
Rocky Enterprise Linux 9.2 Manual Pages on command 'states.1'

$ man states.1

STATES(1) STATES STATES(1)

NAME

 states - awk alike text processing tool

SYNOPSIS

 states [-hvV] [-D var=val] [-f file] [-o outputfile] [-p path] [-s

 startstate] [-W level] [filename ...]

DESCRIPTION

 States is an awk-alike text processing tool with some state machine ex?

 tensions. It is designed for program source code highlighting and to

 similar tasks where state information helps input processing.

 At a single point of time, States is in one state, each quite similar

 to awk's work environment, they have regular expressions which are

 matched from the input and actions which are executed when a match is

 found. From the action blocks, states can perform state transitions;

 it can move to another state from which the processing is continued.

 State transitions are recorded so states can return to the calling

 state once the current state has finished.

 The biggest difference between states and awk, besides state machine Page 1/8

 extensions, is that states is not line-oriented. It matches regular

 expression tokens from the input and once a match is processed, it con?

 tinues processing from the current position, not from the beginning of

 the next input line.

OPTIONS

 -D var=val, --define=var=val

 Define variable var to have string value val. Command line

 definitions overwrite variable definitions found from the con?

 fig file.

 -f file, --file=file

 Read state definitions from file file. As a default, states

 tries to read state definitions from file states.st in the cur?

 rent working directory.

 -h, --help

 Print short help message and exit.

 -o file, --output=file

 Save output to file file instead of printing it to stdout.

 -p path, --path=path

 Set the load path to path. The load path defaults to the di?

 rectory, from which the state definitions file is loaded.

 -s state, --state=state

 Start execution from state state. This definition overwrites

 start state resolved from the start block.

 -v, --verbose

 Increase the program verbosity.

 -V, --version

 Print states version and exit.

 -W level, --warning=level

 Set the warning level to level. Possible values for level are:

 light light warnings (default)

 all all warnings

STATES PROGRAM FILES

 States program files can contain on start block, startrules and Page 2/8

 namerules blocks to specify the initial state, state definitions and

 expressions.

 The start block is the main() of the states program, it is executed on

 script startup for each input file and it can perform any initializa?

 tion the script needs. It normally also calls the check_startrules()

 and check_namerules() primitives which resolve the initial state from

 the input file name or the data found from the beginning of the input

 file. Here is a sample start block which initializes two variables and

 does the standard start state resolving:

 start

 {

 a = 1;

 msg = "Hello, world!";

 check_startrules ();

 check_namerules ();

 }

 Once the start block is processed, the input processing is continued

 from the initial state.

 The initial state is resolved by the information found from the

 startrules and namerules blocks. Both blocks contain regular expres?

 sion - symbol pairs, when the regular expression is matched from the

 name of from the beginning of the input file, the initial state is

 named by the corresponding symbol. For example, the following start

 and name rules can distinguish C and Fortran files:

 namerules

 {

 /\.(c|h)$/ c;

 /\.[fF]$/ fortran;

 }

 startrules

 {

 /-*- [cC] -*-/ c;

 /-*- fortran -*-/ fortran; Page 3/8

 }

 If these rules are used with the previously shown start block, states

 first check the beginning of input file. If it has string -*- c -*-,

 the file is assumed to contain C code and the processing is started

 from state called c. If the beginning of the input file has string -*-

 fortran -*-, the initial state is fortran. If none of the start rules

 matched, the name of the input file is matched with the namerules. If

 the name ends to suffix c or C, we go to state c. If the suffix is f

 or F, the initial state is fortran.

 If both start and name rules failed to resolve the start state, states

 just copies its input to output unmodified.

 The start state can also be specified from the command line with option

 -s, --state.

 State definitions have the following syntax:

 state { expr {statements} ... }

 where expr is: a regular expression, special expression or symbol and

 statements is a list of statements. When the expression expr is

 matched from the input, the statement block is executed. The statement

 block can call states' primitives, user-defined subroutines, call other

 states, etc. Once the block is executed, the input processing is con?

 tinued from the current intput position (which might have been changed

 if the statement block called other states).

 Special expressions BEGIN and END can be used in the place of expr.

