
Rocky Enterprise Linux 9.2 Manual Pages on command 'sigaction.2'

$ man sigaction.2

SIGACTION(2) Linux Programmer's Manual SIGACTION(2)

NAME

 sigaction, rt_sigaction - examine and change a signal action

SYNOPSIS

 #include <signal.h>

 int sigaction(int signum, const struct sigaction *act,

 struct sigaction *oldact);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 sigaction(): _POSIX_C_SOURCE

 siginfo_t: _POSIX_C_SOURCE >= 199309L

DESCRIPTION

 The sigaction() system call is used to change the action taken by a

 process on receipt of a specific signal. (See signal(7) for an over?

 view of signals.)

 signum specifies the signal and can be any valid signal except SIGKILL

 and SIGSTOP.

 If act is non-NULL, the new action for signal signum is installed from

 act. If oldact is non-NULL, the previous action is saved in oldact. Page 1/14

 The sigaction structure is defined as something like:

 struct sigaction {

 void (*sa_handler)(int);

 void (*sa_sigaction)(int, siginfo_t *, void *);

 sigset_t sa_mask;

 int sa_flags;

 void (*sa_restorer)(void);

 };

 On some architectures a union is involved: do not assign to both

 sa_handler and sa_sigaction.

 The sa_restorer field is not intended for application use. (POSIX does

 not specify a sa_restorer field.) Some further details of the purpose

 of this field can be found in sigreturn(2).

 sa_handler specifies the action to be associated with signum and is be

 one of the following:

 * SIG_DFL for the default action.

 * SIG_IGN to ignore this signal.

 * A pointer to a signal handling function. This function receives the

 signal number as its only argument.

 If SA_SIGINFO is specified in sa_flags, then sa_sigaction (instead of

 sa_handler) specifies the signal-handling function for signum. This

 function receives three arguments, as described below.

 sa_mask specifies a mask of signals which should be blocked (i.e.,

 added to the signal mask of the thread in which the signal handler is

 invoked) during execution of the signal handler. In addition, the sig?

 nal which triggered the handler will be blocked, unless the SA_NODEFER

 flag is used.

 sa_flags specifies a set of flags which modify the behavior of the sig?

 nal. It is formed by the bitwise OR of zero or more of the following:

 SA_NOCLDSTOP

 If signum is SIGCHLD, do not receive notification when child

 processes stop (i.e., when they receive one of SIGSTOP, SIGTSTP,

 SIGTTIN, or SIGTTOU) or resume (i.e., they receive SIGCONT) (see Page 2/14

 wait(2)). This flag is meaningful only when establishing a han?

 dler for SIGCHLD.

 SA_NOCLDWAIT (since Linux 2.6)

 If signum is SIGCHLD, do not transform children into zombies

 when they terminate. See also waitpid(2). This flag is mean?

 ingful only when establishing a handler for SIGCHLD, or when

 setting that signal's disposition to SIG_DFL.

 If the SA_NOCLDWAIT flag is set when establishing a handler for

 SIGCHLD, POSIX.1 leaves it unspecified whether a SIGCHLD signal

 is generated when a child process terminates. On Linux, a

 SIGCHLD signal is generated in this case; on some other imple?

 mentations, it is not.

 SA_NODEFER

 Do not add the signal to the thread's signal mask while the han?

 dler is executing, unless the signal is specified in

 act.sa_mask. Consequently, a further instance of the signal may

 be delivered to the thread while it is executing the handler.

 This flag is meaningful only when establishing a signal handler.

 SA_NOMASK is an obsolete, nonstandard synonym for this flag.

 SA_ONSTACK

 Call the signal handler on an alternate signal stack provided by

 sigaltstack(2). If an alternate stack is not available, the de?

 fault stack will be used. This flag is meaningful only when es?

 tablishing a signal handler.

 SA_RESETHAND

 Restore the signal action to the default upon entry to the sig?

 nal handler. This flag is meaningful only when establishing a

 signal handler.

 SA_ONESHOT is an obsolete, nonstandard synonym for this flag.

 SA_RESTART

 Provide behavior compatible with BSD signal semantics by making

 certain system calls restartable across signals. This flag is

 meaningful only when establishing a signal handler. See sig? Page 3/14

 nal(7) for a discussion of system call restarting.

