
Rocky Enterprise Linux 9.2 Manual Pages on command 'ssh_config.5'

$ man ssh_config.5

SSH_CONFIG(5) BSD File Formats Manual SSH_CONFIG(5)

NAME

 ssh_config ? OpenSSH client configuration file

DESCRIPTION

 ssh(1) obtains configuration data from the following sources in the fol?

 lowing order:

 1. command-line options

 2. user's configuration file (~/.ssh/config)

 3. system-wide configuration file (/etc/ssh/ssh_config)

 For each parameter, the first obtained value will be used. The configu?

 ration files contain sections separated by Host specifications, and that

 section is only applied for hosts that match one of the patterns given in

 the specification. The matched host name is usually the one given on the

 command line (see the CanonicalizeHostname option for exceptions).

 Since the first obtained value for each parameter is used, more host-spe?

 cific declarations should be given near the beginning of the file, and

 general defaults at the end.

 The file contains keyword-argument pairs, one per line. Lines starting Page 1/35

 with ?#? and empty lines are interpreted as comments. Arguments may op?

 tionally be enclosed in double quotes (") in order to represent arguments

 containing spaces. Configuration options may be separated by whitespace

 or optional whitespace and exactly one ?=?; the latter format is useful

 to avoid the need to quote whitespace when specifying configuration op?

 tions using the ssh, scp, and sftp -o option.

 The possible keywords and their meanings are as follows (note that key?

 words are case-insensitive and arguments are case-sensitive):

 Host Restricts the following declarations (up to the next Host or

 Match keyword) to be only for those hosts that match one of the

 patterns given after the keyword. If more than one pattern is

 provided, they should be separated by whitespace. A single ?*?

 as a pattern can be used to provide global defaults for all

 hosts. The host is usually the hostname argument given on the

 command line (see the CanonicalizeHostname keyword for excep?

 tions).

 A pattern entry may be negated by prefixing it with an exclama?

 tion mark (?!?). If a negated entry is matched, then the Host

 entry is ignored, regardless of whether any other patterns on the

 line match. Negated matches are therefore useful to provide ex?

 ceptions for wildcard matches.

 See PATTERNS for more information on patterns.

 Match Restricts the following declarations (up to the next Host or

 Match keyword) to be used only when the conditions following the

 Match keyword are satisfied. Match conditions are specified us?

 ing one or more criteria or the single token all which always

 matches. The available criteria keywords are: canonical, final,

 exec, host, originalhost, user, and localuser. The all criteria

 must appear alone or immediately after canonical or final. Other

 criteria may be combined arbitrarily. All criteria but all,

 canonical, and final require an argument. Criteria may be

 negated by prepending an exclamation mark (?!?).

 The canonical keyword matches only when the configuration file is Page 2/35

 being re-parsed after hostname canonicalization (see the

 CanonicalizeHostname option). This may be useful to specify con?

 ditions that work with canonical host names only.

 The final keyword requests that the configuration be re-parsed

 (regardless of whether CanonicalizeHostname is enabled), and

 matches only during this final pass. If CanonicalizeHostname is

 enabled, then canonical and final match during the same pass.

 The exec keyword executes the specified command under the user's

 shell. If the command returns a zero exit status then the condi?

 tion is considered true. Commands containing whitespace charac?

 ters must be quoted. Arguments to exec accept the tokens de?

 scribed in the TOKENS section.

 The other keywords' criteria must be single entries or comma-sep?

 arated lists and may use the wildcard and negation operators de?

 scribed in the PATTERNS section. The criteria for the host key?

 word are matched against the target hostname, after any substitu?

 tion by the Hostname or CanonicalizeHostname options. The

 originalhost keyword matches against the hostname as it was spec?

 ified on the command-line. The user keyword matches against the

 target username on the remote host. The localuser keyword

 matches against the name of the local user running ssh(1) (this

 keyword may be useful in system-wide ssh_config files).

 AddKeysToAgent

 Specifies whether keys should be automatically added to a running

 ssh-agent(1). If this option is set to yes and a key is loaded

 from a file, the key and its passphrase are added to the agent

 with the default lifetime, as if by ssh-add(1). If this option

 is set to ask, ssh(1) will require confirmation using the

 SSH_ASKPASS program before adding a key (see ssh-add(1) for de?

 tails). If this option is set to confirm, each use of the key

 must be confirmed, as if the -c option was specified to

 ssh-add(1). If this option is set to no, no keys are added to

 the agent. Alternately, this option may be specified as a time Page 3/35

 interval using the format described in the TIME FORMATS section

 of sshd_config(5) to specify the key's lifetime in ssh-agent(1),

 after which it will automatically be removed. The argument must

 be no (the default), yes, confirm (optionally followed by a time

 interval), ask or a time interval.

 AddressFamily

 Specifies which address family to use when connecting. Valid ar?

 guments are any (the default), inet (use IPv4 only), or inet6

 (use IPv6 only).

 BatchMode

 If set to yes, user interaction such as password prompts and host

 key confirmation requests will be disabled. This option is use?

 ful in scripts and other batch jobs where no user is present to

 interact with ssh(1). The argument must be yes or no (the de?

 fault).

 BindAddress

 Use the specified address on the local machine as the source ad?

 dress of the connection. Only useful on systems with more than

 one address.

 BindInterface

 Use the address of the specified interface on the local machine

 as the source address of the connection.

 CanonicalDomains

 When CanonicalizeHostname is enabled, this option specifies the

 list of domain suffixes in which to search for the specified des?

 tination host.

 CanonicalizeFallbackLocal

 Specifies whether to fail with an error when hostname canonical?

 ization fails. The default, yes, will attempt to look up the un?

 qualified hostname using the system resolver's search rules. A

 value of no will cause ssh(1) to fail instantly if

 CanonicalizeHostname is enabled and the target hostname cannot be

 found in any of the domains specified by CanonicalDomains. Page 4/35

 CanonicalizeHostname

 Controls whether explicit hostname canonicalization is performed.

 The default, no, is not to perform any name rewriting and let the

 system resolver handle all hostname lookups. If set to yes then,

 for connections that do not use a ProxyCommand or ProxyJump,

 ssh(1) will attempt to canonicalize the hostname specified on the

 command line using the CanonicalDomains suffixes and

 CanonicalizePermittedCNAMEs rules. If CanonicalizeHostname is

 set to always, then canonicalization is applied to proxied con?

 nections too.

 If this option is enabled, then the configuration files are pro?

 cessed again using the new target name to pick up any new config?

 uration in matching Host and Match stanzas. A value of none dis?

 ables the use of a ProxyJump host.

 CanonicalizeMaxDots

 Specifies the maximum number of dot characters in a hostname be?

 fore canonicalization is disabled. The default, 1, allows a sin?

 gle dot (i.e. hostname.subdomain).

