoimax(3), strtoul(3),

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 STRTOL(3)

Page 5/5

