
Rocky Enterprise Linux 9.2 Manual Pages on command 'sss-certmap.5'

$ man sss-certmap.5

SSS-CERTMAP(5) File Formats and Conventions SSS-CERTMAP(5)

NAME

 sss-certmap - SSSD Certificate Matching and Mapping Rules

DESCRIPTION

 The manual page describes the rules which can be used by SSSD and other

 components to match X.509 certificates and map them to accounts.

 Each rule has four components, a ?priority?, a ?matching rule?, a

 ?mapping rule? and a ?domain list?. All components are optional. A

 missing ?priority? will add the rule with the lowest priority. The

 default ?matching rule? will match certificates with the

 digitalSignature key usage and clientAuth extended key usage. If the

 ?mapping rule? is empty the certificates will be searched in the

 userCertificate attribute as DER encoded binary. If no domains are

 given only the local domain will be searched.

 To allow extensions or completely different style of rule the ?mapping?

 and ?matching rules? can contain a prefix separated with a ':' from the

 main part of the rule. The prefix may only contain upper-case ASCII

 letters and numbers. If the prefix is omitted the default type will be Page 1/11

 used which is 'KRB5' for the matching rules and 'LDAP' for the mapping

 rules.

 The 'sssctl' utility provides the 'cert-eval-rule' command to check if

 a given certificate matches a matching rules and how the output of a

 mapping rule would look like.

RULE COMPONENTS

 PRIORITY

 The rules are processed by priority while the number '0' (zero)

 indicates the highest priority. The higher the number the lower is the

 priority. A missing value indicates the lowest priority. The rules

 processing is stopped when a matched rule is found and no further rules

 are checked.

 Internally the priority is treated as unsigned 32bit integer, using a

 priority value larger than 4294967295 will cause an error.

 If multiple rules have the same priority and only one of the related

 matching rules applies, this rule will be chosen. If there are multiple

 rules with the same priority which matches, one is chosen but which one

 is undefined. To avoid this undefined behavior either use different

 priorities or make the matching rules more specific e.g. by using

 distinct <ISSUER> patterns.

 MATCHING RULE

 The matching rule is used to select a certificate to which the mapping

 rule should be applied. It uses a system similar to the one used by

 ?pkinit_cert_match? option of MIT Kerberos. It consists of a keyword

 enclosed by '<' and '>' which identified a certain part of the

 certificate and a pattern which should be found for the rule to match.

 Multiple keyword pattern pairs can be either joined with '&&' (and) or

 '||' (or).

 Given the similarity to MIT Kerberos the type prefix for this rule is

 'KRB5'. But 'KRB5' will also be the default for ?matching rules? so

 that "<SUBJECT>.*,DC=MY,DC=DOMAIN" and

 "KRB5:<SUBJECT>.*,DC=MY,DC=DOMAIN" are equivalent.

 The available options are: Page 2/11

 <SUBJECT>regular-expression

 With this a part or the whole subject name of the certificate can

 be matched. For the matching POSIX Extended Regular Expression

 syntax is used, see regex(7) for details.

 For the matching the subject name stored in the certificate in DER

 encoded ASN.1 is converted into a string according to RFC 4514.

 This means the most specific name component comes first. Please

 note that not all possible attribute names are covered by RFC 4514.

 The names included are 'CN', 'L', 'ST', 'O', 'OU', 'C', 'STREET',

 'DC' and 'UID'. Other attribute names might be shown differently on

 different platform and by different tools. To avoid confusion those

 attribute names are best not used or covered by a suitable

 regular-expression.

 Example: <SUBJECT>.*,DC=MY,DC=DOMAIN

 Please note that the characters "^.[$()|*+?{\" have a special

 meaning in regular expressions and must be escaped with the help of

 the '\' character so that they are matched as ordinary characters.

 Example: <SUBJECT>^CN=.* \(Admin\),DC=MY,DC=DOMAIN$

 <ISSUER>regular-expression

 With this a part or the whole issuer name of the certificate can be

 matched. All comments for <SUBJECT> apply her as well.

 Example: <ISSUER>^CN=My-CA,DC=MY,DC=DOMAIN$

 <KU>key-usage

 This option can be used to specify which key usage values the

 certificate should have. The following values can be used in a

 comma separated list:

 ? digitalSignature

 ? nonRepudiation

 ? keyEncipherment

 ? dataEncipherment

 ? keyAgreement

 ? keyCertSign

 ? cRLSign Page 3/11

 ? encipherOnly

 ? decipherOnly

 A numerical value in the range of a 32bit unsigned integer can be

 used as well to cover special use cases.