 SA_RESTORER

 Not intended for application use. This flag is used by C li?

 braries to indicate that the sa_restorer field contains the ad?

 dress of a "signal trampoline". See sigreturn(2) for more de?

 tails.

 SA_SIGINFO (since Linux 2.2)

 The signal handler takes three arguments, not one. In this

 case, sa_sigaction should be set instead of sa_handler. This

 flag is meaningful only when establishing a signal handler.

 The siginfo_t argument to a SA_SIGINFO handler

 When the SA_SIGINFO flag is specified in act.sa_flags, the signal han?

 dler address is passed via the act.sa_sigaction field. This handler

 takes three arguments, as follows:

 void

 handler(int sig, siginfo_t *info, void *ucontext)

 {

 ...

 }

 These three arguments are as follows

 sig The number of the signal that caused invocation of the handler.

 info A pointer to a siginfo_t, which is a structure containing fur?

 ther information about the signal, as described below.

 ucontext

 This is a pointer to a ucontext_t structure, cast to void *.

 The structure pointed to by this field contains signal context

 information that was saved on the user-space stack by the ker?

 nel; for details, see sigreturn(2). Further information about

 the ucontext_t structure can be found in getcontext(3) and sig?

 nal(7). Commonly, the handler function doesn't make any use of

 the third argument.

 The siginfo_t data type is a structure with the following fields:

 siginfo_t { Page 4/14

 int si_signo; /* Signal number */

 int si_errno; /* An errno value */

 int si_code; /* Signal code */

 int si_trapno; /* Trap number that caused

 hardware-generated signal

 (unused on most architectures) */

 pid_t si_pid; /* Sending process ID */

 uid_t si_uid; /* Real user ID of sending process */

 int si_status; /* Exit value or signal */

 clock_t si_utime; /* User time consumed */

 clock_t si_stime; /* System time consumed */

 union sigval si_value; /* Signal value */

 int si_int; /* POSIX.1b signal */

 void *si_ptr; /* POSIX.1b signal */

 int si_overrun; /* Timer overrun count;

 POSIX.1b timers */

 int si_timerid; /* Timer ID; POSIX.1b timers */

 void *si_addr; /* Memory location which caused fault */

 long si_band; /* Band event (was int in

 glibc 2.3.2 and earlier) */

 int si_fd; /* File descriptor */

 short si_addr_lsb; /* Least significant bit of address

 (since Linux 2.6.32) */

 void *si_lower; /* Lower bound when address violation

 occurred (since Linux 3.19) */

 void *si_upper; /* Upper bound when address violation

 occurred (since Linux 3.19) */

 int si_pkey; /* Protection key on PTE that caused

 fault (since Linux 4.6) */

 void *si_call_addr; /* Address of system call instruction

 (since Linux 3.5) */

 int si_syscall; /* Number of attempted system call

 (since Linux 3.5) */ Page 5/14

 unsigned int si_arch; /* Architecture of attempted system call

 (since Linux 3.5) */

 }

 si_signo, si_errno and si_code are defined for all signals. (si_errno

 is generally unused on Linux.) The rest of the struct may be a union,

 so that one should read only the fields that are meaningful for the

 given signal:

 * Signals sent with kill(2) and sigqueue(3) fill in si_pid and si_uid.

 In addition, signals sent with sigqueue(3) fill in si_int and si_ptr

 with the values specified by the sender of the signal; see

 sigqueue(3) for more details.

 * Signals sent by POSIX.1b timers (since Linux 2.6) fill in si_overrun

 and si_timerid. The si_timerid field is an internal ID used by the

 kernel to identify the timer; it is not the same as the timer ID re?

 turned by timer_create(2). The si_overrun field is the timer overrun

 count; this is the same information as is obtained by a call to

 timer_getoverrun(2). These fields are nonstandard Linux extensions.

 * Signals sent for message queue notification (see the description of

 SIGEV_SIGNAL in mq_notify(3)) fill in si_int/si_ptr, with the

 sigev_value supplied to mq_notify(3); si_pid, with the process ID of

 the message sender; and si_uid, with the real user ID of the message

 sender.