 CanonicalizePermittedCNAMEs

 Specifies rules to determine whether CNAMEs should be followed

 when canonicalizing hostnames. The rules consist of one or more

 arguments of source_domain_list:target_domain_list, where

 source_domain_list is a pattern-list of domains that may follow

 CNAMEs in canonicalization, and target_domain_list is a pattern-

 list of domains that they may resolve to.

 For example, "*.a.example.com:*.b.example.com,*.c.example.com"

 will allow hostnames matching "*.a.example.com" to be canonical?

 ized to names in the "*.b.example.com" or "*.c.example.com" do?

 mains.

 CASignatureAlgorithms

 The default is handled system-wide by crypto-policies(7). Infor?

 mation about defaults, how to modify the defaults and how to cus?

 tomize existing policies with sub-policies are present in manual Page 5/35

 page update-crypto-policies(8).

 Specifies which algorithms are allowed for signing of certifi?

 cates by certificate authorities (CAs). If the specified list

 begins with a ?+? character, then the specified algorithms will

 be appended to the default set instead of replacing them. If the

 specified list begins with a ?-? character, then the specified

 algorithms (including wildcards) will be removed from the default

 set instead of replacing them.

 ssh(1) will not accept host certificates signed using algorithms

 other than those specified.

 CertificateFile

 Specifies a file from which the user's certificate is read. A

 corresponding private key must be provided separately in order to

 use this certificate either from an IdentityFile directive or -i

 flag to ssh(1), via ssh-agent(1), or via a PKCS11Provider or

 SecurityKeyProvider.

 Arguments to CertificateFile may use the tilde syntax to refer to

 a user's home directory, the tokens described in the TOKENS sec?

 tion and environment variables as described in the ENVIRONMENT

 VARIABLES section.

 It is possible to have multiple certificate files specified in

 configuration files; these certificates will be tried in se?

 quence. Multiple CertificateFile directives will add to the list

 of certificates used for authentication.

 CheckHostIP

 If set to yes ssh(1) will additionally check the host IP address

 in the known_hosts file. This allows it to detect if a host key

 changed due to DNS spoofing and will add addresses of destination

 hosts to ~/.ssh/known_hosts in the process, regardless of the

 setting of StrictHostKeyChecking. If the option is set to no

 (the default), the check will not be executed.

 Ciphers

 The default is handled system-wide by crypto-policies(7). Infor? Page 6/35

 mation about defaults, how to modify the defaults and how to cus?

 tomize existing policies with sub-policies are present in manual

 page update-crypto-policies(8).

 Specifies the ciphers allowed and their order of preference.

 Multiple ciphers must be comma-separated. If the specified list

 begins with a ?+? character, then the specified ciphers will be

 appended to the built-in openssh default set instead of replacing

 them. If the specified list begins with a ?-? character, then

 the specified ciphers (including wildcards) will be removed from

 the built-in openssh default set instead of replacing them. If

 the specified list begins with a ?^? character, then the speci?

 fied ciphers will be placed at the head of the built-in openssh

 default set.

 The supported ciphers are:

 3des-cbc

 aes128-cbc

 aes192-cbc

 aes256-cbc

 aes128-ctr

 aes192-ctr

 aes256-ctr

 aes128-gcm@openssh.com

 aes256-gcm@openssh.com

 chacha20-poly1305@openssh.com

 The list of available ciphers may also be obtained using "ssh -Q

 cipher".

 ClearAllForwardings

 Specifies that all local, remote, and dynamic port forwardings

 specified in the configuration files or on the command line be

 cleared. This option is primarily useful when used from the

 ssh(1) command line to clear port forwardings set in configura?

 tion files, and is automatically set by scp(1) and sftp(1). The

 argument must be yes or no (the default). Page 7/35

 Compression

 Specifies whether to use compression. The argument must be yes

 or no (the default).

 ConnectionAttempts

 Specifies the number of tries (one per second) to make before ex?

 iting. The argument must be an integer. This may be useful in

 scripts if the connection sometimes fails. The default is 1.

 ConnectTimeout

 Specifies the timeout (in seconds) used when connecting to the

 SSH server, instead of using the default system TCP timeout.

 This timeout is applied both to establishing the connection and

 to performing the initial SSH protocol handshake and key ex?

 change.

 ControlMaster

 Enables the sharing of multiple sessions over a single network

 connection. When set to yes, ssh(1) will listen for connections

 on a control socket specified using the ControlPath argument.

 Additional sessions can connect to this socket using the same

 ControlPath with ControlMaster set to no (the default). These

 sessions will try to reuse the master instance's network connec?

 tion rather than initiating new ones, but will fall back to con?

 necting normally if the control socket does not exist, or is not

 listening.

 Setting this to ask will cause ssh(1) to listen for control con?

 nections, but require confirmation using ssh-askpass(1). If the

 ControlPath cannot be opened, ssh(1) will continue without con?

 necting to a master instance.

 X11 and ssh-agent(1) forwarding is supported over these multi?

 plexed connections, however the display and agent forwarded will

 be the one belonging to the master connection i.e. it is not pos?

 sible to forward multiple displays or agents.

 Two additional options allow for opportunistic multiplexing: try

 to use a master connection but fall back to creating a new one if Page 8/35

 one does not already exist. These options are: auto and autoask.

 The latter requires confirmation like the ask option.

 ControlPath

 Specify the path to the control socket used for connection shar?

 ing as described in the ControlMaster section above or the string

 none to disable connection sharing. Arguments to ControlPath may

 use the tilde syntax to refer to a user's home directory, the to?

 kens described in the TOKENS section and environment variables as

 described in the ENVIRONMENT VARIABLES section. It is recom?

 mended that any ControlPath used for opportunistic connection

 sharing include at least %h, %p, and %r (or alternatively %C) and

 be placed in a directory that is not writable by other users.

 This ensures that shared connections are uniquely identified.

 ControlPersist

 When used in conjunction with ControlMaster, specifies that the

 master connection should remain open in the background (waiting

 for future client connections) after the initial client connec?

 tion has been closed. If set to no (the default), then the mas?

 ter connection will not be placed into the background, and will

 close as soon as the initial client connection is closed. If set

 to yes or 0, then the master connection will remain in the back?

 ground indefinitely (until killed or closed via a mechanism such

 as the "ssh -O exit"). If set to a time in seconds, or a time in

 any of the formats documented in sshd_config(5), then the back?

 grounded master connection will automatically terminate after it

 has remained idle (with no client connections) for the specified

 time.

 DynamicForward

 Specifies that a TCP port on the local machine be forwarded over

 the secure channel, and the application protocol is then used to

 determine where to connect to from the remote machine.

 The argument must be [bind_address:]port. IPv6 addresses can be

 specified by enclosing addresses in square brackets. By default, Page 9/35

 the local port is bound in accordance with the GatewayPorts set?

 ting. However, an explicit bind_address may be used to bind the

 connection to a specific address. The bind_address of localhost

 indicates that the listening port be bound for local use only,

 while an empty address or ?*? indicates that the port should be

 available from all interfaces.

