
Rocky Enterprise Linux 9.2 Manual Pages on command 'st.4'

$ man st.4

ST(4) Linux Programmer's Manual ST(4)

NAME

 st - SCSI tape device

SYNOPSIS

 #include <sys/mtio.h>

 int ioctl(int fd, int request [, (void *)arg3]);

 int ioctl(int fd, MTIOCTOP, (struct mtop *)mt_cmd);

 int ioctl(int fd, MTIOCGET, (struct mtget *)mt_status);

 int ioctl(int fd, MTIOCPOS, (struct mtpos *)mt_pos);

DESCRIPTION

 The st driver provides the interface to a variety of SCSI tape devices.

 Currently, the driver takes control of all detected devices of type

 ?sequential-access?. The st driver uses major device number 9.

 Each device uses eight minor device numbers. The lowermost five bits

 in the minor numbers are assigned sequentially in the order of detec?

 tion. In the 2.6 kernel, the bits above the eight lowermost bits are

 concatenated to the five lowermost bits to form the tape number. The

 minor numbers can be grouped into two sets of four numbers: the princi? Page 1/17

 pal (auto-rewind) minor device numbers, n, and the ?no-rewind? device

 numbers, (n + 128). Devices opened using the principal device number

 will be sent a REWIND command when they are closed. Devices opened us?

 ing the ?no-rewind? device number will not. (Note that using an auto-

 rewind device for positioning the tape with, for instance, mt does not

 lead to the desired result: the tape is rewound after the mt command

 and the next command starts from the beginning of the tape).

 Within each group, four minor numbers are available to define devices

 with different characteristics (block size, compression, density, etc.)

 When the system starts up, only the first device is available. The

 other three are activated when the default characteristics are defined

 (see below). (By changing compile-time constants, it is possible to

 change the balance between the maximum number of tape drives and the

 number of minor numbers for each drive. The default allocation allows

 control of 32 tape drives. For instance, it is possible to control up

 to 64 tape drives with two minor numbers for different options.)

 Devices are typically created by:

 mknod -m 666 /dev/st0 c 9 0

 mknod -m 666 /dev/st0l c 9 32

 mknod -m 666 /dev/st0m c 9 64

 mknod -m 666 /dev/st0a c 9 96

 mknod -m 666 /dev/nst0 c 9 128

 mknod -m 666 /dev/nst0l c 9 160

 mknod -m 666 /dev/nst0m c 9 192

 mknod -m 666 /dev/nst0a c 9 224

 There is no corresponding block device.

 The driver uses an internal buffer that has to be large enough to hold

 at least one tape block. In kernels before 2.1.121, the buffer is al?

 located as one contiguous block. This limits the block size to the

 largest contiguous block of memory the kernel allocator can provide.

 The limit is currently 128 kB for 32-bit architectures and 256 kB for

 64-bit architectures. In newer kernels the driver allocates the buffer

 in several parts if necessary. By default, the maximum number of parts Page 2/17

 is 16. This means that the maximum block size is very large (2 MB if

 allocation of 16 blocks of 128 kB succeeds).

 The driver's internal buffer size is determined by a compile-time con?

 stant which can be overridden with a kernel startup option. In addi?

 tion to this, the driver tries to allocate a larger temporary buffer at

 run time if necessary. However, run-time allocation of large contigu?

 ous blocks of memory may fail and it is advisable not to rely too much

 on dynamic buffer allocation with kernels older than 2.1.121 (this ap?

 plies also to demand-loading the driver with kerneld or kmod).

 The driver does not specifically support any tape drive brand or model.

 After system start-up the tape device options are defined by the drive

 firmware. For example, if the drive firmware selects fixed-block mode,

 the tape device uses fixed-block mode. The options can be changed with

 explicit ioctl(2) calls and remain in effect when the device is closed

 and reopened. Setting the options affects both the auto-rewind and the

 nonrewind device.

 Different options can be specified for the different devices within the

 subgroup of four. The options take effect when the device is opened.

 For example, the system administrator can define one device that writes

 in fixed-block mode with a certain block size, and one which writes in

 variable-block mode (if the drive supports both modes).

 The driver supports tape partitions if they are supported by the drive.

 (Note that the tape partitions have nothing to do with disk partitions.

