
Rocky Enterprise Linux 9.2 Manual Pages on command 'sock_diag.7'

$ man sock_diag.7

SOCK_DIAG(7) Linux Programmer's Manual SOCK_DIAG(7)

NAME

 sock_diag - obtaining information about sockets

SYNOPSIS

 #include <sys/socket.h>

 #include <linux/sock_diag.h>

 #include <linux/unix_diag.h> /* for UNIX domain sockets */

 #include <linux/inet_diag.h> /* for IPv4 and IPv6 sockets */

 diag_socket = socket(AF_NETLINK, socket_type, NETLINK_SOCK_DIAG);

DESCRIPTION

 The sock_diag netlink subsystem provides a mechanism for obtaining in?

 formation about sockets of various address families from the kernel.

 This subsystem can be used to obtain information about individual sock?

 ets or request a list of sockets.

 In the request, the caller can specify additional information it would

 like to obtain about the socket, for example, memory information or in?

 formation specific to the address family.

 When requesting a list of sockets, the caller can specify filters that Page 1/17

 would be applied by the kernel to select a subset of sockets to report.

 For now, there is only the ability to filter sockets by state (con?

 nected, listening, and so on.)

 Note that sock_diag reports only those sockets that have a name; that

 is, either sockets bound explicitly with bind(2) or sockets that were

 automatically bound to an address (e.g., by connect(2)). This is the

 same set of sockets that is available via /proc/net/unix,

 /proc/net/tcp, /proc/net/udp, and so on.

 Request

 The request starts with a struct nlmsghdr header described in

 netlink(7) with nlmsg_type field set to SOCK_DIAG_BY_FAMILY. It is

 followed by a header specific to the address family that starts with a

 common part shared by all address families:

 struct sock_diag_req {

 __u8 sdiag_family;

 __u8 sdiag_protocol;

 };

 The fields of this structure are as follows:

 sdiag_family

 An address family. It should be set to the appropriate AF_*

 constant.

 sdiag_protocol

 Depends on sdiag_family. It should be set to the appropriate

 IPPROTO_* constant for AF_INET and AF_INET6, and to 0 otherwise.

 If the nlmsg_flags field of the struct nlmsghdr header has the

 NLM_F_DUMP flag set, it means that a list of sockets is being re?

 quested; otherwise it is a query about an individual socket.

 Response

 The response starts with a struct nlmsghdr header and is followed by an

 array of objects specific to the address family. The array is to be

 accessed with the standard NLMSG_* macros from the netlink(3) API.

 Each object is the NLA (netlink attributes) list that is to be accessed

 with the RTA_* macros from rtnetlink(3) API. Page 2/17

 UNIX domain sockets

 For UNIX domain sockets the request is represented in the following

 structure:

 struct unix_diag_req {

 __u8 sdiag_family;

 __u8 sdiag_protocol;

 __u16 pad;

 __u32 udiag_states;

 __u32 udiag_ino;

 __u32 udiag_show;

 __u32 udiag_cookie[2];

 };

 The fields of this structure are as follows:

 sdiag_family

 The address family; it should be set to AF_UNIX.

 sdiag_protocol

 pad These fields should be set to 0.

 udiag_states

 This is a bit mask that defines a filter of sockets states.

 Only those sockets whose states are in this mask will be re?

 ported. Ignored when querying for an individual socket. Sup?

 ported values are:

 1 << TCP_ESTABLISHED

 1 << TCP_LISTEN

 udiag_ino

 This is an inode number when querying for an individual socket.

 Ignored when querying for a list of sockets.

 udiag_show

 This is a set of flags defining what kind of information to re?

 port. Each requested kind of information is reported back as a

 netlink attribute as described below:

 UDIAG_SHOW_NAME

 The attribute reported in answer to this request is Page 3/17

 UNIX_DIAG_NAME. The payload associated with this attri?

 bute is the pathname to which the socket was bound (a se?

 quence of bytes up to UNIX_PATH_MAX length).