 Currently the SOCKS4 and SOCKS5 protocols are supported, and

 ssh(1) will act as a SOCKS server. Multiple forwardings may be

 specified, and additional forwardings can be given on the command

 line. Only the superuser can forward privileged ports.

 EnableSSHKeysign

 Setting this option to yes in the global client configuration

 file /etc/ssh/ssh_config enables the use of the helper program

 ssh-keysign(8) during HostbasedAuthentication. The argument must

 be yes or no (the default). This option should be placed in the

 non-hostspecific section. See ssh-keysign(8) for more informa?

 tion.

 EscapeChar

 Sets the escape character (default: ?~?). The escape character

 can also be set on the command line. The argument should be a

 single character, ?^? followed by a letter, or none to disable

 the escape character entirely (making the connection transparent

 for binary data).

 ExitOnForwardFailure

 Specifies whether ssh(1) should terminate the connection if it

 cannot set up all requested dynamic, tunnel, local, and remote

 port forwardings, (e.g. if either end is unable to bind and lis?

 ten on a specified port). Note that ExitOnForwardFailure does

 not apply to connections made over port forwardings and will not,

 for example, cause ssh(1) to exit if TCP connections to the ulti?

 mate forwarding destination fail. The argument must be yes or no

 (the default).

 FingerprintHash Page 10/35

 Specifies the hash algorithm used when displaying key finger?

 prints. Valid options are: md5 and sha256 (the default).

 ForkAfterAuthentication

 Requests ssh to go to background just before command execution.

 This is useful if ssh is going to ask for passwords or

 passphrases, but the user wants it in the background. This im?

 plies the StdinNull configuration option being set to ?yes?. The

 recommended way to start X11 programs at a remote site is with

 something like ssh -f host xterm, which is the same as ssh host

 xterm if the ForkAfterAuthentication configuration option is set

 to ?yes?.

 If the ExitOnForwardFailure configuration option is set to ?yes?,

 then a client started with the ForkAfterAuthentication configura?

 tion option being set to ?yes? will wait for all remote port for?

 wards to be successfully established before placing itself in the

 background. The argument to this keyword must be yes (same as

 the -f option) or no (the default).

 ForwardAgent

 Specifies whether the connection to the authentication agent (if

 any) will be forwarded to the remote machine. The argument may

 be yes, no (the default), an explicit path to an agent socket or

 the name of an environment variable (beginning with ?$?) in which

 to find the path.

 Agent forwarding should be enabled with caution. Users with the

 ability to bypass file permissions on the remote host (for the

 agent's Unix-domain socket) can access the local agent through

 the forwarded connection. An attacker cannot obtain key material

 from the agent, however they can perform operations on the keys

 that enable them to authenticate using the identities loaded into

 the agent.

 ForwardX11

 Specifies whether X11 connections will be automatically redi?

 rected over the secure channel and DISPLAY set. The argument Page 11/35

 must be yes or no (the default).

 X11 forwarding should be enabled with caution. Users with the

 ability to bypass file permissions on the remote host (for the

 user's X11 authorization database) can access the local X11 dis?

 play through the forwarded connection. An attacker may then be

 able to perform activities such as keystroke monitoring if the

 ForwardX11Trusted option is also enabled.

 ForwardX11Timeout

 Specify a timeout for untrusted X11 forwarding using the format

 described in the TIME FORMATS section of sshd_config(5). X11

 connections received by ssh(1) after this time will be refused.

 Setting ForwardX11Timeout to zero will disable the timeout and

 permit X11 forwarding for the life of the connection. The de?

 fault is to disable untrusted X11 forwarding after twenty minutes

 has elapsed.

 ForwardX11Trusted

 If this option is set to yes, remote X11 clients will have full

 access to the original X11 display.

 If this option is set to no (the default), remote X11 clients

 will be considered untrusted and prevented from stealing or tam?

 pering with data belonging to trusted X11 clients. Furthermore,

 the xauth(1) token used for the session will be set to expire af?

 ter 20 minutes. Remote clients will be refused access after this

 time.

 See the X11 SECURITY extension specification for full details on

 the restrictions imposed on untrusted clients.

 GatewayPorts

 Specifies whether remote hosts are allowed to connect to local

 forwarded ports. By default, ssh(1) binds local port forwardings

 to the loopback address. This prevents other remote hosts from

 connecting to forwarded ports. GatewayPorts can be used to spec?

 ify that ssh should bind local port forwardings to the wildcard

 address, thus allowing remote hosts to connect to forwarded Page 12/35

 ports. The argument must be yes or no (the default).

 GlobalKnownHostsFile

 Specifies one or more files to use for the global host key data?

 base, separated by whitespace. The default is

 /etc/ssh/ssh_known_hosts, /etc/ssh/ssh_known_hosts2.

 GSSAPIAuthentication

 Specifies whether user authentication based on GSSAPI is allowed.

 The default is no.

 GSSAPIClientIdentity

 If set, specifies the GSSAPI client identity that ssh should use

 when connecting to the server. The default is unset, which means

 that the default identity will be used.

 GSSAPIDelegateCredentials

 Forward (delegate) credentials to the server. The default is no.

 GSSAPIKeyExchange

 Specifies whether key exchange based on GSSAPI may be used. When

 using GSSAPI key exchange the server need not have a host key.

 The default is ?no?.

 GSSAPIRenewalForcesRekey

 If set to ?yes? then renewal of the client's GSSAPI credentials

 will force the rekeying of the ssh connection. With a compatible

 server, this will delegate the renewed credentials to a session

 on the server.

 Checks are made to ensure that credentials are only propagated

 when the new credentials match the old ones on the originating

 client and where the receiving server still has the old set in

 its cache.

 The default is ?no?.

 For this to work GSSAPIKeyExchange needs to be enabled in the

 server and also used by the client.

 GSSAPIServerIdentity

 If set, specifies the GSSAPI server identity that ssh should ex?

 pect when connecting to the server. The default is unset, which Page 13/35

 means that the expected GSSAPI server identity will be determined

 from the target hostname.

 GSSAPITrustDns

 Set to ?yes? to indicate that the DNS is trusted to securely

 canonicalize the name of the host being connected to. If ?no?,

 the hostname entered on the command line will be passed untouched

 to the GSSAPI library. The default is ?no?.

 GSSAPIKexAlgorithms

 The default is handled system-wide by crypto-policies(7). Infor?

 mation about defaults, how to modify the defaults and how to cus?

 tomize existing policies with sub-policies are present in manual

 page update-crypto-policies(8).

 The list of key exchange algorithms that are offered for GSSAPI

 key exchange. Possible values are

 gss-gex-sha1-,

 gss-group1-sha1-,

 gss-group14-sha1-,

 gss-group14-sha256-,

 gss-group16-sha512-,

 gss-nistp256-sha256-,

 gss-curve25519-sha256-

 This option only applies to connections using GSSAPI.