 A partitioned tape can be seen as several logical tapes within one

 medium.) Partition support has to be enabled with an ioctl(2). The

 tape location is preserved within each partition across partition

 changes. The partition used for subsequent tape operations is selected

 with an ioctl(2). The partition switch is executed together with the

 next tape operation in order to avoid unnecessary tape movement. The

 maximum number of partitions on a tape is defined by a compile-time

 constant (originally four). The driver contains an ioctl(2) that can

 format a tape with either one or two partitions.

 Device /dev/tape is usually created as a hard or soft link to the de? Page 3/17

 fault tape device on the system.

 Starting from kernel 2.6.2, the driver exports in the sysfs directory

 /sys/class/scsi_tape the attached devices and some parameters assigned

 to the devices.

 Data transfer

 The driver supports operation in both fixed-block mode and variable-

 block mode (if supported by the drive). In fixed-block mode the drive

 writes blocks of the specified size and the block size is not dependent

 on the byte counts of the write system calls. In variable-block mode

 one tape block is written for each write call and the byte count deter?

 mines the size of the corresponding tape block. Note that the blocks

 on the tape don't contain any information about the writing mode: when

 reading, the only important thing is to use commands that accept the

 block sizes on the tape.

 In variable-block mode the read byte count does not have to match the

 tape block size exactly. If the byte count is larger than the next

 block on tape, the driver returns the data and the function returns the

 actual block size. If the block size is larger than the byte count, an

 error is returned.

 In fixed-block mode the read byte counts can be arbitrary if buffering

 is enabled, or a multiple of the tape block size if buffering is dis?

 abled. Kernels before 2.1.121 allow writes with arbitrary byte count

 if buffering is enabled. In all other cases (kernel before 2.1.121

 with buffering disabled or newer kernel) the write byte count must be a

 multiple of the tape block size.

 In the 2.6 kernel, the driver tries to use direct transfers between the

 user buffer and the device. If this is not possible, the driver's in?

 ternal buffer is used. The reasons for not using direct transfers in?

 clude improper alignment of the user buffer (default is 512 bytes but

 this can be changed by the HBA driver), one or more pages of the user

 buffer not reachable by the SCSI adapter, and so on.

 A filemark is automatically written to tape if the last tape operation

 before close was a write. Page 4/17

 When a filemark is encountered while reading, the following happens.

 If there are data remaining in the buffer when the filemark is found,

 the buffered data is returned. The next read returns zero bytes. The

 following read returns data from the next file. The end of recorded

 data is signaled by returning zero bytes for two consecutive read

 calls. The third read returns an error.

 Ioctls

 The driver supports three ioctl(2) requests. Requests not recognized

 by the st driver are passed to the SCSI driver. The definitions below

 are from /usr/include/linux/mtio.h:

 MTIOCTOP ? perform a tape operation

 This request takes an argument of type (struct mtop *). Not all drives

 support all operations. The driver returns an EIO error if the drive

 rejects an operation.

 /* Structure for MTIOCTOP - mag tape op command: */

 struct mtop {

 short mt_op; /* operations defined below */

 int mt_count; /* how many of them */

 };

 Magnetic tape operations for normal tape use:

 MTBSF Backward space over mt_count filemarks.

 MTBSFM Backward space over mt_count filemarks. Reposition the tape to

 the EOT side of the last filemark.

 MTBSR Backward space over mt_count records (tape blocks).

 MTBSS Backward space over mt_count setmarks.

 MTCOMPRESSION

 Enable compression of tape data within the drive if mt_count is

 nonzero and disable compression if mt_count is zero. This com?

 mand uses the MODE page 15 supported by most DATs.

 MTEOM Go to the end of the recorded media (for appending files).

 MTERASE

 Erase tape. With 2.6 kernel, short erase (mark tape empty) is

 performed if the argument is zero. Otherwise, long erase (erase Page 5/17

 all) is done.

 MTFSF Forward space over mt_count filemarks.

 MTFSFM Forward space over mt_count filemarks. Reposition the tape to

 the BOT side of the last filemark.

 MTFSR Forward space over mt_count records (tape blocks).

 MTFSS Forward space over mt_count setmarks.

 MTLOAD Execute the SCSI load command. A special case is available for

 some HP autoloaders. If mt_count is the constant

 MT_ST_HPLOADER_OFFSET plus a number, the number is sent to the

 drive to control the autoloader.

 MTLOCK Lock the tape drive door.