 * SIGCHLD fills in si_pid, si_uid, si_status, si_utime, and si_stime,

 providing information about the child. The si_pid field is the

 process ID of the child; si_uid is the child's real user ID. The

 si_status field contains the exit status of the child (if si_code is

 CLD_EXITED), or the signal number that caused the process to change

 state. The si_utime and si_stime contain the user and system CPU

 time used by the child process; these fields do not include the times

 used by waited-for children (unlike getrusage(2) and times(2)). In

 kernels up to 2.6, and since 2.6.27, these fields report CPU time in

 units of sysconf(_SC_CLK_TCK). In 2.6 kernels before 2.6.27, a bug

 meant that these fields reported time in units of the (configurable) Page 6/14

 system jiffy (see time(7)).

 * SIGILL, SIGFPE, SIGSEGV, SIGBUS, and SIGTRAP fill in si_addr with the

 address of the fault. On some architectures, these signals also fill

 in the si_trapno field.

 Some suberrors of SIGBUS, in particular BUS_MCEERR_AO and

 BUS_MCEERR_AR, also fill in si_addr_lsb. This field indicates the

 least significant bit of the reported address and therefore the ex?

 tent of the corruption. For example, if a full page was corrupted,

 si_addr_lsb contains log2(sysconf(_SC_PAGESIZE)). When SIGTRAP is

 delivered in response to a ptrace(2) event (PTRACE_EVENT_foo),

 si_addr is not populated, but si_pid and si_uid are populated with

 the respective process ID and user ID responsible for delivering the

 trap. In the case of seccomp(2), the tracee will be shown as deliv?

 ering the event. BUS_MCEERR_* and si_addr_lsb are Linux-specific ex?

 tensions.

 The SEGV_BNDERR suberror of SIGSEGV populates si_lower and si_upper.

 The SEGV_PKUERR suberror of SIGSEGV populates si_pkey.

 * SIGIO/SIGPOLL (the two names are synonyms on Linux) fills in si_band

 and si_fd. The si_band event is a bit mask containing the same val?

 ues as are filled in the revents field by poll(2). The si_fd field

 indicates the file descriptor for which the I/O event occurred; for

 further details, see the description of F_SETSIG in fcntl(2).

 * SIGSYS, generated (since Linux 3.5) when a seccomp filter returns

 SECCOMP_RET_TRAP, fills in si_call_addr, si_syscall, si_arch, si_er?

 rno, and other fields as described in seccomp(2).

 The si_code field

 The si_code field inside the siginfo_t argument that is passed to a

 SA_SIGINFO signal handler is a value (not a bit mask) indicating why

 this signal was sent. For a ptrace(2) event, si_code will contain SIG?

 TRAP and have the ptrace event in the high byte:

 (SIGTRAP | PTRACE_EVENT_foo << 8).

 For a non-ptrace(2) event, the values that can appear in si_code are

 described in the remainder of this section. Since glibc 2.20, the def? Page 7/14

 initions of most of these symbols are obtained from <signal.h> by

 defining feature test macros (before including any header file) as fol?

 lows:

 * _XOPEN_SOURCE with the value 500 or greater;

 * _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED; or

 * _POSIX_C_SOURCE with the value 200809L or greater.

 For the TRAP_* constants, the symbol definitions are provided only in

 the first two cases. Before glibc 2.20, no feature test macros were

 required to obtain these symbols.

 For a regular signal, the following list shows the values which can be

 placed in si_code for any signal, along with the reason that the signal

 was generated.

 SI_USER

 kill(2).

 SI_KERNEL

 Sent by the kernel.

 SI_QUEUE

 sigqueue(3).

 SI_TIMER

 POSIX timer expired.

 SI_MESGQ (since Linux 2.6.6)

 POSIX message queue state changed; see mq_notify(3).

 SI_ASYNCIO

 AIO completed.

 SI_SIGIO

 Queued SIGIO (only in kernels up to Linux 2.2; from Linux

 2.4 onward SIGIO/SIGPOLL fills in si_code as described be?

 low).

 SI_TKILL (since Linux 2.4.19)

 tkill(2) or tgkill(2).

 The following values can be placed in si_code for a SIGILL signal:

 ILL_ILLOPC

 Illegal opcode. Page 8/14

 ILL_ILLOPN

 Illegal operand.

