
Rocky Enterprise Linux 9.2 Manual Pages on command 'shm_open.3'

$ man shm_open.3

SHM_OPEN(3) Linux Programmer's Manual SHM_OPEN(3)

NAME

 shm_open, shm_unlink - create/open or unlink POSIX shared memory ob?

 jects

SYNOPSIS

 #include <sys/mman.h>

 #include <sys/stat.h> /* For mode constants */

 #include <fcntl.h> /* For O_* constants */

 int shm_open(const char *name, int oflag, mode_t mode);

 int shm_unlink(const char *name);

 Link with -lrt.

DESCRIPTION

 shm_open() creates and opens a new, or opens an existing, POSIX shared

 memory object. A POSIX shared memory object is in effect a handle

 which can be used by unrelated processes to mmap(2) the same region of

 shared memory. The shm_unlink() function performs the converse opera?

 tion, removing an object previously created by shm_open().

 The operation of shm_open() is analogous to that of open(2). name Page 1/9

 specifies the shared memory object to be created or opened. For porta?

 ble use, a shared memory object should be identified by a name of the

 form /somename; that is, a null-terminated string of up to NAME_MAX

 (i.e., 255) characters consisting of an initial slash, followed by one

 or more characters, none of which are slashes.

 oflag is a bit mask created by ORing together exactly one of O_RDONLY

 or O_RDWR and any of the other flags listed here:

 O_RDONLY

 Open the object for read access. A shared memory object opened

 in this way can be mmap(2)ed only for read (PROT_READ) access.

 O_RDWR Open the object for read-write access.

 O_CREAT

 Create the shared memory object if it does not exist. The user

 and group ownership of the object are taken from the correspond?

 ing effective IDs of the calling process, and the object's per?

 mission bits are set according to the low-order 9 bits of mode,

 except that those bits set in the process file mode creation

 mask (see umask(2)) are cleared for the new object. A set of

 macro constants which can be used to define mode is listed in

 open(2). (Symbolic definitions of these constants can be ob?

 tained by including <sys/stat.h>.)

 A new shared memory object initially has zero length?the size of

 the object can be set using ftruncate(2). The newly allocated

 bytes of a shared memory object are automatically initialized to

 0.

 O_EXCL If O_CREAT was also specified, and a shared memory object with

 the given name already exists, return an error. The check for

 the existence of the object, and its creation if it does not ex?

 ist, are performed atomically.

 O_TRUNC

 If the shared memory object already exists, truncate it to zero

 bytes.

 Definitions of these flag values can be obtained by including <fc? Page 2/9

 ntl.h>.

 On successful completion shm_open() returns a new file descriptor re?

 ferring to the shared memory object. This file descriptor is guaran?

 teed to be the lowest-numbered file descriptor not previously opened

 within the process. The FD_CLOEXEC flag (see fcntl(2)) is set for the

 file descriptor.

 The file descriptor is normally used in subsequent calls to ftrun?

 cate(2) (for a newly created object) and mmap(2). After a call to

 mmap(2) the file descriptor may be closed without affecting the memory

 mapping.

 The operation of shm_unlink() is analogous to unlink(2): it removes a

 shared memory object name, and, once all processes have unmapped the

 object, de-allocates and destroys the contents of the associated memory

 region. After a successful shm_unlink(), attempts to shm_open() an ob?

 ject with the same name fail (unless O_CREAT was specified, in which

 case a new, distinct object is created).

RETURN VALUE

 On success, shm_open() returns a file descriptor (a nonnegative inte?

 ger). On failure, shm_open() returns -1. shm_unlink() returns 0 on

 success, or -1 on error.

ERRORS

 On failure, errno is set to indicate the cause of the error. Values

 which may appear in errno include the following:

 EACCES Permission to shm_unlink() the shared memory object was denied.

 EACCES Permission was denied to shm_open() name in the specified mode,

 or O_TRUNC was specified and the caller does not have write per?

 mission on the object.

 EEXIST Both O_CREAT and O_EXCL were specified to shm_open() and the

 shared memory object specified by name already exists.

 EINVAL The name argument to shm_open() was invalid.

 EMFILE The per-process limit on the number of open file descriptors has

 been reached.

 ENAMETOOLONG Page 3/9

 The length of name exceeds PATH_MAX.

 ENFILE The system-wide limit on the total number of open files has been

 reached.

 ENOENT An attempt was made to shm_open() a name that did not exist, and

 O_CREAT was not specified.

 ENOENT An attempt was to made to shm_unlink() a name that does not ex?

 ist.

VERSIONS

 These functions are provided in glibc 2.2 and later.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?shm_open(), shm_unlink() ? Thread safety ? MT-Safe locale ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

 POSIX.1-2001 says that the group ownership of a newly created shared

 memory object is set to either the calling process's effective group ID

 or "a system default group ID". POSIX.1-2008 says that the group own?

 ership may be set to either the calling process's effective group ID

 or, if the object is visible in the filesystem, the group ID of the

 parent directory.

NOTES

 POSIX leaves the behavior of the combination of O_RDONLY and O_TRUNC

 unspecified. On Linux, this will successfully truncate an existing

 shared memory object?this may not be so on other UNIX systems.

 The POSIX shared memory object implementation on Linux makes use of a

 dedicated tmpfs(5) filesystem that is normally mounted under /dev/shm.

EXAMPLES

 The programs below employ POSIX shared memory and POSIX unnamed sema? Page 4/9

 phores to exchange a piece of data. The "bounce" program (which must

 be run first) raises the case of a string that is placed into the

 shared memory by the "send" program. Once the data has been modified,

 the "send" program then prints the contents of the modified shared mem?

 ory. An example execution of the two programs is the following:

 $./pshm_ucase_bounce /myshm &

 [1] 270171

 $./pshm_ucase_send /myshm hello

 HELLO

 Further detail about these programs is provided below.