 HashKnownHosts

 Indicates that ssh(1) should hash host names and addresses when

 they are added to ~/.ssh/known_hosts. These hashed names may be

 used normally by ssh(1) and sshd(8), but they do not visually re?

 veal identifying information if the file's contents are dis?

 closed. The default is no. Note that existing names and ad?

 dresses in known hosts files will not be converted automatically,

 but may be manually hashed using ssh-keygen(1).

 HostbasedAcceptedAlgorithms

 Specifies the signature algorithms that will be used for host?

 based authentication as a comma-separated list of patterns. Al? Page 14/35

 ternately if the specified list begins with a ?+? character, then

 the specified signature algorithms will be appended to the de?

 fault set instead of replacing them. If the specified list be?

 gins with a ?-? character, then the specified signature algo?

 rithms (including wildcards) will be removed from the default set

 instead of replacing them. If the specified list begins with a

 ?^? character, then the specified signature algorithms will be

 placed at the head of the default set. The default for this op?

 tion is:

 ssh-ed25519-cert-v01@openssh.com,

 ecdsa-sha2-nistp256-cert-v01@openssh.com,

 ecdsa-sha2-nistp384-cert-v01@openssh.com,

 ecdsa-sha2-nistp521-cert-v01@openssh.com,

 sk-ssh-ed25519-cert-v01@openssh.com,

 sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

 rsa-sha2-512-cert-v01@openssh.com,

 rsa-sha2-256-cert-v01@openssh.com,

 ssh-rsa-cert-v01@openssh.com,

 ssh-ed25519,

 ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

 sk-ssh-ed25519@openssh.com,

 sk-ecdsa-sha2-nistp256@openssh.com,

 rsa-sha2-512,rsa-sha2-256,ssh-rsa

 The -Q option of ssh(1) may be used to list supported signature

 algorithms. This was formerly named HostbasedKeyTypes.

 HostbasedAuthentication

 Specifies whether to try rhosts based authentication with public

 key authentication. The argument must be yes or no (the de?

 fault).

 HostKeyAlgorithms

 Specifies the host key signature algorithms that the client wants

 to use in order of preference. Alternately if the specified list

 begins with a ?+? character, then the specified signature algo? Page 15/35

 rithms will be appended to the default set instead of replacing

 them. If the specified list begins with a ?-? character, then

 the specified signature algorithms (including wildcards) will be

 removed from the default set instead of replacing them. If the

 specified list begins with a ?^? character, then the specified

 signature algorithms will be placed at the head of the default

 set. The default for this option is:

 ssh-ed25519-cert-v01@openssh.com,

 ecdsa-sha2-nistp256-cert-v01@openssh.com,

 ecdsa-sha2-nistp384-cert-v01@openssh.com,

 ecdsa-sha2-nistp521-cert-v01@openssh.com,

 sk-ssh-ed25519-cert-v01@openssh.com,

 sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

 rsa-sha2-512-cert-v01@openssh.com,

 rsa-sha2-256-cert-v01@openssh.com,

 ssh-rsa-cert-v01@openssh.com,

 ssh-ed25519,

 ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

 sk-ecdsa-sha2-nistp256@openssh.com,

 sk-ssh-ed25519@openssh.com,

 rsa-sha2-512,rsa-sha2-256,ssh-rsa

 If hostkeys are known for the destination host then this default

 is modified to prefer their algorithms.

 The list of available signature algorithms may also be obtained

 using "ssh -Q HostKeyAlgorithms".

 HostKeyAlias

 Specifies an alias that should be used instead of the real host

 name when looking up or saving the host key in the host key data?

 base files and when validating host certificates. This option is

 useful for tunneling SSH connections or for multiple servers run?

 ning on a single host.

 Hostname

 Specifies the real host name to log into. This can be used to Page 16/35

 specify nicknames or abbreviations for hosts. Arguments to

 Hostname accept the tokens described in the TOKENS section. Nu?

 meric IP addresses are also permitted (both on the command line

 and in Hostname specifications). The default is the name given

 on the command line.

 IdentitiesOnly

 Specifies that ssh(1) should only use the configured authentica?

 tion identity and certificate files (either the default files, or

 those explicitly configured in the ssh_config files or passed on

 the ssh(1) command-line), even if ssh-agent(1) or a

 PKCS11Provider or SecurityKeyProvider offers more identities.

 The argument to this keyword must be yes or no (the default).

 This option is intended for situations where ssh-agent offers

 many different identities.

 IdentityAgent

 Specifies the UNIX-domain socket used to communicate with the au?

 thentication agent.

 This option overrides the SSH_AUTH_SOCK environment variable and

 can be used to select a specific agent. Setting the socket name

 to none disables the use of an authentication agent. If the

 string "SSH_AUTH_SOCK" is specified, the location of the socket

 will be read from the SSH_AUTH_SOCK environment variable. Other?

 wise if the specified value begins with a ?$? character, then it

 will be treated as an environment variable containing the loca?

 tion of the socket.

 Arguments to IdentityAgent may use the tilde syntax to refer to a

 user's home directory, the tokens described in the TOKENS section

 and environment variables as described in the ENVIRONMENT

 VARIABLES section.

 IdentityFile

 Specifies a file from which the user's DSA, ECDSA, authenticator-

 hosted ECDSA, Ed25519, authenticator-hosted Ed25519 or RSA au?

 thentication identity is read. The default is ~/.ssh/id_dsa, Page 17/35

 ~/.ssh/id_ecdsa, ~/.ssh/id_ecdsa_sk, ~/.ssh/id_ed25519,

 ~/.ssh/id_ed25519_sk and ~/.ssh/id_rsa. Additionally, any iden?

 tities represented by the authentication agent will be used for

 authentication unless IdentitiesOnly is set. If no certificates

 have been explicitly specified by CertificateFile, ssh(1) will

 try to load certificate information from the filename obtained by

 appending -cert.pub to the path of a specified IdentityFile.

 Arguments to IdentityFile may use the tilde syntax to refer to a

 user's home directory or the tokens described in the TOKENS sec?

 tion.

 It is possible to have multiple identity files specified in con?

 figuration files; all these identities will be tried in sequence.

 Multiple IdentityFile directives will add to the list of identi?

 ties tried (this behaviour differs from that of other configura?

 tion directives).

 IdentityFile may be used in conjunction with IdentitiesOnly to

 select which identities in an agent are offered during authenti?

 cation. IdentityFile may also be used in conjunction with

 CertificateFile in order to provide any certificate also needed

 for authentication with the identity.

 The authentication identity can be also specified in a form of

 PKCS#11 URI starting with a string pkcs11:. There is supported a

 subset of the PKCS#11 URI as defined in RFC 7512 (implemented

 path arguments id, manufacturer, object, token and query argu?

 ments module-path and pin-value). The URI can not be in quotes.

