
Rocky Enterprise Linux 9.2 Manual Pages on command 'sshd.8'

$ man sshd.8

SSHD(8) BSD System Manager's Manual SSHD(8)

NAME

 sshd ? OpenSSH daemon

SYNOPSIS

 sshd [-46DdeiqTt] [-C connection_spec] [-c host_certificate_file]

 [-E log_file] [-f config_file] [-g login_grace_time]

 [-h host_key_file] [-o option] [-p port] [-u len]

DESCRIPTION

 sshd (OpenSSH Daemon) is the daemon program for ssh(1). It provides se?

 cure encrypted communications between two untrusted hosts over an inse?

 cure network.

 sshd listens for connections from clients. It is normally started at

 boot from /etc/rc. It forks a new daemon for each incoming connection.

 The forked daemons handle key exchange, encryption, authentication, com?

 mand execution, and data exchange.

 sshd can be configured using command-line options or a configuration file

 (by default sshd_config(5)); command-line options override values speci?

 fied in the configuration file. sshd rereads its configuration file when Page 1/18

 it receives a hangup signal, SIGHUP, by executing itself with the name

 and options it was started with, e.g. /usr/sbin/sshd.

 The options are as follows:

 -4 Forces sshd to use IPv4 addresses only.

 -6 Forces sshd to use IPv6 addresses only.

 -C connection_spec

 Specify the connection parameters to use for the -T extended test

 mode. If provided, any Match directives in the configuration

 file that would apply are applied before the configuration is

 written to standard output. The connection parameters are sup?

 plied as keyword=value pairs and may be supplied in any order,

 either with multiple -C options or as a comma-separated list.

 The keywords are ?addr?, ?user?, ?host?, ?laddr?, ?lport?, and

 ?rdomain? and correspond to source address, user, resolved source

 host name, local address, local port number and routing domain

 respectively.

 -c host_certificate_file

 Specifies a path to a certificate file to identify sshd during

 key exchange. The certificate file must match a host key file

 specified using the -h option or the HostKey configuration direc?

 tive.

 -D When this option is specified, sshd will not detach and does not

 become a daemon. This allows easy monitoring of sshd.

 -d Debug mode. The server sends verbose debug output to standard

 error, and does not put itself in the background. The server

 also will not fork(2) and will only process one connection. This

 option is only intended for debugging for the server. Multiple

 -d options increase the debugging level. Maximum is 3.

 -E log_file

 Append debug logs to log_file instead of the system log.

 -e Write debug logs to standard error instead of the system log.

 -f config_file

 Specifies the name of the configuration file. The default is Page 2/18

 /etc/ssh/sshd_config. sshd refuses to start if there is no con?

 figuration file.

 -g login_grace_time

 Gives the grace time for clients to authenticate themselves (de?

 fault 120 seconds). If the client fails to authenticate the user

 within this many seconds, the server disconnects and exits. A

 value of zero indicates no limit.

 -h host_key_file

 Specifies a file from which a host key is read. This option must

 be given if sshd is not run as root (as the normal host key files

 are normally not readable by anyone but root). The default is

 /etc/ssh/ssh_host_ecdsa_key, /etc/ssh/ssh_host_ed25519_key and

 /etc/ssh/ssh_host_rsa_key. It is possible to have multiple host

 key files for the different host key algorithms.

 -i Specifies that sshd is being run from inetd(8).

 -o option

 Can be used to give options in the format used in the configura?

 tion file. This is useful for specifying options for which there

 is no separate command-line flag. For full details of the op?

 tions, and their values, see sshd_config(5).

 -p port

 Specifies the port on which the server listens for connections

 (default 22). Multiple port options are permitted. Ports speci?

 fied in the configuration file with the Port option are ignored

 when a command-line port is specified. Ports specified using the

 ListenAddress option override command-line ports.

 -q Quiet mode. Nothing is sent to the system log. Normally the be?

 ginning, authentication, and termination of each connection is

 logged.