 Expression BEGIN matches the beginning of the state, its block is

 called when the state is entered. Expression END matches the end of

 the state, its block is executed when states leaves the state.

 If expr is a symbol, its value is looked up from the global environment

 and if it is a regular expression, it is matched to the input, other?

 wise that rule is ignored.

 The states program file can also have top-level expressions, they are

 evaluated after the program file is parsed but before any input files

 are processed or the start block is evaluated.

PRIMITIVE FUNCTIONS Page 4/8

 call (symbol)

 Move to state symbol and continue input file processing from

 that state. Function returns whatever the symbol state's ter?

 minating return statement returned.

 calln (name)

 Like call but the argument name is evaluated and its value must

 be string. For example, this function can be used to call a

 state which name is stored to a variable.

 check_namerules ()

 Try to resolve start state from namerules rules. Function re?

 turns 1 if start state was resolved or 0 otherwise.

 check_startrules ()

 Try to resolve start state from startrules rules. Function re?

 turns 1 if start state was resolved or 0 otherwise.

 concat (str, ...)

 Concanate argument strings and return result as a new string.

 float (any)

 Convert argument to a floating point number.

 getenv (str)

 Get value of environment variable str. Returns an empty string

 if variable var is undefined.

 int (any)

 Convert argument to an integer number.

 length (item, ...)

 Count the length of argument strings or lists.

 list (any, ...)

 Create a new list which contains items any, ...

 panic (any, ...)

 Report a non-recoverable error and exit with status 1. Func?

 tion never returns.

 print (any, ...)

 Convert arguments to strings and print them to the output.

 range (source, start, end) Page 5/8

 Return a sub-range of source starting from position start (in?

 clusively) to end (exclusively). Argument source can be string

 or list.

 regexp (string)

 Convert string string to a new regular expression.

 regexp_syntax (char, syntax)

 Modify regular expression character syntaxes by assigning new

 syntax syntax for character char. Possible values for syntax

 are:

 'w' character is a word constituent

 ' ' character isn't a word constituent

 regmatch (string, regexp)

 Check if string string matches regular expression regexp.

 Functions returns a boolean success status and sets sub-expres?

 sion registers $n.

 regsub (string, regexp, subst)

 Search regular expression regexp from string string and replace

 the matching substring with string subst. Returns the result?

 ing string. The substitution string subst can contain $n ref?

 erences to the n:th parenthesized sup-expression.

 regsuball (string, regexp, subst)

 Like regsub but replace all matches of regular expression reg?

 exp from string string with string subst.

 require_state (symbol)

 Check that the state symbol is defined. If the required state

 is undefined, the function tries to autoload it. If the load?

 ing fails, the program will terminate with an error message.

 split (regexp, string)

 Split string string to list considering matches of regular rex?

 pression regexp as item separator.

 sprintf (fmt, ...)

 Format arguments according to fmt and return result as a

 string. Page 6/8

 strcmp (str1, str2)

 Perform a case-sensitive comparision for strings str1 and str2.

 Function returns a value that is:

 -1 string str1 is less than str2

 0 strings are equal

 1 string str1 is greater than str2

 string (any)

 Convert argument to string.

 strncmp (str1, str2, num)

 Perform a case-sensitive comparision for strings str1 and str2

 comparing at maximum num characters.

 substring (str, start, end)

 Return a substring of string str starting from position start

 (inclusively) to end (exclusively).

BUILTIN VARIABLES

 $. current input line number

 $n the n:th parenthesized regular expression sub-expression from

 the latest state regular expression or from the regmatch primi?

 tive

 $` everything before the matched regular rexpression. This is us?

 able when used with the regmatch primitive; the contents of

 this variable is undefined when used in action blocks to refer

 the data before the block's regular expression.

 $B an alias for $`

 argv list of input file names

 filename

 name of the current input file

 program name of the program (usually states)

 version program version string

FILES

 /usr/share/enscript/hl/*.st enscript's states definitions

SEE ALSO

 awk(1), enscript(1) Page 7/8

AUTHOR

 Markku Rossi <mtr@iki.fi> <http://www.iki.fi/~mtr/>

 GNU Enscript WWW home page: <http://www.iki.fi/~mtr/genscript/>

STATES Oct 23, 1998 STATES(1)

Page 8/8