 IgnoreUnknown

 Specifies a pattern-list of unknown options to be ignored if they

 are encountered in configuration parsing. This may be used to

 suppress errors if ssh_config contains options that are unrecog?

 nised by ssh(1). It is recommended that IgnoreUnknown be listed

 early in the configuration file as it will not be applied to un?

 known options that appear before it.

 Include Page 18/35

 Include the specified configuration file(s). Multiple pathnames

 may be specified and each pathname may contain glob(7) wildcards

 and, for user configurations, shell-like ?~? references to user

 home directories. Wildcards will be expanded and processed in

 lexical order. Files without absolute paths are assumed to be in

 ~/.ssh if included in a user configuration file or /etc/ssh if

 included from the system configuration file. Include directive

 may appear inside a Match or Host block to perform conditional

 inclusion.

 IPQoS Specifies the IPv4 type-of-service or DSCP class for connections.

 Accepted values are af11, af12, af13, af21, af22, af23, af31,

 af32, af33, af41, af42, af43, cs0, cs1, cs2, cs3, cs4, cs5, cs6,

 cs7, ef, le, lowdelay, throughput, reliability, a numeric value,

 or none to use the operating system default. This option may

 take one or two arguments, separated by whitespace. If one argu?

 ment is specified, it is used as the packet class uncondition?

 ally. If two values are specified, the first is automatically

 selected for interactive sessions and the second for non-interac?

 tive sessions. The default is af21 (Low-Latency Data) for inter?

 active sessions and cs1 (Lower Effort) for non-interactive ses?

 sions.

 KbdInteractiveAuthentication

 Specifies whether to use keyboard-interactive authentication.

 The argument to this keyword must be yes (the default) or no.

 ChallengeResponseAuthentication is a deprecated alias for this.

 KbdInteractiveDevices

 Specifies the list of methods to use in keyboard-interactive au?

 thentication. Multiple method names must be comma-separated.

 The default is to use the server specified list. The methods

 available vary depending on what the server supports. For an

 OpenSSH server, it may be zero or more of: bsdauth and pam.

 KexAlgorithms

 The default is handled system-wide by crypto-policies(7). Infor? Page 19/35

 mation about defaults, how to modify the defaults and how to cus?

 tomize existing policies with sub-policies are present in manual

 page update-crypto-policies(8).

 Specifies the available KEX (Key Exchange) algorithms. Multiple

 algorithms must be comma-separated. If the specified list begins

 with a ?+? character, then the specified methods will be appended

 to the built-in openssh default set instead of replacing them.

 If the specified list begins with a ?-? character, then the spec?

 ified methods (including wildcards) will be removed from the

 built-in openssh default set instead of replacing them. If the

 specified list begins with a ?^? character, then the specified

 methods will be placed at the head of the built-in openssh de?

 fault set.

 The list of available key exchange algorithms may also be ob?

 tained using "ssh -Q kex".

 KnownHostsCommand

 Specifies a command to use to obtain a list of host keys, in ad?

 dition to those listed in UserKnownHostsFile and

 GlobalKnownHostsFile. This command is executed after the files

 have been read. It may write host key lines to standard output

 in identical format to the usual files (described in the

 VERIFYING HOST KEYS section in ssh(1)). Arguments to

 KnownHostsCommand accept the tokens described in the TOKENS sec?

 tion. The command may be invoked multiple times per connection:

 once when preparing the preference list of host key algorithms to

 use, again to obtain the host key for the requested host name

 and, if CheckHostIP is enabled, one more time to obtain the host

 key matching the server's address. If the command exits abnor?

 mally or returns a non-zero exit status then the connection is

 terminated.

 LocalCommand

 Specifies a command to execute on the local machine after suc?

 cessfully connecting to the server. The command string extends Page 20/35

 to the end of the line, and is executed with the user's shell.

 Arguments to LocalCommand accept the tokens described in the

 TOKENS section.

 The command is run synchronously and does not have access to the

 session of the ssh(1) that spawned it. It should not be used for

 interactive commands.

 This directive is ignored unless PermitLocalCommand has been en?

 abled.

 LocalForward

 Specifies that a TCP port on the local machine be forwarded over

 the secure channel to the specified host and port from the remote

 machine. The first argument specifies the listener and may be

 [bind_address:]port or a Unix domain socket path. The second ar?

 gument is the destination and may be host:hostport or a Unix do?

 main socket path if the remote host supports it.

 IPv6 addresses can be specified by enclosing addresses in square

 brackets. Multiple forwardings may be specified, and additional

 forwardings can be given on the command line. Only the superuser

 can forward privileged ports. By default, the local port is

 bound in accordance with the GatewayPorts setting. However, an

 explicit bind_address may be used to bind the connection to a

 specific address. The bind_address of localhost indicates that

 the listening port be bound for local use only, while an empty

 address or ?*? indicates that the port should be available from

 all interfaces. Unix domain socket paths may use the tokens de?

 scribed in the TOKENS section and environment variables as de?

 scribed in the ENVIRONMENT VARIABLES section.

 LogLevel

 Gives the verbosity level that is used when logging messages from

 ssh(1). The possible values are: QUIET, FATAL, ERROR, INFO, VER?

 BOSE, DEBUG, DEBUG1, DEBUG2, and DEBUG3. The default is INFO.

 DEBUG and DEBUG1 are equivalent. DEBUG2 and DEBUG3 each specify

 higher levels of verbose output. Page 21/35

 LogVerbose

 Specify one or more overrides to LogLevel. An override consists

 of a pattern lists that matches the source file, function and

 line number to force detailed logging for. For example, an over?

 ride pattern of:

 kex.c:*:1000,*:kex_exchange_identification():*,packet.c:*

 would enable detailed logging for line 1000 of kex.c, everything

 in the kex_exchange_identification() function, and all code in

 the packet.c file. This option is intended for debugging and no

 overrides are enabled by default.

 MACs The default is handled system-wide by crypto-policies(7). Infor?

 mation about defaults, how to modify the defaults and how to cus?

 tomize existing policies with sub-policies are present in manual

 page update-crypto-policies(8).

 Specifies the MAC (message authentication code) algorithms in or?

 der of preference. The MAC algorithm is used for data integrity

 protection. Multiple algorithms must be comma-separated. If the

 specified list begins with a ?+? character, then the specified

 algorithms will be appended to the built-in openssh default set

 instead of replacing them. If the specified list begins with a

 ?-? character, then the specified algorithms (including wild?

 cards) will be removed from the built-in openssh default set in?

 stead of replacing them. If the specified list begins with a ?^?

 character, then the specified algorithms will be placed at the

 head of the built-in openssh default set.

 The algorithms that contain "-etm" calculate the MAC after en?

 cryption (encrypt-then-mac). These are considered safer and

 their use recommended.

 The list of available MAC algorithms may also be obtained using

 "ssh -Q mac".

 NoHostAuthenticationForLocalhost

 Disable host authentication for localhost (loopback addresses).