 MTMKPART

 Format the tape into one or two partitions. If mt_count is pos?

 itive, it gives the size of partition 1 and partition 0 contains

 the rest of the tape. If mt_count is zero, the tape is format?

 ted into one partition. From kernel version 4.6, a negative

 mt_count specifies the size of partition 0 and the rest of the

 tape contains partition 1. The physical ordering of partitions

 depends on the drive. This command is not allowed for a drive

 unless the partition support is enabled for the drive (see

 MT_ST_CAN_PARTITIONS below).

 MTNOP No op?flushes the driver's buffer as a side effect. Should be

 used before reading status with MTIOCGET.

 MTOFFL Rewind and put the drive off line.

 MTRESET

 Reset drive.

 MTRETEN

 Re-tension tape.

 MTREW Rewind.

 MTSEEK Seek to the tape block number specified in mt_count. This oper?

 ation requires either a SCSI-2 drive that supports the LOCATE

 command (device-specific address) or a Tandberg-compatible

 SCSI-1 drive (Tandberg, Archive Viper, Wangtek, ...). The block Page 6/17

 number should be one that was previously returned by MTIOCPOS if

 device-specific addresses are used.

 MTSETBLK

 Set the drive's block length to the value specified in mt_count.

 A block length of zero sets the drive to variable block size

 mode.

 MTSETDENSITY

 Set the tape density to the code in mt_count. The density codes

 supported by a drive can be found from the drive documentation.

 MTSETPART

 The active partition is switched to mt_count. The partitions

 are numbered from zero. This command is not allowed for a drive

 unless the partition support is enabled for the drive (see

 MT_ST_CAN_PARTITIONS below).

 MTUNLOAD

 Execute the SCSI unload command (does not eject the tape).

 MTUNLOCK

 Unlock the tape drive door.

 MTWEOF Write mt_count filemarks.

 MTWSM Write mt_count setmarks.

 Magnetic tape operations for setting of device options (by the supe?

 ruser):

 MTSETDRVBUFFER

 Set various drive and driver options according to bits encoded

 in mt_count. These consist of the drive's buffering mode, a set

 of Boolean driver options, the buffer write threshold, defaults

 for the block size and density, and timeouts (only in kernels

 2.1 and later). A single operation can affect only one item in

 the list below (the Booleans counted as one item.)

 A value having zeros in the high-order 4 bits will be used to

 set the drive's buffering mode. The buffering modes are:

 0 The drive will not report GOOD status on write commands

 until the data blocks are actually written to the Page 7/17

 medium.

 1 The drive may report GOOD status on write commands as

 soon as all the data has been transferred to the

 drive's internal buffer.

 2 The drive may report GOOD status on write commands as

 soon as (a) all the data has been transferred to the

 drive's internal buffer, and (b) all buffered data from

 different initiators has been successfully written to

 the medium.

 To control the write threshold the value in mt_count must in?

 clude the constant MT_ST_WRITE_THRESHOLD bitwise ORed with a

 block count in the low 28 bits. The block count refers to

 1024-byte blocks, not the physical block size on the tape. The

 threshold cannot exceed the driver's internal buffer size (see

 DESCRIPTION, above).

 To set and clear the Boolean options the value in mt_count must

 include one of the constants MT_ST_BOOLEANS, MT_ST_SETBOOLEANS,

 MT_ST_CLEARBOOLEANS, or MT_ST_DEFBOOLEANS bitwise ORed with

 whatever combination of the following options is desired. Using

 MT_ST_BOOLEANS the options can be set to the values defined in

 the corresponding bits. With MT_ST_SETBOOLEANS the options can

 be selectively set and with MT_ST_DEFBOOLEANS selectively

 cleared.

 The default options for a tape device are set with MT_ST_DEF?

 BOOLEANS. A nonactive tape device (e.g., device with minor 32

 or 160) is activated when the default options for it are defined

 the first time. An activated device inherits from the device

 activated at start-up the options not set explicitly.

 The Boolean options are:

 MT_ST_BUFFER_WRITES (Default: true)

 Buffer all write operations in fixed-block mode. If this

 option is false and the drive uses a fixed block size,

 then all write operations must be for a multiple of the Page 8/17

 block size. This option must be set false to write reli?

 able multivolume archives.