 -T Extended test mode. Check the validity of the configuration

 file, output the effective configuration to stdout and then exit.

 Optionally, Match rules may be applied by specifying the connec?

 tion parameters using one or more -C options. Page 3/18

 -t Test mode. Only check the validity of the configuration file and

 sanity of the keys. This is useful for updating sshd reliably as

 configuration options may change.

 -u len This option is used to specify the size of the field in the utmp

 structure that holds the remote host name. If the resolved host

 name is longer than len, the dotted decimal value will be used

 instead. This allows hosts with very long host names that over?

 flow this field to still be uniquely identified. Specifying -u0

 indicates that only dotted decimal addresses should be put into

 the utmp file. -u0 may also be used to prevent sshd from making

 DNS requests unless the authentication mechanism or configuration

 requires it. Authentication mechanisms that may require DNS in?

 clude HostbasedAuthentication and using a from="pattern-list" op?

 tion in a key file. Configuration options that require DNS in?

 clude using a USER@HOST pattern in AllowUsers or DenyUsers.

AUTHENTICATION

 The OpenSSH SSH daemon supports SSH protocol 2 only. Each host has a

 host-specific key, used to identify the host. Whenever a client con?

 nects, the daemon responds with its public host key. The client compares

 the host key against its own database to verify that it has not changed.

 Forward secrecy is provided through a Diffie-Hellman key agreement. This

 key agreement results in a shared session key. The rest of the session

 is encrypted using a symmetric cipher. The client selects the encryption

 algorithm to use from those offered by the server. Additionally, session

 integrity is provided through a cryptographic message authentication code

 (MAC).

 Finally, the server and the client enter an authentication dialog. The

 client tries to authenticate itself using host-based authentication, pub?

 lic key authentication, GSSAPI authentication, challenge-response authen?

 tication, or password authentication.

 Regardless of the authentication type, the account is checked to ensure

 that it is accessible. An account is not accessible if it is locked,

 listed in DenyUsers or its group is listed in DenyGroups . The defini? Page 4/18

 tion of a locked account is system dependent. Some platforms have their

 own account database (eg AIX) and some modify the passwd field (?*LK*?

 on Solaris and UnixWare, ?*? on HP-UX, containing ?Nologin? on Tru64, a

 leading ?*LOCKED*? on FreeBSD and a leading ?!? on most Linuxes). If

 there is a requirement to disable password authentication for the account

 while allowing still public-key, then the passwd field should be set to

 something other than these values (eg ?NP? or ?*NP*?).

 If the client successfully authenticates itself, a dialog for preparing

 the session is entered. At this time the client may request things like

 allocating a pseudo-tty, forwarding X11 connections, forwarding TCP con?

 nections, or forwarding the authentication agent connection over the se?

 cure channel.

 After this, the client either requests a shell or execution of a command.

 The sides then enter session mode. In this mode, either side may send

 data at any time, and such data is forwarded to/from the shell or command

 on the server side, and the user terminal in the client side.

 When the user program terminates and all forwarded X11 and other connec?

 tions have been closed, the server sends command exit status to the

 client, and both sides exit.

LOGIN PROCESS

 When a user successfully logs in, sshd does the following:

 1. If the login is on a tty, and no command has been specified,

 prints last login time and /etc/motd (unless prevented in the

 configuration file or by ~/.hushlogin; see the FILES section).

 2. If the login is on a tty, records login time.

 3. Checks /etc/nologin; if it exists, prints contents and quits

 (unless root).

 4. Changes to run with normal user privileges.

 5. Sets up basic environment.

 6. Reads the file ~/.ssh/environment, if it exists, and users are

 allowed to change their environment. See the

 PermitUserEnvironment option in sshd_config(5).

 7. Changes to user's home directory. Page 5/18

 8. If ~/.ssh/rc exists and the sshd_config(5) PermitUserRC option

 is set, runs it; else if /etc/ssh/sshrc exists, runs it; oth?

 erwise runs xauth(1). The ?rc? files are given the X11 au?

 thentication protocol and cookie in standard input. See

 SSHRC, below.