 UDIAG_SHOW_VFS

 The attribute reported in answer to this request is

 UNIX_DIAG_VFS. The payload associated with this attri?

 bute is represented in the following structure:

 struct unix_diag_vfs {

 __u32 udiag_vfs_dev;

 __u32 udiag_vfs_ino;

 };

 The fields of this structure are as follows:

 udiag_vfs_dev

 The device number of the corresponding on-disk

 socket inode.

 udiag_vfs_ino

 The inode number of the corresponding on-disk

 socket inode.

 UDIAG_SHOW_PEER

 The attribute reported in answer to this request is

 UNIX_DIAG_PEER. The payload associated with this attri?

 bute is a __u32 value which is the peer's inode number.

 This attribute is reported for connected sockets only.

 UDIAG_SHOW_ICONS

 The attribute reported in answer to this request is

 UNIX_DIAG_ICONS. The payload associated with this attri?

 bute is an array of __u32 values which are inode numbers

 of sockets that has passed the connect(2) call, but

 hasn't been processed with accept(2) yet. This attribute

 is reported for listening sockets only.

 UDIAG_SHOW_RQLEN

 The attribute reported in answer to this request is

 UNIX_DIAG_RQLEN. The payload associated with this attri? Page 4/17

 bute is represented in the following structure:

 struct unix_diag_rqlen {

 __u32 udiag_rqueue;

 __u32 udiag_wqueue;

 };

 The fields of this structure are as follows:

 udiag_rqueue

 For listening sockets: the number of pending con?

 nections. The length of the array associated with

 the UNIX_DIAG_ICONS response attribute is equal to

 this value.

 For established sockets: the amount of data in in?

 coming queue.

 udiag_wqueue

 For listening sockets: the backlog length which

 equals to the value passed as the second argument

 to listen(2).

 For established sockets: the amount of memory

 available for sending.

 UDIAG_SHOW_MEMINFO

 The attribute reported in answer to this request is

 UNIX_DIAG_MEMINFO. The payload associated with this at?

 tribute is an array of __u32 values described below in

 the subsection "Socket memory information".

 The following attributes are reported back without any specific

 request:

 UNIX_DIAG_SHUTDOWN

 The payload associated with this attribute is __u8 value

 which represents bits of shutdown(2) state.

 udiag_cookie

 This is an array of opaque identifiers that could be used along

 with udiag_ino to specify an individual socket. It is ignored

 when querying for a list of sockets, as well as when all its el? Page 5/17

 ements are set to -1.

 The response to a query for UNIX domain sockets is represented as an

 array of

 struct unix_diag_msg {

 __u8 udiag_family;

 __u8 udiag_type;

 __u8 udiag_state;

 __u8 pad;

 __u32 udiag_ino;

 __u32 udiag_cookie[2];

 };

 followed by netlink attributes.

 The fields of this structure are as follows:

 udiag_family

 This field has the same meaning as in struct unix_diag_req.

 udiag_type

 This is set to one of SOCK_PACKET, SOCK_STREAM, or SOCK_SEQ?

 PACKET.

 udiag_state

 This is set to one of TCP_LISTEN or TCP_ESTABLISHED.

 pad This field is set to 0.

 udiag_ino

 This is the socket inode number.

 udiag_cookie

 This is an array of opaque identifiers that could be used in

 subsequent queries.

 IPv4 and IPv6 sockets

 For IPv4 and IPv6 sockets, the request is represented in the following

 structure:

 struct inet_diag_req_v2 {

 __u8 sdiag_family;

 __u8 sdiag_protocol;

 __u8 idiag_ext; Page 6/17

 __u8 pad;

 __u32 idiag_states;

 struct inet_diag_sockid id;

 };

 where struct inet_diag_sockid is defined as follows:

 struct inet_diag_sockid {

 __be16 idiag_sport;

 __be16 idiag_dport;

 __be32 idiag_src[4];

 __be32 idiag_dst[4];

 __u32 idiag_if;

 __u32 idiag_cookie[2];

 };

 The fields of struct inet_diag_req_v2 are as follows:

 sdiag_family

 This should be set to either AF_INET or AF_INET6 for IPv4 or

 IPv6 sockets respectively.

 sdiag_protocol

 This should be set to one of IPPROTO_TCP, IPPROTO_UDP, or IP?