 Example: <KU>digitalSignature,keyEncipherment

 <EKU>extended-key-usage

 This option can be used to specify which extended key usage the

 certificate should have. The following value can be used in a comma

 separated list:

 ? serverAuth

 ? clientAuth

 ? codeSigning

 ? emailProtection

 ? timeStamping

 ? OCSPSigning

 ? KPClientAuth

 ? pkinit

 ? msScLogin

 Extended key usages which are not listed above can be specified

 with their OID in dotted-decimal notation.

 Example: <EKU>clientAuth,1.3.6.1.5.2.3.4

 <SAN>regular-expression

 To be compatible with the usage of MIT Kerberos this option will

 match the Kerberos principals in the PKINIT or AD NT Principal SAN

 as <SAN:Principal> does.

 Example: <SAN>.*@MY\.REALM

 <SAN:Principal>regular-expression

 Match the Kerberos principals in the PKINIT or AD NT Principal SAN.

 Example: <SAN:Principal>.*@MY\.REALM

 <SAN:ntPrincipalName>regular-expression

 Match the Kerberos principals from the AD NT Principal SAN.

 Example: <SAN:ntPrincipalName>.*@MY.AD.REALM

 <SAN:pkinit>regular-expression Page 4/11

 Match the Kerberos principals from the PKINIT SAN.

 Example: <SAN:ntPrincipalName>.*@MY\.PKINIT\.REALM

 <SAN:dotted-decimal-oid>regular-expression

 Take the value of the otherName SAN component given by the OID in

 dotted-decimal notation, interpret it as string and try to match it

 against the regular expression.

 Example: <SAN:1.2.3.4>test

 <SAN:otherName>base64-string

 Do a binary match with the base64 encoded blob against all

 otherName SAN components. With this option it is possible to match

 against custom otherName components with special encodings which

 could not be treated as strings.

 Example: <SAN:otherName>MTIz

 <SAN:rfc822Name>regular-expression

 Match the value of the rfc822Name SAN.

 Example: <SAN:rfc822Name>.*@email\.domain

 <SAN:dNSName>regular-expression

 Match the value of the dNSName SAN.

 Example: <SAN:dNSName>.*\.my\.dns\.domain

 <SAN:x400Address>base64-string

 Binary match the value of the x400Address SAN.

 Example: <SAN:x400Address>MTIz

 <SAN:directoryName>regular-expression

 Match the value of the directoryName SAN. The same comments as

 given for <ISSUER> and <SUBJECT> apply here as well.

 Example: <SAN:directoryName>.*,DC=com

 <SAN:ediPartyName>base64-string

 Binary match the value of the ediPartyName SAN.

 Example: <SAN:ediPartyName>MTIz

 <SAN:uniformResourceIdentifier>regular-expression

 Match the value of the uniformResourceIdentifier SAN.

 Example: <SAN:uniformResourceIdentifier>URN:.*

 <SAN:iPAddress>regular-expression Page 5/11

 Match the value of the iPAddress SAN.

 Example: <SAN:iPAddress>192\.168\..*

 <SAN:registeredID>regular-expression

 Match the value of the registeredID SAN as dotted-decimal string.

 Example: <SAN:registeredID>1\.2\.3\..*

 MAPPING RULE

 The mapping rule is used to associate a certificate with one or more

 accounts. A Smartcard with the certificate and the matching private key

 can then be used to authenticate as one of those accounts.

 Currently SSSD basically only supports LDAP to lookup user information

 (the exception is the proxy provider which is not of relevance here).

 Because of this the mapping rule is based on LDAP search filter syntax

 with templates to add certificate content to the filter. It is expected

 that the filter will only contain the specific data needed for the

 mapping and that the caller will embed it in another filter to do the

 actual search. Because of this the filter string should start and stop

 with '(' and ')' respectively.

 In general it is recommended to use attributes from the certificate and

 add them to special attributes to the LDAP user object. E.g. the

 'altSecurityIdentities' attribute in AD or the 'ipaCertMapData'

 attribute for IPA can be used.

 This should be preferred to read user specific data from the

 certificate like e.g. an email address and search for it in the LDAP

 server. The reason is that the user specific data in LDAP might change

 for various reasons would break the mapping. On the other hand it would

 be hard to break the mapping on purpose for a specific user.