 MT_ST_ASYNC_WRITES (Default: true)

 When this option is true, write operations return immedi?

 ately without waiting for the data to be transferred to

 the drive if the data fits into the driver's buffer. The

 write threshold determines how full the buffer must be

 before a new SCSI write command is issued. Any errors

 reported by the drive will be held until the next opera?

 tion. This option must be set false to write reliable

 multivolume archives.

 MT_ST_READ_AHEAD (Default: true)

 This option causes the driver to provide read buffering

 and read-ahead in fixed-block mode. If this option is

 false and the drive uses a fixed block size, then all

 read operations must be for a multiple of the block size.

 MT_ST_TWO_FM (Default: false)

 This option modifies the driver behavior when a file is

 closed. The normal action is to write a single filemark.

 If the option is true, the driver will write two file?

 marks and backspace over the second one.

 Note: This option should not be set true for QIC tape

 drives since they are unable to overwrite a filemark.

 These drives detect the end of recorded data by testing

 for blank tape rather than two consecutive filemarks.

 Most other current drives also detect the end of recorded

 data and using two filemarks is usually necessary only

 when interchanging tapes with some other systems.

 MT_ST_DEBUGGING (Default: false)

 This option turns on various debugging messages from the

 driver (effective only if the driver was compiled with

 DEBUG defined nonzero).

 MT_ST_FAST_EOM (Default: false) Page 9/17

 This option causes the MTEOM operation to be sent di?

 rectly to the drive, potentially speeding up the opera?

 tion but causing the driver to lose track of the current

 file number normally returned by the MTIOCGET request.

 If MT_ST_FAST_EOM is false, the driver will respond to an

 MTEOM request by forward spacing over files.

 MT_ST_AUTO_LOCK (Default: false)

 When this option is true, the drive door is locked when

 the device file is opened and unlocked when it is closed.

 MT_ST_DEF_WRITES (Default: false)

 The tape options (block size, mode, compression, etc.)

 may change when changing from one device linked to a

 drive to another device linked to the same drive depend?

 ing on how the devices are defined. This option defines

 when the changes are enforced by the driver using SCSI-

 commands and when the drives auto-detection capabilities

 are relied upon. If this option is false, the driver

 sends the SCSI-commands immediately when the device is

 changed. If the option is true, the SCSI-commands are

 not sent until a write is requested. In this case, the

 drive firmware is allowed to detect the tape structure

 when reading and the SCSI-commands are used only to make

 sure that a tape is written according to the correct

 specification.

 MT_ST_CAN_BSR (Default: false)

 When read-ahead is used, the tape must sometimes be

 spaced backward to the correct position when the device

 is closed and the SCSI command to space backward over

 records is used for this purpose. Some older drives

 can't process this command reliably and this option can

 be used to instruct the driver not to use the command.

 The end result is that, with read-ahead and fixed-block

 mode, the tape may not be correctly positioned within a Page 10/17

 file when the device is closed. With 2.6 kernel, the de?

 fault is true for drives supporting SCSI-3.

 MT_ST_NO_BLKLIMS (Default: false)

 Some drives don't accept the READ BLOCK LIMITS SCSI com?

 mand. If this is used, the driver does not use the com?

 mand. The drawback is that the driver can't check before

 sending commands if the selected block size is acceptable

 to the drive.

 MT_ST_CAN_PARTITIONS (Default: false)

 This option enables support for several partitions within

 a tape. The option applies to all devices linked to a

 drive.

 MT_ST_SCSI2LOGICAL (Default: false)

 This option instructs the driver to use the logical block

 addresses defined in the SCSI-2 standard when performing

 the seek and tell operations (both with MTSEEK and MTIOC?

 POS commands and when changing tape partition). Other?

 wise, the device-specific addresses are used. It is

 highly advisable to set this option if the drive supports

 the logical addresses because they count also filemarks.

 There are some drives that support only the logical block

 addresses.

 MT_ST_SYSV (Default: false)

 When this option is enabled, the tape devices use the

 System V semantics. Otherwise, the BSD semantics are

 used. The most important difference between the seman?

 tics is what happens when a device used for reading is

 closed: in System V semantics the tape is spaced forward

 past the next filemark if this has not happened while us?

 ing the device. In BSD semantics the tape position is

 not changed.

 MT_NO_WAIT (Default: false)

 Enables immediate mode (i.e., don't wait for the command Page 11/17

 to finish) for some commands (e.g., rewind).