 PROTO_UDPLITE.

 idiag_ext

 This is a set of flags defining what kind of extended informa?

 tion to report. Each requested kind of information is reported

 back as a netlink attribute as described below:

 INET_DIAG_TOS

 The payload associated with this attribute is a __u8

 value which is the TOS of the socket.

 INET_DIAG_TCLASS

 The payload associated with this attribute is a __u8

 value which is the TClass of the socket. IPv6 sockets

 only. For LISTEN and CLOSE sockets, this is followed by

 INET_DIAG_SKV6ONLY attribute with associated __u8 payload

 value meaning whether the socket is IPv6-only or not. Page 7/17

 INET_DIAG_MEMINFO

 The payload associated with this attribute is represented

 in the following structure:

 struct inet_diag_meminfo {

 __u32 idiag_rmem;

 __u32 idiag_wmem;

 __u32 idiag_fmem;

 __u32 idiag_tmem;

 };

 The fields of this structure are as follows:

 idiag_rmem The amount of data in the receive queue.

 idiag_wmem The amount of data that is queued by TCP but

 not yet sent.

 idiag_fmem The amount of memory scheduled for future use

 (TCP only).

 idiag_tmem The amount of data in send queue.

 INET_DIAG_SKMEMINFO

 The payload associated with this attribute is an array of

 __u32 values described below in the subsection "Socket

 memory information".

 INET_DIAG_INFO

 The payload associated with this attribute is specific to

 the address family. For TCP sockets, it is an object of

 type struct tcp_info.

 INET_DIAG_CONG

 The payload associated with this attribute is a string

 that describes the congestion control algorithm used.

 For TCP sockets only.

 pad This should be set to 0.

 idiag_states

 This is a bit mask that defines a filter of socket states. Only

 those sockets whose states are in this mask will be reported.

 Ignored when querying for an individual socket. Page 8/17

 id This is a socket ID object that is used in dump requests, in

 queries about individual sockets, and is reported back in each

 response. Unlike UNIX domain sockets, IPv4 and IPv6 sockets are

 identified using addresses and ports. All values are in network

 byte order.

 The fields of struct inet_diag_sockid are as follows:

 idiag_sport

 The source port.

 idiag_dport

 The destination port.

 idiag_src

 The source address.

 idiag_dst

 The destination address.

 idiag_if

 The interface number the socket is bound to.

 idiag_cookie

 This is an array of opaque identifiers that could be used along

 with other fields of this structure to specify an individual

 socket. It is ignored when querying for a list of sockets, as

 well as when all its elements are set to -1.

 The response to a query for IPv4 or IPv6 sockets is represented as an

 array of

 struct inet_diag_msg {

 __u8 idiag_family;

 __u8 idiag_state;

 __u8 idiag_timer;

 __u8 idiag_retrans;

 struct inet_diag_sockid id;

 __u32 idiag_expires;

 __u32 idiag_rqueue;

 __u32 idiag_wqueue;

 __u32 idiag_uid; Page 9/17

 __u32 idiag_inode;

 };

 followed by netlink attributes.