 Program source: pshm_ucase.h

 The following header file is included by both programs below. Its pri?

 mary purpose is to define a structure that will be imposed on the mem?

 ory object that is shared between the two programs.

 #include <sys/mman.h>

 #include <fcntl.h>

 #include <semaphore.h>

 #include <sys/stat.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 #define BUF_SIZE 1024 /* Maximum size for exchanged string */

 /* Define a structure that will be imposed on the shared

 memory object */

 struct shmbuf {

 sem_t sem1; /* POSIX unnamed semaphore */

 sem_t sem2; /* POSIX unnamed semaphore */

 size_t cnt; /* Number of bytes used in 'buf' */

 char buf[BUF_SIZE]; /* Data being transferred */

 };

 Program source: pshm_ucase_bounce.c Page 5/9

 The "bounce" program creates a new shared memory object with the name

 given in its command-line argument and sizes the object to match the

 size of the shmbuf structure defined in the header file. It then maps

 the object into the process's address space, and initializes two POSIX

 semaphores inside the object to 0.

 After the "send" program has posted the first of the semaphores, the

 "bounce" program upper cases the data that has been placed in the mem?

 ory by the "send" program and then posts the second semaphore to tell

 the "send" program that it may now access the shared memory.

 /* pshm_ucase_bounce.c

 Licensed under GNU General Public License v2 or later.

 */

 #include <ctype.h>

 #include "pshm_ucase.h"

 int

 main(int argc, char *argv[])

 {

 if (argc != 2) {

 fprintf(stderr, "Usage: %s /shm-path\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 char *shmpath = argv[1];

 /* Create shared memory object and set its size to the size

 of our structure */

 int fd = shm_open(shmpath, O_CREAT | O_EXCL | O_RDWR,

 S_IRUSR | S_IWUSR);

 if (fd == -1)

 errExit("shm_open");

 if (ftruncate(fd, sizeof(struct shmbuf)) == -1)

 errExit("ftruncate");

 /* Map the object into the caller's address space */

 struct shmbuf *shmp = mmap(NULL, sizeof(*shmp),

 PROT_READ | PROT_WRITE, Page 6/9

 MAP_SHARED, fd, 0);

 if (shmp == MAP_FAILED)

 errExit("mmap");

 /* Initialize semaphores as process-shared, with value 0 */

 if (sem_init(&shmp->sem1, 1, 0) == -1)

 errExit("sem_init-sem1");

 if (sem_init(&shmp->sem2, 1, 0) == -1)

 errExit("sem_init-sem2");

 /* Wait for 'sem1' to be posted by peer before touching

 shared memory */

 if (sem_wait(&shmp->sem1) == -1)

 errExit("sem_wait");

 /* Convert data in shared memory into upper case */

 for (int j = 0; j < shmp->cnt; j++)

 shmp->buf[j] = toupper((unsigned char) shmp->buf[j]);

 /* Post 'sem2' to tell the to tell peer that it can now

 access the modified data in shared memory */

 if (sem_post(&shmp->sem2) == -1)

 errExit("sem_post");

 /* Unlink the shared memory object. Even if the peer process

 is still using the object, this is okay. The object will

 be removed only after all open references are closed. */

 shm_unlink(shmpath);

 exit(EXIT_SUCCESS);

 }

 Program source: pshm_ucase_send.c

 The "send" program takes two command-line arguments: the pathname of a

 shared memory object previously created by the "bounce" program and a

 string that is to be copied into that object.

 The program opens the shared memory object and maps the object into its

 address space. It then copies the data specified in its second argu?

 ment into the shared memory, and posts the first semaphore, which tells

 the "bounce" program that it can now access that data. After the Page 7/9

 "bounce" program posts the second semaphore, the "send" program prints

 the contents of the shared memory on standard output.

 /* pshm_ucase_send.c

 Licensed under GNU General Public License v2 or later.

 */

 #include <string.h>

 #include "pshm_ucase.h"

 int

 main(int argc, char *argv[])

 {

 if (argc != 3) {

 fprintf(stderr, "Usage: %s /shm-path string\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 char *shmpath = argv[1];

 char *string = argv[2];

 size_t len = strlen(string);

 if (len > BUF_SIZE) {

 fprintf(stderr, "String is too long\n");

 exit(EXIT_FAILURE);

 }

 /* Open the existing shared memory object and map it

 into the caller's address space */

 int fd = shm_open(shmpath, O_RDWR, 0);

 if (fd == -1)

 errExit("shm_open");

 struct shmbuf *shmp = mmap(NULL, sizeof(*shmp),

 PROT_READ | PROT_WRITE,

 MAP_SHARED, fd, 0);

 if (shmp == MAP_FAILED)

 errExit("mmap");

 /* Copy data into the shared memory object */

 shmp->cnt = len; Page 8/9

 memcpy(&shmp->buf, string, len);

 /* Tell peer that it can now access shared memory */

 if (sem_post(&shmp->sem1) == -1)

 errExit("sem_post");

 /* Wait until peer says that it has finished accessing

 the shared memory */

 if (sem_wait(&shmp->sem2) == -1)

 errExit("sem_wait");

 /* Write modified data in shared memory to standard output */

 write(STDOUT_FILENO, &shmp->buf, len);

 write(STDOUT_FILENO, "\n", 1);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 close(2), fchmod(2), fchown(2), fcntl(2), fstat(2), ftruncate(2),

 memfd_create(2), mmap(2), open(2), umask(2), shm_overview(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SHM_OPEN(3)

Page 9/9