 An example:

 struct mtop mt_cmd;

 mt_cmd.mt_op = MTSETDRVBUFFER;

 mt_cmd.mt_count = MT_ST_BOOLEANS |

 MT_ST_BUFFER_WRITES | MT_ST_ASYNC_WRITES;

 ioctl(fd, MTIOCTOP, mt_cmd);

 The default block size for a device can be set with

 MT_ST_DEF_BLKSIZE and the default density code can be set with

 MT_ST_DEFDENSITY. The values for the parameters are or'ed with

 the operation code.

 With kernels 2.1.x and later, the timeout values can be set with

 the subcommand MT_ST_SET_TIMEOUT ORed with the timeout in sec?

 onds. The long timeout (used for rewinds and other commands

 that may take a long time) can be set with MT_ST_SET_LONG_TIME?

 OUT. The kernel defaults are very long to make sure that a suc?

 cessful command is not timed out with any drive. Because of

 this, the driver may seem stuck even if it is only waiting for

 the timeout. These commands can be used to set more practical

 values for a specific drive. The timeouts set for one device

 apply for all devices linked to the same drive.

 Starting from kernels 2.4.19 and 2.5.43, the driver supports a

 status bit which indicates whether the drive requests cleaning.

 The method used by the drive to return cleaning information is

 set using the MT_ST_SEL_CLN subcommand. If the value is zero,

 the cleaning bit is always zero. If the value is one, the

 TapeAlert data defined in the SCSI-3 standard is used (not yet

 implemented). Values 2?17 are reserved. If the lowest eight

 bits are >= 18, bits from the extended sense data are used. The

 bits 9?16 specify a mask to select the bits to look at and the

 bits 17?23 specify the bit pattern to look for. If the bit pat?

 tern is zero, one or more bits under the mask indicate the

 cleaning request. If the pattern is nonzero, the pattern must Page 12/17

 match the masked sense data byte.

 MTIOCGET ? get status

 This request takes an argument of type (struct mtget *).

 /* structure for MTIOCGET - mag tape get status command */

 struct mtget {

 long mt_type;

 long mt_resid;

 /* the following registers are device dependent */

 long mt_dsreg;

 long mt_gstat;

 long mt_erreg;

 /* The next two fields are not always used */

 daddr_t mt_fileno;

 daddr_t mt_blkno;

 };

 mt_type

 The header file defines many values for mt_type, but the current

 driver reports only the generic types MT_ISSCSI1 (Generic SCSI-1

 tape) and MT_ISSCSI2 (Generic SCSI-2 tape).

 mt_resid

 contains the current tape partition number.

 mt_dsreg

 reports the drive's current settings for block size (in the low

 24 bits) and density (in the high 8 bits). These fields are de?

 fined by MT_ST_BLKSIZE_SHIFT, MT_ST_BLKSIZE_MASK, MT_ST_DEN?

 SITY_SHIFT, and MT_ST_DENSITY_MASK.

 mt_gstat

 reports generic (device independent) status information. The

 header file defines macros for testing these status bits:

 GMT_EOF(x): The tape is positioned just after a filemark (always

 false after an MTSEEK operation).

 GMT_BOT(x): The tape is positioned at the beginning of the first

 file (always false after an MTSEEK operation). Page 13/17

 GMT_EOT(x): A tape operation has reached the physical End Of

 Tape.

 GMT_SM(x): The tape is currently positioned at a setmark (always

 false after an MTSEEK operation).

 GMT_EOD(x): The tape is positioned at the end of recorded data.

 GMT_WR_PROT(x): The drive is write-protected. For some drives

 this can also mean that the drive does not support writing

 on the current medium type.

 GMT_ONLINE(x): The last open(2) found the drive with a tape in

 place and ready for operation.

 GMT_D_6250(x), GMT_D_1600(x), GMT_D_800(x): This ?generic? sta?

 tus information reports the current density setting for

 9-track ?" tape drives only.

 GMT_DR_OPEN(x): The drive does not have a tape in place.

 GMT_IM_REP_EN(x): Immediate report mode. This bit is set if

 there are no guarantees that the data has been physically

 written to the tape when the write call returns. It is set

 zero only when the driver does not buffer data and the drive

 is set not to buffer data.