 ILL_ILLADR

 Illegal addressing mode.

 ILL_ILLTRP

 Illegal trap.

 ILL_PRVOPC

 Privileged opcode.

 ILL_PRVREG

 Privileged register.

 ILL_COPROC

 Coprocessor error.

 ILL_BADSTK

 Internal stack error.

 The following values can be placed in si_code for a SIGFPE signal:

 FPE_INTDIV

 Integer divide by zero.

 FPE_INTOVF

 Integer overflow.

 FPE_FLTDIV

 Floating-point divide by zero.

 FPE_FLTOVF

 Floating-point overflow.

 FPE_FLTUND

 Floating-point underflow.

 FPE_FLTRES

 Floating-point inexact result.

 FPE_FLTINV

 Floating-point invalid operation.

 FPE_FLTSUB

 Subscript out of range.

 The following values can be placed in si_code for a SIGSEGV signal:

 SEGV_MAPERR Page 9/14

 Address not mapped to object.

 SEGV_ACCERR

 Invalid permissions for mapped object.

 SEGV_BNDERR (since Linux 3.19)

 Failed address bound checks.

 SEGV_PKUERR (since Linux 4.6)

 Access was denied by memory protection keys. See pkeys(7).

 The protection key which applied to this access is available

 via si_pkey.

 The following values can be placed in si_code for a SIGBUS signal:

 BUS_ADRALN

 Invalid address alignment.

 BUS_ADRERR

 Nonexistent physical address.

 BUS_OBJERR

 Object-specific hardware error.

 BUS_MCEERR_AR (since Linux 2.6.32)

 Hardware memory error consumed on a machine check; action

 required.

 BUS_MCEERR_AO (since Linux 2.6.32)

 Hardware memory error detected in process but not consumed;

 action optional.

 The following values can be placed in si_code for a SIGTRAP signal:

 TRAP_BRKPT

 Process breakpoint.

 TRAP_TRACE

 Process trace trap.

 TRAP_BRANCH (since Linux 2.4, IA64 only)

 Process taken branch trap.

 TRAP_HWBKPT (since Linux 2.4, IA64 only)

 Hardware breakpoint/watchpoint.

 The following values can be placed in si_code for a SIGCHLD signal:

 CLD_EXITED Page 10/14

 Child has exited.

 CLD_KILLED

 Child was killed.

 CLD_DUMPED

 Child terminated abnormally.

 CLD_TRAPPED

 Traced child has trapped.

 CLD_STOPPED

 Child has stopped.

 CLD_CONTINUED (since Linux 2.6.9)

 Stopped child has continued.

 The following values can be placed in si_code for a SIGIO/SIGPOLL sig?

 nal:

 POLL_IN

 Data input available.

 POLL_OUT

 Output buffers available.

 POLL_MSG

 Input message available.

 POLL_ERR

 I/O error.

 POLL_PRI

 High priority input available.

 POLL_HUP

 Device disconnected.

 The following value can be placed in si_code for a SIGSYS signal:

 SYS_SECCOMP (since Linux 3.5)

 Triggered by a seccomp(2) filter rule.

RETURN VALUE

 sigaction() returns 0 on success; on error, -1 is returned, and errno

 is set to indicate the error.

ERRORS

 EFAULT act or oldact points to memory which is not a valid part of the Page 11/14

 process address space.

 EINVAL An invalid signal was specified. This will also be generated if

 an attempt is made to change the action for SIGKILL or SIGSTOP,

 which cannot be caught or ignored.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

NOTES

 A child created via fork(2) inherits a copy of its parent's signal dis?

 positions. During an execve(2), the dispositions of handled signals

 are reset to the default; the dispositions of ignored signals are left

 unchanged.

 According to POSIX, the behavior of a process is undefined after it ig?

 nores a SIGFPE, SIGILL, or SIGSEGV signal that was not generated by

 kill(2) or raise(3). Integer division by zero has undefined result.

 On some architectures it will generate a SIGFPE signal. (Also dividing

 the most negative integer by -1 may generate SIGFPE.) Ignoring this

 signal might lead to an endless loop.

 POSIX.1-1990 disallowed setting the action for SIGCHLD to SIG_IGN.