 The argument to this keyword must be yes or no (the default). Page 22/35

 NumberOfPasswordPrompts

 Specifies the number of password prompts before giving up. The

 argument to this keyword must be an integer. The default is 3.

 PasswordAuthentication

 Specifies whether to use password authentication. The argument

 to this keyword must be yes (the default) or no.

 PermitLocalCommand

 Allow local command execution via the LocalCommand option or us?

 ing the !command escape sequence in ssh(1). The argument must be

 yes or no (the default).

 PermitRemoteOpen

 Specifies the destinations to which remote TCP port forwarding is

 permitted when RemoteForward is used as a SOCKS proxy. The for?

 warding specification must be one of the following forms:

 PermitRemoteOpen host:port

 PermitRemoteOpen IPv4_addr:port

 PermitRemoteOpen [IPv6_addr]:port

 Multiple forwards may be specified by separating them with white?

 space. An argument of any can be used to remove all restrictions

 and permit any forwarding requests. An argument of none can be

 used to prohibit all forwarding requests. The wildcard ?*? can

 be used for host or port to allow all hosts or ports respec?

 tively. Otherwise, no pattern matching or address lookups are

 performed on supplied names.

 PKCS11Provider

 Specifies which PKCS#11 provider to use or none to indicate that

 no provider should be used (the default). The argument to this

 keyword is a path to the PKCS#11 shared library ssh(1) should use

 to communicate with a PKCS#11 token providing keys for user au?

 thentication.

 Port Specifies the port number to connect on the remote host. The de?

 fault is 22.

 PreferredAuthentications Page 23/35

 Specifies the order in which the client should try authentication

 methods. This allows a client to prefer one method (e.g.

 keyboard-interactive) over another method (e.g. password). The

 default is:

 gssapi-with-mic,hostbased,publickey,

 keyboard-interactive,password

 ProxyCommand

 Specifies the command to use to connect to the server. The com?

 mand string extends to the end of the line, and is executed using

 the user's shell ?exec? directive to avoid a lingering shell

 process.

 Arguments to ProxyCommand accept the tokens described in the

 TOKENS section. The command can be basically anything, and

 should read from its standard input and write to its standard

 output. It should eventually connect an sshd(8) server running

 on some machine, or execute sshd -i somewhere. Host key manage?

 ment will be done using the Hostname of the host being connected

 (defaulting to the name typed by the user). Setting the command

 to none disables this option entirely. Note that CheckHostIP is

 not available for connects with a proxy command.

 This directive is useful in conjunction with nc(1) and its proxy

 support. For example, the following directive would connect via

 an HTTP proxy at 192.0.2.0:

 ProxyCommand /usr/bin/nc -X connect -x 192.0.2.0:8080 %h %p

 ProxyJump

 Specifies one or more jump proxies as either [user@]host[:port]

 or an ssh URI. Multiple proxies may be separated by comma char?

 acters and will be visited sequentially. Setting this option

 will cause ssh(1) to connect to the target host by first making a

 ssh(1) connection to the specified ProxyJump host and then estab?

 lishing a TCP forwarding to the ultimate target from there. Set?

 ting the host to none disables this option entirely.

 Note that this option will compete with the ProxyCommand option - Page 24/35

 whichever is specified first will prevent later instances of the

 other from taking effect.

 Note also that the configuration for the destination host (either

 supplied via the command-line or the configuration file) is not

 generally applied to jump hosts. ~/.ssh/config should be used if

 specific configuration is required for jump hosts.

 ProxyUseFdpass

 Specifies that ProxyCommand will pass a connected file descriptor

 back to ssh(1) instead of continuing to execute and pass data.

 The default is no.

 PubkeyAcceptedAlgorithms

 The default is handled system-wide by crypto-policies(7). Infor?

 mation about defaults, how to modify the defaults and how to cus?

 tomize existing policies with sub-policies are present in manual

 page update-crypto-policies(8).

 Specifies the signature algorithms that will be used for public

 key authentication as a comma-separated list of patterns. If the

 specified list begins with a ?+? character, then the algorithms

 after it will be appended to the built-in openssh default instead

 of replacing it. If the specified list begins with a ?-? charac?

 ter, then the specified algorithms (including wildcards) will be

 removed from the built-in openssh default set instead of replac?

 ing them. If the specified list begins with a ?^? character,

 then the specified algorithms will be placed at the head of the

 built-in openssh default set.

 The list of available signature algorithms may also be obtained

 using "ssh -Q PubkeyAcceptedAlgorithms".

 PubkeyAuthentication

 Specifies whether to try public key authentication. The argument

 to this keyword must be yes (the default) or no.

 RekeyLimit

 Specifies the maximum amount of data that may be transmitted be?

 fore the session key is renegotiated, optionally followed by a Page 25/35

 maximum amount of time that may pass before the session key is

 renegotiated. The first argument is specified in bytes and may

 have a suffix of ?K?, ?M?, or ?G? to indicate Kilobytes,

 Megabytes, or Gigabytes, respectively. The default is between

 ?1G? and ?4G?, depending on the cipher. The optional second

 value is specified in seconds and may use any of the units docu?

 mented in the TIME FORMATS section of sshd_config(5). The de?

 fault value for RekeyLimit is default none, which means that

 rekeying is performed after the cipher's default amount of data

 has been sent or received and no time based rekeying is done.

 RemoteCommand

 Specifies a command to execute on the remote machine after suc?

 cessfully connecting to the server. The command string extends

 to the end of the line, and is executed with the user's shell.

 Arguments to RemoteCommand accept the tokens described in the

 TOKENS section.

 RemoteForward

 Specifies that a TCP port on the remote machine be forwarded over

 the secure channel. The remote port may either be forwarded to a

 specified host and port from the local machine, or may act as a

 SOCKS 4/5 proxy that allows a remote client to connect to arbi?

 trary destinations from the local machine. The first argument is

 the listening specification and may be [bind_address:]port or, if

 the remote host supports it, a Unix domain socket path. If for?

 warding to a specific destination then the second argument must

 be host:hostport or a Unix domain socket path, otherwise if no

 destination argument is specified then the remote forwarding will

 be established as a SOCKS proxy. When acting as a SOCKS proxy

 the destination of the connection can be restricted by

 PermitRemoteOpen.

 IPv6 addresses can be specified by enclosing addresses in square

 brackets. Multiple forwardings may be specified, and additional

 forwardings can be given on the command line. Privileged ports Page 26/35

 can be forwarded only when logging in as root on the remote ma?

 chine. Unix domain socket paths may use the tokens described in

 the TOKENS section and environment variables as described in the

 ENVIRONMENT VARIABLES section.

 If the port argument is 0, the listen port will be dynamically

 allocated on the server and reported to the client at run time.

 If the bind_address is not specified, the default is to only bind

 to loopback addresses. If the bind_address is ?*? or an empty

 string, then the forwarding is requested to listen on all inter?

 faces. Specifying a remote bind_address will only succeed if the

 server's GatewayPorts option is enabled (see sshd_config(5)).