 9. Runs user's shell or command. All commands are run under the

 user's login shell as specified in the system password data?

 base.

SSHRC

 If the file ~/.ssh/rc exists, sh(1) runs it after reading the environment

 files but before starting the user's shell or command. It must not pro?

 duce any output on stdout; stderr must be used instead. If X11 forward?

 ing is in use, it will receive the "proto cookie" pair in its standard

 input (and DISPLAY in its environment). The script must call xauth(1)

 because sshd will not run xauth automatically to add X11 cookies.

 The primary purpose of this file is to run any initialization routines

 which may be needed before the user's home directory becomes accessible;

 AFS is a particular example of such an environment.

 This file will probably contain some initialization code followed by

 something similar to:

 if read proto cookie && [-n "$DISPLAY"]; then

 if [`echo $DISPLAY | cut -c1-10` = 'localhost:']; then

 # X11UseLocalhost=yes

 echo add unix:`echo $DISPLAY |

 cut -c11-` $proto $cookie

 else

 # X11UseLocalhost=no

 echo add $DISPLAY $proto $cookie

 fi | xauth -q -

 fi

 If this file does not exist, /etc/ssh/sshrc is run, and if that does not

 exist either, xauth is used to add the cookie.

AUTHORIZED_KEYS FILE FORMAT Page 6/18

 AuthorizedKeysFile specifies the files containing public keys for public

 key authentication; if this option is not specified, the default is

 ~/.ssh/authorized_keys and ~/.ssh/authorized_keys2. Each line of the

 file contains one key (empty lines and lines starting with a ?#? are ig?

 nored as comments). Public keys consist of the following space-separated

 fields: options, keytype, base64-encoded key, comment. The options field

 is optional. The supported key types are:

 sk-ecdsa-sha2-nistp256@openssh.com

 ecdsa-sha2-nistp256

 ecdsa-sha2-nistp384

 ecdsa-sha2-nistp521

 sk-ssh-ed25519@openssh.com

 ssh-ed25519

 ssh-dss

 ssh-rsa

 The comment field is not used for anything (but may be convenient for the

 user to identify the key).

 Note that lines in this file can be several hundred bytes long (because

 of the size of the public key encoding) up to a limit of 8 kilobytes,

 which permits RSA keys up to 16 kilobits. You don't want to type them

 in; instead, copy the id_dsa.pub, id_ecdsa.pub, id_ecdsa_sk.pub,

 id_ed25519.pub, id_ed25519_sk.pub, or the id_rsa.pub file and edit it.

 sshd enforces a minimum RSA key modulus size of 1024 bits.

 The options (if present) consist of comma-separated option specifica?

 tions. No spaces are permitted, except within double quotes. The fol?

 lowing option specifications are supported (note that option keywords are

 case-insensitive):

 agent-forwarding

 Enable authentication agent forwarding previously disabled by the

 restrict option.

 cert-authority

 Specifies that the listed key is a certification authority (CA)

 that is trusted to validate signed certificates for user authen? Page 7/18

 tication.

 Certificates may encode access restrictions similar to these key

 options. If both certificate restrictions and key options are

 present, the most restrictive union of the two is applied.

 command="command"

 Specifies that the command is executed whenever this key is used

 for authentication. The command supplied by the user (if any) is

 ignored. The command is run on a pty if the client requests a

 pty; otherwise it is run without a tty. If an 8-bit clean chan?

 nel is required, one must not request a pty or should specify

 no-pty. A quote may be included in the command by quoting it

 with a backslash.

 This option might be useful to restrict certain public keys to

 perform just a specific operation. An example might be a key

 that permits remote backups but nothing else. Note that the

 client may specify TCP and/or X11 forwarding unless they are ex?

 plicitly prohibited, e.g. using the restrict key option.