 The fields of this structure are as follows:

 idiag_family

 This is the same field as in struct inet_diag_req_v2.

 idiag_state

 This denotes socket state as in struct inet_diag_req_v2.

 idiag_timer

 For TCP sockets, this field describes the type of timer that is

 currently active for the socket. It is set to one of the fol?

 lowing constants:

 0 no timer is active

 1 a retransmit timer

 2 a keep-alive timer

 3 a TIME_WAIT timer

 4 a zero window probe timer

 For non-TCP sockets, this field is set to 0.

 idiag_retrans

 For idiag_timer values 1, 2, and 4, this field contains the num?

 ber of retransmits. For other idiag_timer values, this field is

 set to 0.

 idiag_expires

 For TCP sockets that have an active timer, this field describes

 its expiration time in milliseconds. For other sockets, this

 field is set to 0.

 idiag_rqueue

 For listening sockets: the number of pending connections.

 For other sockets: the amount of data in the incoming queue.

 idiag_wqueue

 For listening sockets: the backlog length.

 For other sockets: the amount of memory available for sending.

 idiag_uid Page 10/17

 This is the socket owner UID.

 idiag_inode

 This is the socket inode number.

 Socket memory information

 The payload associated with UNIX_DIAG_MEMINFO and INET_DIAG_SKMEMINFO

 netlink attributes is an array of the following __u32 values:

 SK_MEMINFO_RMEM_ALLOC

 The amount of data in receive queue.

 SK_MEMINFO_RCVBUF

 The receive socket buffer as set by SO_RCVBUF.

 SK_MEMINFO_WMEM_ALLOC

 The amount of data in send queue.

 SK_MEMINFO_SNDBUF

 The send socket buffer as set by SO_SNDBUF.

 SK_MEMINFO_FWD_ALLOC

 The amount of memory scheduled for future use (TCP only).

 SK_MEMINFO_WMEM_QUEUED

 The amount of data queued by TCP, but not yet sent.

 SK_MEMINFO_OPTMEM

 The amount of memory allocated for the socket's service needs

 (e.g., socket filter).

 SK_MEMINFO_BACKLOG

 The amount of packets in the backlog (not yet processed).

VERSIONS

 NETLINK_INET_DIAG was introduced in Linux 2.6.14 and supported AF_INET

 and AF_INET6 sockets only. In Linux 3.3, it was renamed to

 NETLINK_SOCK_DIAG and extended to support AF_UNIX sockets.

 UNIX_DIAG_MEMINFO and INET_DIAG_SKMEMINFO were introduced in Linux 3.6.

CONFORMING TO

 The NETLINK_SOCK_DIAG API is Linux-specific.

EXAMPLES

 The following example program prints inode number, peer's inode number,

 and name of all UNIX domain sockets in the current namespace. Page 11/17

 #include <errno.h>

 #include <stdio.h>

 #include <string.h>

 #include <unistd.h>

 #include <sys/socket.h>

 #include <sys/un.h>

 #include <linux/netlink.h>

 #include <linux/rtnetlink.h>

 #include <linux/sock_diag.h>

 #include <linux/unix_diag.h>

 static int

 send_query(int fd)

 {

 struct sockaddr_nl nladdr = {

 .nl_family = AF_NETLINK

 };

 struct

 {

 struct nlmsghdr nlh;

 struct unix_diag_req udr;

 } req = {

 .nlh = {

 .nlmsg_len = sizeof(req),

 .nlmsg_type = SOCK_DIAG_BY_FAMILY,

 .nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP

 },

 .udr = {

 .sdiag_family = AF_UNIX,

 .udiag_states = -1,

 .udiag_show = UDIAG_SHOW_NAME | UDIAG_SHOW_PEER

 }

 };

 struct iovec iov = { Page 12/17

 .iov_base = &req,

 .iov_len = sizeof(req)

 };

 struct msghdr msg = {

 .msg_name = &nladdr,

 .msg_namelen = sizeof(nladdr),

 .msg_iov = &iov,

 .msg_iovlen = 1

 };

 for (;;) {

 if (sendmsg(fd, &msg, 0) < 0) {

 if (errno == EINTR)

 continue;

 perror("sendmsg");

 return -1;

 }

 return 0;

 }

 }

 static int

 print_diag(const struct unix_diag_msg *diag, unsigned int len)