 RequestTTY

 Specifies whether to request a pseudo-tty for the session. The

 argument may be one of: no (never request a TTY), yes (always re?

 quest a TTY when standard input is a TTY), force (always request

 a TTY) or auto (request a TTY when opening a login session).

 This option mirrors the -t and -T flags for ssh(1).

 RequiredRSASize

 Specifies the minimum RSA key size (in bits) that ssh(1) will ac?

 cept. User authentication keys smaller than this limit will be

 ignored. Servers that present host keys smaller than this limit

 will cause the connection to be terminated. The default is 1024

 bits. Note that this limit may only be raised from the default.

 RevokedHostKeys

 Specifies revoked host public keys. Keys listed in this file

 will be refused for host authentication. Note that if this file

 does not exist or is not readable, then host authentication will

 be refused for all hosts. Keys may be specified as a text file,

 listing one public key per line, or as an OpenSSH Key Revocation

 List (KRL) as generated by ssh-keygen(1). For more information

 on KRLs, see the KEY REVOCATION LISTS section in ssh-keygen(1).

 SecurityKeyProvider

 Specifies a path to a library that will be used when loading any Page 27/35

 FIDO authenticator-hosted keys, overriding the default of using

 the built-in USB HID support.

 If the specified value begins with a ?$? character, then it will

 be treated as an environment variable containing the path to the

 library.

 SendEnv

 Specifies what variables from the local environ(7) should be sent

 to the server. The server must also support it, and the server

 must be configured to accept these environment variables. Note

 that the TERM environment variable is always sent whenever a

 pseudo-terminal is requested as it is required by the protocol.

 Refer to AcceptEnv in sshd_config(5) for how to configure the

 server. Variables are specified by name, which may contain wild?

 card characters. Multiple environment variables may be separated

 by whitespace or spread across multiple SendEnv directives.

 See PATTERNS for more information on patterns.

 It is possible to clear previously set SendEnv variable names by

 prefixing patterns with -. The default is not to send any envi?

 ronment variables.

 ServerAliveCountMax

 Sets the number of server alive messages (see below) which may be

 sent without ssh(1) receiving any messages back from the server.

 If this threshold is reached while server alive messages are be?

 ing sent, ssh will disconnect from the server, terminating the

 session. It is important to note that the use of server alive

 messages is very different from TCPKeepAlive (below). The server

 alive messages are sent through the encrypted channel and there?

 fore will not be spoofable. The TCP keepalive option enabled by

 TCPKeepAlive is spoofable. The server alive mechanism is valu?

 able when the client or server depend on knowing when a connec?

 tion has become unresponsive.

 The default value is 3. If, for example, ServerAliveInterval

 (see below) is set to 15 and ServerAliveCountMax is left at the Page 28/35

 default, if the server becomes unresponsive, ssh will disconnect

 after approximately 45 seconds.

 ServerAliveInterval

 Sets a timeout interval in seconds after which if no data has

 been received from the server, ssh(1) will send a message through

 the encrypted channel to request a response from the server. The

 default is 0, indicating that these messages will not be sent to

 the server.

 SessionType

 May be used to either request invocation of a subsystem on the

 remote system, or to prevent the execution of a remote command at

 all. The latter is useful for just forwarding ports. The argu?

 ment to this keyword must be none (same as the -N option),

 subsystem (same as the -s option) or default (shell or command

 execution).

 SetEnv Directly specify one or more environment variables and their con?

 tents to be sent to the server. Similarly to SendEnv, with the

 exception of the TERM variable, the server must be prepared to

 accept the environment variable.

 StdinNull

 Redirects stdin from /dev/null (actually, prevents reading from

 stdin). Either this or the equivalent -n option must be used

 when ssh is run in the background. The argument to this keyword

 must be yes (same as the -n option) or no (the default).

 StreamLocalBindMask

 Sets the octal file creation mode mask (umask) used when creating

 a Unix-domain socket file for local or remote port forwarding.

 This option is only used for port forwarding to a Unix-domain

 socket file.

 The default value is 0177, which creates a Unix-domain socket

 file that is readable and writable only by the owner. Note that

 not all operating systems honor the file mode on Unix-domain

 socket files. Page 29/35

 StreamLocalBindUnlink

 Specifies whether to remove an existing Unix-domain socket file

 for local or remote port forwarding before creating a new one.

 If the socket file already exists and StreamLocalBindUnlink is

 not enabled, ssh will be unable to forward the port to the Unix-

 domain socket file. This option is only used for port forwarding

 to a Unix-domain socket file.

 The argument must be yes or no (the default).

 StrictHostKeyChecking

 If this flag is set to yes, ssh(1) will never automatically add

 host keys to the ~/.ssh/known_hosts file, and refuses to connect

 to hosts whose host key has changed. This provides maximum pro?

 tection against man-in-the-middle (MITM) attacks, though it can

 be annoying when the /etc/ssh/ssh_known_hosts file is poorly

 maintained or when connections to new hosts are frequently made.

 This option forces the user to manually add all new hosts.

 If this flag is set to ?accept-new? then ssh will automatically

 add new host keys to the user's known_hosts file, but will not

 permit connections to hosts with changed host keys. If this flag

 is set to ?no? or ?off?, ssh will automatically add new host keys

 to the user known hosts files and allow connections to hosts with

 changed hostkeys to proceed, subject to some restrictions. If

 this flag is set to ask (the default), new host keys will be

 added to the user known host files only after the user has con?

 firmed that is what they really want to do, and ssh will refuse

 to connect to hosts whose host key has changed. The host keys of

 known hosts will be verified automatically in all cases.

 SyslogFacility

 Gives the facility code that is used when logging messages from

 ssh(1). The possible values are: DAEMON, USER, AUTH, LOCAL0, LO?

 CAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7. The de?

 fault is USER.

 TCPKeepAlive Page 30/35

 Specifies whether the system should send TCP keepalive messages

 to the other side. If they are sent, death of the connection or

 crash of one of the machines will be properly noticed. However,

 this means that connections will die if the route is down tempo?

 rarily, and some people find it annoying.

 The default is yes (to send TCP keepalive messages), and the

 client will notice if the network goes down or the remote host

 dies. This is important in scripts, and many users want it too.

 To disable TCP keepalive messages, the value should be set to no.

 See also ServerAliveInterval for protocol-level keepalives.

 Tunnel Request tun(4) device forwarding between the client and the

 server. The argument must be yes, point-to-point (layer 3),

 ethernet (layer 2), or no (the default). Specifying yes requests

 the default tunnel mode, which is point-to-point.

 TunnelDevice

 Specifies the tun(4) devices to open on the client (local_tun)

 and the server (remote_tun).