 The command originally supplied by the client is available in the

 SSH_ORIGINAL_COMMAND environment variable. Note that this option

 applies to shell, command or subsystem execution. Also note that

 this command may be superseded by a sshd_config(5) ForceCommand

 directive.

 If a command is specified and a forced-command is embedded in a

 certificate used for authentication, then the certificate will be

 accepted only if the two commands are identical.

 environment="NAME=value"

 Specifies that the string is to be added to the environment when

 logging in using this key. Environment variables set this way

 override other default environment values. Multiple options of

 this type are permitted. Environment processing is disabled by

 default and is controlled via the PermitUserEnvironment option.

 expiry-time="timespec"

 Specifies a time after which the key will not be accepted. The Page 8/18

 time may be specified as a YYYYMMDD date or a YYYYMMDDHHMM[SS]

 time in the system time-zone.

 from="pattern-list"

 Specifies that in addition to public key authentication, either

 the canonical name of the remote host or its IP address must be

 present in the comma-separated list of patterns. See PATTERNS in

 ssh_config(5) for more information on patterns.

 In addition to the wildcard matching that may be applied to host?

 names or addresses, a from stanza may match IP addresses using

 CIDR address/masklen notation.

 The purpose of this option is to optionally increase security:

 public key authentication by itself does not trust the network or

 name servers or anything (but the key); however, if somebody

 somehow steals the key, the key permits an intruder to log in

 from anywhere in the world. This additional option makes using a

 stolen key more difficult (name servers and/or routers would have

 to be compromised in addition to just the key).

 no-agent-forwarding

 Forbids authentication agent forwarding when this key is used for

 authentication.

 no-port-forwarding

 Forbids TCP forwarding when this key is used for authentication.

 Any port forward requests by the client will return an error.

 This might be used, e.g. in connection with the command option.

 no-pty Prevents tty allocation (a request to allocate a pty will fail).

 no-user-rc

 Disables execution of ~/.ssh/rc.

 no-X11-forwarding

 Forbids X11 forwarding when this key is used for authentication.

 Any X11 forward requests by the client will return an error.

 permitlisten="[host:]port"

 Limit remote port forwarding with the ssh(1) -R option such that

 it may only listen on the specified host (optional) and port. Page 9/18

 IPv6 addresses can be specified by enclosing the address in

 square brackets. Multiple permitlisten options may be applied

 separated by commas. Hostnames may include wildcards as de?

 scribed in the PATTERNS section in ssh_config(5). A port speci?

 fication of * matches any port. Note that the setting of

 GatewayPorts may further restrict listen addresses. Note that

 ssh(1) will send a hostname of ?localhost? if a listen host was

 not specified when the forwarding was requested, and that this

 name is treated differently to the explicit localhost addresses

 ?127.0.0.1? and ?::1?.

 permitopen="host:port"

 Limit local port forwarding with the ssh(1) -L option such that

 it may only connect to the specified host and port. IPv6 ad?

 dresses can be specified by enclosing the address in square

 brackets. Multiple permitopen options may be applied separated

 by commas. No pattern matching or name lookup is performed on

 the specified hostnames, they must be literal host names and/or

 addresses. A port specification of * matches any port.

 port-forwarding

 Enable port forwarding previously disabled by the restrict op?

 tion.

 principals="principals"

 On a cert-authority line, specifies allowed principals for cer?

 tificate authentication as a comma-separated list. At least one

 name from the list must appear in the certificate's list of prin?

 cipals for the certificate to be accepted. This option is ig?

 nored for keys that are not marked as trusted certificate signers

 using the cert-authority option.

 pty Permits tty allocation previously disabled by the restrict op?

 tion.

 no-touch-required

 Do not require demonstration of user presence for signatures made

 using this key. This option only makes sense for the FIDO au? Page 10/18

 thenticator algorithms ecdsa-sk and ed25519-sk.

 verify-required

 Require that signatures made using this key attest that they ver?

 ified the user, e.g. via a PIN. This option only makes sense for

 the FIDO authenticator algorithms ecdsa-sk and ed25519-sk.

 restrict

 Enable all restrictions, i.e. disable port, agent and X11 for?

 warding, as well as disabling PTY allocation and execution of

 ~/.ssh/rc. If any future restriction capabilities are added to

 authorized_keys files they will be included in this set.

 tunnel="n"

 Force a tun(4) device on the server. Without this option, the

 next available device will be used if the client requests a tun?

 nel.

 user-rc

 Enables execution of ~/.ssh/rc previously disabled by the

 restrict option.