 {

 if (len < NLMSG_LENGTH(sizeof(*diag))) {

 fputs("short response\n", stderr);

 return -1;

 }

 if (diag->udiag_family != AF_UNIX) {

 fprintf(stderr, "unexpected family %u\n", diag->udiag_family);

 return -1;

 }

 unsigned int rta_len = len - NLMSG_LENGTH(sizeof(*diag));

 unsigned int peer = 0;

 size_t path_len = 0; Page 13/17

 char path[sizeof(((struct sockaddr_un *) 0)->sun_path) + 1];

 for (struct rtattr *attr = (struct rtattr *) (diag + 1);

 RTA_OK(attr, rta_len); attr = RTA_NEXT(attr, rta_len)) {

 switch (attr->rta_type) {

 case UNIX_DIAG_NAME:

 if (!path_len) {

 path_len = RTA_PAYLOAD(attr);

 if (path_len > sizeof(path) - 1)

 path_len = sizeof(path) - 1;

 memcpy(path, RTA_DATA(attr), path_len);

 path[path_len] = '\0';

 }

 break;

 case UNIX_DIAG_PEER:

 if (RTA_PAYLOAD(attr) >= sizeof(peer))

 peer = *(unsigned int *) RTA_DATA(attr);

 break;

 }

 }

 printf("inode=%u", diag->udiag_ino);

 if (peer)

 printf(", peer=%u", peer);

 if (path_len)

 printf(", name=%s%s", *path ? "" : "@",

 *path ? path : path + 1);

 putchar('\n');

 return 0;

 }

 static int

 receive_responses(int fd)

 {

 long buf[8192 / sizeof(long)];

 struct sockaddr_nl nladdr = { Page 14/17

 .nl_family = AF_NETLINK

 };

 struct iovec iov = {

 .iov_base = buf,

 .iov_len = sizeof(buf)

 };

 int flags = 0;

 for (;;) {

 struct msghdr msg = {

 .msg_name = &nladdr,

 .msg_namelen = sizeof(nladdr),

 .msg_iov = &iov,

 .msg_iovlen = 1

 };

 ssize_t ret = recvmsg(fd, &msg, flags);

 if (ret < 0) {

 if (errno == EINTR)

 continue;

 perror("recvmsg");

 return -1;

 }

 if (ret == 0)

 return 0;

 const struct nlmsghdr *h = (struct nlmsghdr *) buf;

 if (!NLMSG_OK(h, ret)) {

 fputs("!NLMSG_OK\n", stderr);

 return -1;

 }

 for (; NLMSG_OK(h, ret); h = NLMSG_NEXT(h, ret)) {

 if (h->nlmsg_type == NLMSG_DONE)

 return 0;

 if (h->nlmsg_type == NLMSG_ERROR) {

 const struct nlmsgerr *err = NLMSG_DATA(h); Page 15/17

 if (h->nlmsg_len < NLMSG_LENGTH(sizeof(*err))) {

 fputs("NLMSG_ERROR\n", stderr);

 } else {

 errno = -err->error;

 perror("NLMSG_ERROR");

 }

 return -1;

 }

 if (h->nlmsg_type != SOCK_DIAG_BY_FAMILY) {

 fprintf(stderr, "unexpected nlmsg_type %u\n",

 (unsigned) h->nlmsg_type);

 return -1;

 }

 if (print_diag(NLMSG_DATA(h), h->nlmsg_len))

 return -1;

 }

 }

 }

 int

 main(void)

 {

 int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_SOCK_DIAG);

 if (fd < 0) {

 perror("socket");

 return 1;

 }

 int ret = send_query(fd) || receive_responses(fd);

 close(fd);

 return ret;

 }

SEE ALSO

 netlink(3), rtnetlink(3), netlink(7), tcp(7)

COLOPHON Page 16/17

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SOCK_DIAG(7)

Page 17/17