 The argument must be local_tun[:remote_tun]. The devices may be

 specified by numerical ID or the keyword any, which uses the next

 available tunnel device. If remote_tun is not specified, it de?

 faults to any. The default is any:any.

 UpdateHostKeys

 Specifies whether ssh(1) should accept notifications of addi?

 tional hostkeys from the server sent after authentication has

 completed and add them to UserKnownHostsFile. The argument must

 be yes, no or ask. This option allows learning alternate

 hostkeys for a server and supports graceful key rotation by al?

 lowing a server to send replacement public keys before old ones

 are removed.

 Additional hostkeys are only accepted if the key used to authen?

 ticate the host was already trusted or explicitly accepted by the

 user, the host was authenticated via UserKnownHostsFile (i.e. not

 GlobalKnownHostsFile) and the host was authenticated using a Page 31/35

 plain key and not a certificate.

 UpdateHostKeys is enabled by default if the user has not overrid?

 den the default UserKnownHostsFile setting and has not enabled

 VerifyHostKeyDNS, otherwise UpdateHostKeys will be set to no.

 If UpdateHostKeys is set to ask, then the user is asked to con?

 firm the modifications to the known_hosts file. Confirmation is

 currently incompatible with ControlPersist, and will be disabled

 if it is enabled.

 Presently, only sshd(8) from OpenSSH 6.8 and greater support the

 "hostkeys@openssh.com" protocol extension used to inform the

 client of all the server's hostkeys.

 User Specifies the user to log in as. This can be useful when a dif?

 ferent user name is used on different machines. This saves the

 trouble of having to remember to give the user name on the com?

 mand line.

 UserKnownHostsFile

 Specifies one or more files to use for the user host key data?

 base, separated by whitespace. Each filename may use tilde nota?

 tion to refer to the user's home directory, the tokens described

 in the TOKENS section and environment variables as described in

 the ENVIRONMENT VARIABLES section. The default is

 ~/.ssh/known_hosts, ~/.ssh/known_hosts2.

 VerifyHostKeyDNS

 Specifies whether to verify the remote key using DNS and SSHFP

 resource records. If this option is set to yes, the client will

 implicitly trust keys that match a secure fingerprint from DNS.

 Insecure fingerprints will be handled as if this option was set

 to ask. If this option is set to ask, information on fingerprint

 match will be displayed, but the user will still need to confirm

 new host keys according to the StrictHostKeyChecking option. The

 default is no.

 See also VERIFYING HOST KEYS in ssh(1).

 VisualHostKey Page 32/35

 If this flag is set to yes, an ASCII art representation of the

 remote host key fingerprint is printed in addition to the finger?

 print string at login and for unknown host keys. If this flag is

 set to no (the default), no fingerprint strings are printed at

 login and only the fingerprint string will be printed for unknown

 host keys.

 XAuthLocation

 Specifies the full pathname of the xauth(1) program. The default

 is /usr/bin/xauth.

PATTERNS

 A pattern consists of zero or more non-whitespace characters, ?*? (a

 wildcard that matches zero or more characters), or ??? (a wildcard that

 matches exactly one character). For example, to specify a set of decla?

 rations for any host in the ".co.uk" set of domains, the following pat?

 tern could be used:

 Host *.co.uk

 The following pattern would match any host in the 192.168.0.[0-9] network

 range:

 Host 192.168.0.?

 A pattern-list is a comma-separated list of patterns. Patterns within

 pattern-lists may be negated by preceding them with an exclamation mark

 (?!?). For example, to allow a key to be used from anywhere within an

 organization except from the "dialup" pool, the following entry (in au?

 thorized_keys) could be used:

 from="!*.dialup.example.com,*.example.com"

 Note that a negated match will never produce a positive result by itself.

 For example, attempting to match "host3" against the following pattern-

 list will fail:

 from="!host1,!host2"

 The solution here is to include a term that will yield a positive match,

 such as a wildcard:

 from="!host1,!host2,*"

TOKENS Page 33/35

 Arguments to some keywords can make use of tokens, which are expanded at

 runtime:

 %% A literal ?%?.

 %C Hash of %l%h%p%r.

 %d Local user's home directory.

 %f The fingerprint of the server's host key.

 %H The known_hosts hostname or address that is being searched

 for.

 %h The remote hostname.

 %I A string describing the reason for a KnownHostsCommand execu?

 tion: either ADDRESS when looking up a host by address (only

 when CheckHostIP is enabled), HOSTNAME when searching by

 hostname, or ORDER when preparing the host key algorithm

 preference list to use for the destination host.

 %i The local user ID.

 %K The base64 encoded host key.

 %k The host key alias if specified, otherwise the original re?

 mote hostname given on the command line.

 %L The local hostname.

 %l The local hostname, including the domain name.

 %n The original remote hostname, as given on the command line.

 %p The remote port.

 %r The remote username.

 %T The local tun(4) or tap(4) network interface assigned if tun?

 nel forwarding was requested, or "NONE" otherwise.

 %t The type of the server host key, e.g. ssh-ed25519.

 %u The local username.

 CertificateFile, ControlPath, IdentityAgent, IdentityFile,

 KnownHostsCommand, LocalForward, Match exec, RemoteCommand,

 RemoteForward, and UserKnownHostsFile accept the tokens %%, %C, %d, %h,

 %i, %k, %L, %l, %n, %p, %r, and %u.

 KnownHostsCommand additionally accepts the tokens %f, %H, %I, %K and %t.

 Hostname accepts the tokens %% and %h. Page 34/35

 LocalCommand accepts all tokens.

 ProxyCommand accepts the tokens %%, %h, %n, %p, and %r.

ENVIRONMENT VARIABLES

 Arguments to some keywords can be expanded at runtime from environment

 variables on the client by enclosing them in ${}, for example

 ${HOME}/.ssh would refer to the user's .ssh directory. If a specified

 environment variable does not exist then an error will be returned and

 the setting for that keyword will be ignored.

 The keywords CertificateFile, ControlPath, IdentityAgent, IdentityFile,

 KnownHostsCommand, and UserKnownHostsFile support environment variables.

 The keywords LocalForward and RemoteForward support environment variables

 only for Unix domain socket paths.

FILES

 ~/.ssh/config

 This is the per-user configuration file. The format of this file

 is described above. This file is used by the SSH client. Be?

 cause of the potential for abuse, this file must have strict per?

 missions: read/write for the user, and not writable by others.

 /etc/ssh/ssh_config

 Systemwide configuration file. This file provides defaults for

 those values that are not specified in the user's configuration

 file, and for those users who do not have a configuration file.

 This file must be world-readable.

SEE ALSO

 ssh(1)

AUTHORS

 OpenSSH is a derivative of the original and free ssh 1.2.12 release by

 Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo

 de Raadt and Dug Song removed many bugs, re-added newer features and cre?

 ated OpenSSH. Markus Friedl contributed the support for SSH protocol

 versions 1.5 and 2.0.

BSD August 12, 2021 BSD

Page 35/35