 X11-forwarding

 Permits X11 forwarding previously disabled by the restrict op?

 tion.

 An example authorized_keys file:

 # Comments are allowed at start of line. Blank lines are allowed.

 # Plain key, no restrictions

 ssh-rsa ...

 # Forced command, disable PTY and all forwarding

 restrict,command="dump /home" ssh-rsa ...

 # Restriction of ssh -L forwarding destinations

 permitopen="192.0.2.1:80",permitopen="192.0.2.2:25" ssh-rsa ...

 # Restriction of ssh -R forwarding listeners

 permitlisten="localhost:8080",permitlisten="[::1]:22000" ssh-rsa ...

 # Configuration for tunnel forwarding

 tunnel="0",command="sh /etc/netstart tun0" ssh-rsa ...

 # Override of restriction to allow PTY allocation Page 11/18

 restrict,pty,command="nethack" ssh-rsa ...

 # Allow FIDO key without requiring touch

 no-touch-required sk-ecdsa-sha2-nistp256@openssh.com ...

 # Require user-verification (e.g. PIN or biometric) for FIDO key

 verify-required sk-ecdsa-sha2-nistp256@openssh.com ...

 # Trust CA key, allow touch-less FIDO if requested in certificate

 cert-authority,no-touch-required,principals="user_a" ssh-rsa ...

SSH_KNOWN_HOSTS FILE FORMAT

 The /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts files contain host

 public keys for all known hosts. The global file should be prepared by

 the administrator (optional), and the per-user file is maintained auto?

 matically: whenever the user connects to an unknown host, its key is

 added to the per-user file.

 Each line in these files contains the following fields: marker (op?

 tional), hostnames, keytype, base64-encoded key, comment. The fields are

 separated by spaces.

 The marker is optional, but if it is present then it must be one of

 ?@cert-authority?, to indicate that the line contains a certification au?

 thority (CA) key, or ?@revoked?, to indicate that the key contained on

 the line is revoked and must not ever be accepted. Only one marker

 should be used on a key line.

 Hostnames is a comma-separated list of patterns (?*? and ??? act as wild?

 cards); each pattern in turn is matched against the host name. When sshd

 is authenticating a client, such as when using HostbasedAuthentication,

 this will be the canonical client host name. When ssh(1) is authenticat?

 ing a server, this will be the host name given by the user, the value of

 the ssh(1) HostkeyAlias if it was specified, or the canonical server

 hostname if the ssh(1) CanonicalizeHostname option was used.

 A pattern may also be preceded by ?!? to indicate negation: if the host

 name matches a negated pattern, it is not accepted (by that line) even if

 it matched another pattern on the line. A hostname or address may op?

 tionally be enclosed within ?[? and ?]? brackets then followed by ?:? and

 a non-standard port number. Page 12/18

 Alternately, hostnames may be stored in a hashed form which hides host

 names and addresses should the file's contents be disclosed. Hashed

 hostnames start with a ?|? character. Only one hashed hostname may ap?

 pear on a single line and none of the above negation or wildcard opera?

 tors may be applied.

 The keytype and base64-encoded key are taken directly from the host key;

 they can be obtained, for example, from /etc/ssh/ssh_host_rsa_key.pub.

 The optional comment field continues to the end of the line, and is not

 used.

 Lines starting with ?#? and empty lines are ignored as comments.