 POSIX.1-2001 and later allow this possibility, so that ignoring SIGCHLD

 can be used to prevent the creation of zombies (see wait(2)). Never?

 theless, the historical BSD and System V behaviors for ignoring SIGCHLD

 differ, so that the only completely portable method of ensuring that

 terminated children do not become zombies is to catch the SIGCHLD sig?

 nal and perform a wait(2) or similar.

 POSIX.1-1990 specified only SA_NOCLDSTOP. POSIX.1-2001 added SA_NOCLD?

 STOP, SA_NOCLDWAIT, SA_NODEFER, SA_ONSTACK, SA_RESETHAND, SA_RESTART,

 and SA_SIGINFO. Use of these latter values in sa_flags may be less

 portable in applications intended for older UNIX implementations.

 The SA_RESETHAND flag is compatible with the SVr4 flag of the same

 name.

 The SA_NODEFER flag is compatible with the SVr4 flag of the same name

 under kernels 1.3.9 and later. On older kernels the Linux implementa?

 tion allowed the receipt of any signal, not just the one we are in? Page 12/14

 stalling (effectively overriding any sa_mask settings).

 sigaction() can be called with a NULL second argument to query the cur?

 rent signal handler. It can also be used to check whether a given sig?

 nal is valid for the current machine by calling it with NULL second and

 third arguments.

 It is not possible to block SIGKILL or SIGSTOP (by specifying them in

 sa_mask). Attempts to do so are silently ignored.

 See sigsetops(3) for details on manipulating signal sets.

 See signal-safety(7) for a list of the async-signal-safe functions that

 can be safely called inside from inside a signal handler.

 C library/kernel differences

 The glibc wrapper function for sigaction() gives an error (EINVAL) on

 attempts to change the disposition of the two real-time signals used

 internally by the NPTL threading implementation. See nptl(7) for de?

 tails.

 On architectures where the signal trampoline resides in the C library,

 the glibc wrapper function for sigaction() places the address of the

 trampoline code in the act.sa_restorer field and sets the SA_RESTORER

 flag in the act.sa_flags field. See sigreturn(2).

 The original Linux system call was named sigaction(). However, with

 the addition of real-time signals in Linux 2.2, the fixed-size, 32-bit

 sigset_t type supported by that system call was no longer fit for pur?

 pose. Consequently, a new system call, rt_sigaction(), was added to

 support an enlarged sigset_t type. The new system call takes a fourth

 argument, size_t sigsetsize, which specifies the size in bytes of the

 signal sets in act.sa_mask and oldact.sa_mask. This argument is cur?

 rently required to have the value sizeof(sigset_t) (or the error EINVAL

 results). The glibc sigaction() wrapper function hides these details

 from us, transparently calling rt_sigaction() when the kernel provides

 it.

 Undocumented

 Before the introduction of SA_SIGINFO, it was also possible to get some

 additional information about the signal. This was done by providing an Page 13/14

 sa_handler signal handler with a second argument of type struct sigcon?

 text, which is the same structure as the one that is passed in the

 uc_mcontext field of the ucontext structure that is passed (via a

 pointer) in the third argument of the sa_sigaction handler. See the

 relevant Linux kernel sources for details. This use is obsolete now.

BUGS

 When delivering a signal with a SA_SIGINFO handler, the kernel does not

 always provide meaningful values for all of the fields of the siginfo_t

 that are relevant for that signal.

 In kernels up to and including 2.6.13, specifying SA_NODEFER in

 sa_flags prevents not only the delivered signal from being masked dur?

 ing execution of the handler, but also the signals specified in

 sa_mask. This bug was fixed in kernel 2.6.14.

EXAMPLES

 See mprotect(2).

SEE ALSO

 kill(1), kill(2), pause(2), pidfd_send_signal(2), restart_syscall(2),

 seccomp(2), sigaltstack(2), signal(2), signalfd(2), sigpending(2), sig?

 procmask(2), sigreturn(2), sigsuspend(2), wait(2), killpg(3), raise(3),

 siginterrupt(3), sigqueue(3), sigsetops(3), sigvec(3), core(5), sig?

 nal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SIGACTION(2)

Page 14/14