 The default ?mapping rule? type is 'LDAP' which can be added as a

 prefix to a rule like e.g. 'LDAP:(userCertificate;binary={cert!bin})'.

 There is an extension called 'LDAPU1' which offer more templates for

 more flexibility. To allow older versions of this library to ignore the

 extension the prefix 'LDAPU1' must be used when using the new templates

 in a ?mapping rule? otherwise the old version of this library will fail

 with a parsing error. The new templates are described in section the Page 6/11

 section called ?LDAPU1 extension?.

 The templates to add certificate data to the search filter are based on

 Python-style formatting strings. They consist of a keyword in curly

 braces with an optional sub-component specifier separated by a '.' or

 an optional conversion/formatting option separated by a '!'. Allowed

 values are:

 {issuer_dn[!((ad|ad_x500)|ad_ldap|nss_x500|(nss|nss_ldap))]}

 This template will add the full issuer DN converted to a string

 according to RFC 4514. If X.500 ordering (most specific RDN comes

 last) an option with the '_x500' prefix should be used.

 The conversion options starting with 'ad_' will use attribute names

 as used by AD, e.g. 'S' instead of 'ST'.

 The conversion options starting with 'nss_' will use attribute

 names as used by NSS.

 The default conversion option is 'nss', i.e. attribute names

 according to NSS and LDAP/RFC 4514 ordering.

 Example: (ipacertmapdata=X509:<I>{issuer_dn!ad}<S>{subject_dn!ad})

 {subject_dn[!((ad|ad_x500)|ad_ldap|nss_x500|(nss|nss_ldap))]}

 This template will add the full subject DN converted to string

 according to RFC 4514. If X.500 ordering (most specific RDN comes

 last) an option with the '_x500' prefix should be used.

 The conversion options starting with 'ad_' will use attribute names

 as used by AD, e.g. 'S' instead of 'ST'.

 The conversion options starting with 'nss_' will use attribute

 names as used by NSS.

 The default conversion option is 'nss', i.e. attribute names

 according to NSS and LDAP/RFC 4514 ordering.

 Example:

 (ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})

 {cert[!(bin|base64)]}

 This template will add the whole DER encoded certificate as a

 string to the search filter. Depending on the conversion option the

 binary certificate is either converted to an escaped hex sequence Page 7/11

 '\xx' or base64. The escaped hex sequence is the default and can

 e.g. be used with the LDAP attribute 'userCertificate;binary'.

 Example: (userCertificate;binary={cert!bin})

 {subject_principal[.short_name]}

 This template will add the Kerberos principal which is taken either

 from the SAN used by pkinit or the one used by AD. The 'short_name'

 component represents the first part of the principal before the '@'

 sign.

 Example:

 (|(userPrincipal={subject_principal})(samAccountName={subject_principal.short_name}))

 {subject_pkinit_principal[.short_name]}

 This template will add the Kerberos principal which is given by the

 SAN used by pkinit. The 'short_name' component represents the first

 part of the principal before the '@' sign.

 Example:

 (|(userPrincipal={subject_pkinit_principal})(uid={subject_pkinit_principal.short_name}))

 {subject_nt_principal[.short_name]}

 This template will add the Kerberos principal which is given by the

 SAN used by AD. The 'short_name' component represent the first part

 of the principal before the '@' sign.

 Example:

 (|(userPrincipalName={subject_nt_principal})(samAccountName={subject_nt_principal.short_name}))

 {subject_rfc822_name[.short_name]}

 This template will add the string which is stored in the rfc822Name

 component of the SAN, typically an email address. The 'short_name'

 component represents the first part of the address before the '@'

 sign.

 Example:

 (|(mail={subject_rfc822_name})(uid={subject_rfc822_name.short_name}))

 {subject_dns_name[.short_name]}

 This template will add the string which is stored in the dNSName

 component of the SAN, typically a fully-qualified host name. The

 'short_name' component represents the first part of the name before Page 8/11

 the first '.' sign.

 Example:

 (|(fqdn={subject_dns_name})(host={subject_dns_name.short_name}))

 {subject_uri}

 This template will add the string which is stored in the

 uniformResourceIdentifier component of the SAN.

 Example: (uri={subject_uri})

 {subject_ip_address}

 This template will add the string which is stored in the iPAddress

 component of the SAN.