 When performing host authentication, authentication is accepted if any

 matching line has the proper key; either one that matches exactly or, if

 the server has presented a certificate for authentication, the key of the

 certification authority that signed the certificate. For a key to be

 trusted as a certification authority, it must use the ?@cert-authority?

 marker described above.

 The known hosts file also provides a facility to mark keys as revoked,

 for example when it is known that the associated private key has been

 stolen. Revoked keys are specified by including the ?@revoked? marker at

 the beginning of the key line, and are never accepted for authentication

 or as certification authorities, but instead will produce a warning from

 ssh(1) when they are encountered.

 It is permissible (but not recommended) to have several lines or differ?

 ent host keys for the same names. This will inevitably happen when short

 forms of host names from different domains are put in the file. It is

 possible that the files contain conflicting information; authentication

 is accepted if valid information can be found from either file.

 Note that the lines in these files are typically hundreds of characters

 long, and you definitely don't want to type in the host keys by hand.

 Rather, generate them by a script, ssh-keyscan(1) or by taking, for exam?

 ple, /etc/ssh/ssh_host_rsa_key.pub and adding the host names at the

 front. ssh-keygen(1) also offers some basic automated editing for

 ~/.ssh/known_hosts including removing hosts matching a host name and con? Page 13/18

 verting all host names to their hashed representations.

 An example ssh_known_hosts file:

 # Comments allowed at start of line

 closenet,...,192.0.2.53 1024 37 159...93 closenet.example.net

 cvs.example.net,192.0.2.10 ssh-rsa AAAA1234.....=

 # A hashed hostname

 |1|JfKTdBh7rNbXkVAQCRp4OQoPfmI=|USECr3SWf1JUPsms5AqfD5QfxkM= ssh-rsa

 AAAA1234.....=

 # A revoked key

 @revoked * ssh-rsa AAAAB5W...

 # A CA key, accepted for any host in *.mydomain.com or *.mydomain.org

 @cert-authority *.mydomain.org,*.mydomain.com ssh-rsa AAAAB5W...

FILES

 ~/.hushlogin

 This file is used to suppress printing the last login time and

 /etc/motd, if PrintLastLog and PrintMotd, respectively, are en?

 abled. It does not suppress printing of the banner specified by

 Banner.

 ~/.rhosts

 This file is used for host-based authentication (see ssh(1) for

 more information). On some machines this file may need to be

 world-readable if the user's home directory is on an NFS parti?

 tion, because sshd reads it as root. Additionally, this file

 must be owned by the user, and must not have write permissions

 for anyone else. The recommended permission for most machines is

 read/write for the user, and not accessible by others.

 ~/.shosts

 This file is used in exactly the same way as .rhosts, but allows

 host-based authentication without permitting login with

 rlogin/rsh.

 ~/.k5login

 ~/.k5users

 These files enforce GSSAPI/Kerberos authentication access con? Page 14/18

 trol. Further details are described in ksu(1). The location of

 the k5login file depends on the configuration option

 k5login_directory in the krb5.conf(5).

 ~/.ssh/

 This directory is the default location for all user-specific con?

 figuration and authentication information. There is no general

 requirement to keep the entire contents of this directory secret,

 but the recommended permissions are read/write/execute for the

 user, and not accessible by others.

 ~/.ssh/authorized_keys

 Lists the public keys (DSA, ECDSA, Ed25519, RSA) that can be used

 for logging in as this user. The format of this file is de?

 scribed above. The content of the file is not highly sensitive,

 but the recommended permissions are read/write for the user, and

 not accessible by others.

 If this file, the ~/.ssh directory, or the user's home directory

 are writable by other users, then the file could be modified or

 replaced by unauthorized users. In this case, sshd will not al?

 low it to be used unless the StrictModes option has been set to

 ?no?.

 ~/.ssh/environment

 This file is read into the environment at login (if it exists).

 It can only contain empty lines, comment lines (that start with

 ?#?), and assignment lines of the form name=value. The file

 should be writable only by the user; it need not be readable by

 anyone else. Environment processing is disabled by default and

 is controlled via the PermitUserEnvironment option.