 GMT_CLN(x): The drive has requested cleaning. Implemented in

 kernels since 2.4.19 and 2.5.43.

 mt_erreg

 The only field defined in mt_erreg is the recovered error count

 in the low 16 bits (as defined by MT_ST_SOFTERR_SHIFT and

 MT_ST_SOFTERR_MASK). Due to inconsistencies in the way drives

 report recovered errors, this count is often not maintained

 (most drives do not by default report soft errors but this can

 be changed with a SCSI MODE SELECT command).

 mt_fileno

 reports the current file number (zero-based). This value is set

 to -1 when the file number is unknown (e.g., after MTBSS or MT?

 SEEK).

 mt_blkno Page 14/17

 reports the block number (zero-based) within the current file.

 This value is set to -1 when the block number is unknown (e.g.,

 after MTBSF, MTBSS, or MTSEEK).

 MTIOCPOS ? get tape position

 This request takes an argument of type (struct mtpos *) and reports the

 drive's notion of the current tape block number, which is not the same

 as mt_blkno returned by MTIOCGET. This drive must be a SCSI-2 drive

 that supports the READ POSITION command (device-specific address) or a

 Tandberg-compatible SCSI-1 drive (Tandberg, Archive Viper, Wangtek, ...

).

 /* structure for MTIOCPOS - mag tape get position command */

 struct mtpos {

 long mt_blkno; /* current block number */

 };

RETURN VALUE

 EACCES An attempt was made to write or erase a write-protected tape.

 (This error is not detected during open(2).)

 EBUSY The device is already in use or the driver was unable to allo?

 cate a buffer.

 EFAULT The command parameters point to memory not belonging to the

 calling process.

 EINVAL An ioctl(2) had an invalid argument, or a requested block size

 was invalid.

 EIO The requested operation could not be completed.

 ENOMEM The byte count in read(2) is smaller than the next physical

 block on the tape. (Before 2.2.18 and 2.4.0 the extra bytes

 have been silently ignored.)

 ENOSPC A write operation could not be completed because the tape

 reached end-of-medium.

 ENOSYS Unknown ioctl(2).

 ENXIO During opening, the tape device does not exist.

 EOVERFLOW

 An attempt was made to read or write a variable-length block Page 15/17

 that is larger than the driver's internal buffer.

 EROFS Open is attempted with O_WRONLY or O_RDWR when the tape in the

 drive is write-protected.

FILES

 /dev/st*

 the auto-rewind SCSI tape devices

 /dev/nst*

 the nonrewind SCSI tape devices

NOTES

 1. When exchanging data between systems, both systems have to agree on

 the physical tape block size. The parameters of a drive after

 startup are often not the ones most operating systems use with

 these devices. Most systems use drives in variable-block mode if

 the drive supports that mode. This applies to most modern drives,

 including DATs, 8mm helical scan drives, DLTs, etc. It may be ad?

 visable to use these drives in variable-block mode also in Linux

 (i.e., use MTSETBLK or MTSETDEFBLK at system startup to set the

 mode), at least when exchanging data with a foreign system. The

 drawback of this is that a fairly large tape block size has to be

 used to get acceptable data transfer rates on the SCSI bus.

 2. Many programs (e.g., tar(1)) allow the user to specify the blocking

 factor on the command line. Note that this determines the physical

 block size on tape only in variable-block mode.

 3. In order to use SCSI tape drives, the basic SCSI driver, a SCSI-

 adapter driver and the SCSI tape driver must be either configured

 into the kernel or loaded as modules. If the SCSI-tape driver is

 not present, the drive is recognized but the tape support described

 in this page is not available.

 4. The driver writes error messages to the console/log. The SENSE

 codes written into some messages are automatically translated to

 text if verbose SCSI messages are enabled in kernel configuration.

 5. The driver's internal buffering allows good throughput in fixed-

 block mode also with small read(2) and write(2) byte counts. With Page 16/17

 direct transfers this is not possible and may cause a surprise when

 moving to the 2.6 kernel. The solution is to tell the software to

 use larger transfers (often telling it to use larger blocks). If

 this is not possible, direct transfers can be disabled.

SEE ALSO

 mt(1)

 The file drivers/scsi/README.st or Documentation/scsi/st.txt (kernel >=

 2.6) in the Linux kernel source tree contains the most recent informa?

 tion about the driver and its configuration possibilities

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 ST(4)

Page 17/17