 Example: (ip={subject_ip_address})

 {subject_x400_address}

 This template will add the value which is stored in the x400Address

 component of the SAN as escaped hex sequence.

 Example: (attr:binary={subject_x400_address})

 {subject_directory_name[!((ad|ad_x500)|ad_ldap|nss_x500|(nss|nss_ldap))]}

 This template will add the DN string of the value which is stored

 in the directoryName component of the SAN.

 Example: (orig_dn={subject_directory_name})

 {subject_ediparty_name}

 This template will add the value which is stored in the

 ediPartyName component of the SAN as escaped hex sequence.

 Example: (attr:binary={subject_ediparty_name})

 {subject_registered_id}

 This template will add the OID which is stored in the registeredID

 component of the SAN as a dotted-decimal string.

 Example: (oid={subject_registered_id})

 LDAPU1 extension

 The following template are available when using the 'LDAPU1'

 extension:

 {serial_number[!(dec|hex[_ucr])]}

 This template will add the serial number of the certificate. By

 default it will be printed as a hexadecimal number with Page 9/11

 lower-case letters.

 With the formatting option '!dec' the number will be printed as

 decimal string. The hexadecimal output can be printed with

 upper-case letters ('!hex_u'), with a colon separating the

 hexadecimal bytes ('!hex_c') or with the hexadecimal bytes in

 reverse order ('!hex_r'). The postfix letters can be combined

 so that e.g. '!hex_uc' will produce a colon-separated

 hexadecimal string with upper-case letters.

 Example: LDAPU1:(serial={serial_number})

 {subject_key_id[!hex[_ucr]]}

 This template will add the subject key id of the certificate.

 By default it will be printed as a hexadecimal number with

 lower-case letters.

 The hexadecimal output can be printed with upper-case letters

 ('!hex_u'), with a colon separating the hexadecimal bytes

 ('!hex_c') or with the hexadecimal bytes in reverse order

 ('!hex_r'). The postfix letters can be combined so that e.g.

 '!hex_uc' will produce a colon-separated hexadecimal string

 with upper-case letters.

 Example: LDAPU1:(ski={subject_key_id})

 {cert[!DIGEST[_ucr]]}

 This template will add the hexadecimal digest/hash of the

 certificate where DIGEST must be replaced with the name of a

 digest/hash function supported by OpenSSL, e.g. 'sha512'.

 The hexadecimal output can be printed with upper-case letters

 ('!sha512_u'), with a colon separating the hexadecimal bytes

 ('!sha512_c') or with the hexadecimal bytes in reverse order

 ('!sha512_r'). The postfix letters can be combined so that e.g.

 '!sha512_uc' will produce a colon-separated hexadecimal string

 with upper-case letters.

 Example: LDAPU1:(dgst={cert!sha256})

 {subject_dn_component[(.attr_name|[number]]}

 This template will add an attribute value of a component of the Page 10/11

 subject DN, by default the value of the most specific

 component.

 A different component can it either selected by attribute name,

 e.g. {subject_dn_component.uid} or by position, e.g.

 {subject_dn_component.[2]} where positive numbers start

 counting from the most specific component and negative numbers

 start counting from the least specific component. Attribute

 name and the position can be combined as e.g.

 {subject_dn_component.uid[2]} which means that the name of the

 second component must be 'uid'.

 Example: LDAPU1:(uid={subject_dn_component.uid})

 {issuer_dn_component[(.attr_name|[number]]}

 This template will add an attribute value of a component of the

 issuer DN, by default the value of the most specific component.

 See 'subject_dn_component' for details about the attribute name

 and position specifiers.

 Example:

 LDAPU1:(domain={issuer_dn_component.[-2]}.{issuer_dn_component.dc[-1]})

 {sid[.rid]}

 This template will add the SID if the corresponding extension

 introduced by Microsoft with the OID 1.3.6.1.4.1.311.25.2 is

 available. With the '.rid' selector only the last component,

 i.e. the RID, will be added.

 Example: LDAPU1:(objectsid={sid})

 DOMAIN LIST

 If the domain list is not empty users mapped to a given certificate are

 not only searched in the local domain but in the listed domains as well

 as long as they are know by SSSD. Domains not know to SSSD will be

 ignored.

AUTHORS

 The SSSD upstream - https://github.com/SSSD/sssd/

SSSD 07/10/2023 SSS-CERTMAP(5)

Page 11/11