 ~/.ssh/known_hosts

 Contains a list of host keys for all hosts the user has logged

 into that are not already in the systemwide list of known host

 keys. The format of this file is described above. This file

 should be writable only by root/the owner and can, but need not

 be, world-readable. Page 15/18

 ~/.ssh/rc

 Contains initialization routines to be run before the user's home

 directory becomes accessible. This file should be writable only

 by the user, and need not be readable by anyone else.

 /etc/hosts.equiv

 This file is for host-based authentication (see ssh(1)). It

 should only be writable by root.

 /etc/ssh/moduli

 Contains Diffie-Hellman groups used for the "Diffie-Hellman Group

 Exchange" key exchange method. The file format is described in

 moduli(5). If no usable groups are found in this file then fixed

 internal groups will be used.

 /etc/motd

 See motd(5).

 /etc/nologin

 If this file exists, sshd refuses to let anyone except root log

 in. The contents of the file are displayed to anyone trying to

 log in, and non-root connections are refused. The file should be

 world-readable.

 /etc/ssh/shosts.equiv

 This file is used in exactly the same way as hosts.equiv, but al?

 lows host-based authentication without permitting login with

 rlogin/rsh.

 /etc/ssh/ssh_host_ecdsa_key

 /etc/ssh/ssh_host_ed25519_key

 /etc/ssh/ssh_host_rsa_key

 These files contain the private parts of the host keys. These

 files should only be owned by root, readable only by root, and

 not accessible to others. Note that sshd does not start if these

 files are group/world-accessible.

 /etc/ssh/ssh_host_ecdsa_key.pub

 /etc/ssh/ssh_host_ed25519_key.pub

 /etc/ssh/ssh_host_rsa_key.pub Page 16/18

 These files contain the public parts of the host keys. These

 files should be world-readable but writable only by root. Their

 contents should match the respective private parts. These files

 are not really used for anything; they are provided for the con?

 venience of the user so their contents can be copied to known

 hosts files. These files are created using ssh-keygen(1).

 /etc/ssh/ssh_known_hosts

 Systemwide list of known host keys. This file should be prepared

 by the system administrator to contain the public host keys of

 all machines in the organization. The format of this file is de?

 scribed above. This file should be writable only by root/the

 owner and should be world-readable.

 /etc/ssh/sshd_config

 Contains configuration data for sshd. The file format and con?

 figuration options are described in sshd_config(5).

 /etc/ssh/sshrc

 Similar to ~/.ssh/rc, it can be used to specify machine-specific

 login-time initializations globally. This file should be

 writable only by root, and should be world-readable.

 /usr/share/empty.sshd

 chroot(2) directory used by sshd during privilege separation in

 the pre-authentication phase. The directory should not contain

 any files and must be owned by root and not group or world-

 writable.

 /var/run/sshd.pid

 Contains the process ID of the sshd listening for connections (if

 there are several daemons running concurrently for different

 ports, this contains the process ID of the one started last).

 The content of this file is not sensitive; it can be world-read?

 able.

IPV6

 IPv6 address can be used everywhere where IPv4 address. In all entries

 must be the IPv6 address enclosed in square brackets. Note: The square Page 17/18

 brackets are metacharacters for the shell and must be escaped in shell.

SEE ALSO

 scp(1), sftp(1), ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1),

 ssh-keyscan(1), chroot(2), login.conf(5), moduli(5), sshd_config(5),

 inetd(8), sftp-server(8)

AUTHORS

 OpenSSH is a derivative of the original and free ssh 1.2.12 release by

 Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo

 de Raadt and Dug Song removed many bugs, re-added newer features and cre?

 ated OpenSSH. Markus Friedl contributed the support for SSH protocol

 versions 1.5 and 2.0. Niels Provos and Markus Friedl contributed support

 for privilege separation.

BSD July 30, 2021 BSD

Page 18/18

